二次根式的有关概念及性质
- 格式:doc
- 大小:202.00 KB
- 文档页数:7
前提知识之阳早格格创做
1、二次根式的定义:
咱们已经知讲:每一个正真数有且惟有二个仄圆根,一个记做,称为的算术仄圆根;另一个是.
咱们把形如的式子喊做二次根式,根号下的数喊做被启圆数.
由于正在真数范畴内,背真数不仄圆根,果此惟有当被启圆数利害背真数时,二次根式才正在真数范畴内蓄意思.
2、二次根式的本量
3、二次根式的积的算数仄圆根的本量
4、末尾的估计截止,具备以下特性:
(1)被启圆数中不含启得尽圆的果数(或者果式);(2)被启圆数不含分母.
咱们把谦脚上述二个条件的二次根式,喊做最简二次根式.
注意:①化简二次根式时,末尾截止央供被启圆数中不含启得尽圆的果数.
②化简二次根式时,末尾截止央供被启圆数不含分母.
③以后正在化简二次根式时,不妨曲交把根号下的每一个仄圆果子来掉仄圆号以来移到根号中(注意:从根号下曲交移到根号中的数必须利害背数).
题型一、二次根式的观念战条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的本量
【例7】估计
【例8】
【例??】
【练一练】
??、
??、
??、
7、
题型三积的算数仄圆根的本量【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简
【例题粗析】
【例15】
【例16】
【例17】
【例18】
【练一练】
4、
5、6、6、
7、。
第十六章 二次根式16.1 二次根式一、复习1、什么叫平方根?开平方?如果一个数的平方等于a ,那么这个数叫做a 的平方根,求一个数a 平方根的运算叫做开平方2、平方根如何表示?一个非负数a 的平方根可以表示为a ±3、求下列各数的平方根:4、求下列各数的正平方根:(1)4; (2)0.16; (3)925. (1)225; (2)0.0001; (3)1681. 二、二次根式的意义1. 二次根式的意义_根号a,其中a 是被开方数. 做二次根式.。
2.二次根式何时有意义:二次根式有意义的条件是被开方数大于等于零 即:a ≥03. 例题例题1 下列各式是二次根式吗?2、32、2-、 12+a 、)0(<b b例题2 设x 是实数,当x 满足什么条件时,下列各式有意义?(1)12-x ; (2)x -2; (3)x1; (4)21x + 4.练习(一)设x 是实数,当x 满足什么条件时,下列各式有意义?(1 (2 (3三、二次根式的性质性质1a a 2=; 性质2:_________________________;性质3:______________________; 性质4:________________________________.例题3 求下列二次根式的值:(1)2)3(π-; (2)122+-x x ,其中3-=x .(1(2(3)0x ≥;(4(5(60)b > 例题5 设a 、b 、c 分别是三角形三边的长,化简:22)()(a c b c b a --++-练习(二):1、化简下列二次根式(1(20)x ≥; (30)n ≥; (4(5) (6)2、选择题(1)、实数a 、b 在数轴上对应的位置如图,则=---22)1()1(a b ( )A 、b-aB 、2-a-bC 、a-bD 、2+a-b(2)、化简2)21(-的结果是( ) A 、21- B 、12- C 、)12(-± D 、)21(-±(3)、如果2121--=--x x x x ,那么x 的取值范围是( ) A 、1≤x ≤2 B 、1<x ≤2 C 、x ≥2 D 、x >216.2最简二次根式和同类二次根式1、最简二次根式符合的两个条件:(1)_________________________________________________;(2)_________________________________________________.例题6 判断下列二次根式是不是最简二次根式:(1(2(3(41)a ≥-例题7 将下列二次根式化成最简二次根式:(1)0y >;(2)0a b ≥≥;(3)0m n >>· · · · a b 0 12、练习(三)(1)判断下列二次根式中,哪些是最简二次根式:(2)找出下列二次根式中的非最简二次根式,并把它们化成最简二次根式:))00a y >> (3)将下列各二次根式化成最简二次根式:)))000b x y p q >>>>>3、同类二次根式几个二次根式化成_____________________后,如果_______________相同,那么这几个二次根式叫做同类二次根式. 例题8 下列二次根式中,哪些是同类二次根式?))0,0a a >>例题9 合并下列各式中的同类二次根式:(1)323132122++-; (2)xy b xy a xy +-34、练习(四)(1)判断下列各组中的二次根式是不是同类二次根式:B. )0;x ≥))00a y >>(2)合并下列各式中的同类二次根式:A.-B.。
二次根式总结一、引言二次根式是数学中一个重要的概念,涉及到对平方根的运算和性质。
掌握好二次根式的基本知识对于理解和解决数学问题至关重要。
本文将对二次根式进行总结,从定义、性质到应用方面进行探讨。
二、定义与基本性质二次根式可以表示为√a(其中a≥0),这里√a称为二次根,a称为被开方数。
在二次根式中,一些基本性质需要予以关注。
首先,二次根式满足乘法分配律。
对于任意的非负实数a和b,有√(ab)=√a × √b。
这个性质与平方根的性质一致,可以利用它对二次根式进行简化。
其次,二次根式可以进行合并化简。
如果a和b都是非负实数,则√a + √b可以合并成一个根式。
例如,√2 + √3 = √(2+3) = √5。
这一点在化简二次根式的过程中常常应用到。
另外,二次根式的乘法也有一定的规律。
对于任意非负实数a 和b,有(√a × √b) = √(ab)。
同样地,在乘法的过程中可以利用这一性质对二次根式进行化简。
三、进一步探讨与应用1. 二次根式的化简化简二次根式是使用二次根式的基本性质,将复杂的根式表示简化为更简洁的形式。
例如,√8可以化简为2√2,√5 × √3可以化简为√15。
化简二次根式有助于简化运算和解决数学问题。
在化简二次根式时,可以利用约束性质,并通过提取公因数的方式进行。
例如,对于√8,可以提取公因数2,即√(2 × 4) = 2√2。
2. 二次根式的加减运算二次根式的加减运算可以通过化简和合并根式进行。
对于√a + √b,如果a和b无法合并,则不能再继续进行简化。
例如,对于√2 + √3,不能再进行进一步的运算。
但是可以计算其近似值,如√2 ≈ 1.414,√3 ≈ 1.732,因此√2 + √3 ≈ 1.414 + 1.732 ≈ 3.146。
3. 二次根式的乘除运算二次根式的乘除运算可以利用乘法分配律和二次根式的乘法规律进行。
利用这两个性质,可以轻松地计算复杂的二次根式。
专题01 二次根式的有关概念和性质知识网络重难突破知识点一 二次根式的有关概念 二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】 1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
【典型例题】1.(2018·黔西县期中)下面式子是二次根式的是( A ) A 21a +B 333C 1-D .12a 2.(2019·朝阳市期中)下列各式中不是二次根式的是(B ) A 21x +B 4-C 0D 2()a b -3.(2018·48n n 是( B ) A .6B .3C .48D .24.(2018·26的值在( D ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(2019·虹桥区期末)在平面直角坐标系中,点M (a ,b )的坐标满足(a ﹣3)22b -0,则点M 在( A )A .第一象限B .第二象限C .第三象限D .第四象限6.(2019·孝感市期中)已知三角形的三边长为a 、b 、c ,如果2(5)12130a b c -+--=,则△ABC 是( C )A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形7.(2019·滨州市期中)下列式子:①13;②3-;③﹣21x +;④327;⑤2(2)-,是二次根式的有(B )A .①③ B .①③⑤C .①②③D .①②③⑤8.(2019·汕头市期末)若211a aa a--=,则a 的取值范围是( D ) A .0a >B .1a ≥C .01a ≤≤D .01a <≤9.(2019·抚顺市期末)若二次根式51x -有意义,则x 的取值范围是( B ) A .x >15B .x≥15C .x≤15D .x≤510.(2018·德州市期末)使代数式34x x --有意义的自变量x 的取值范围是(C ) A .x≥3B .x >3且x≠4C .x≥3且x≠4D .x >311.(2017·东胜市期末)方程有两个实数根,则的取值范围(B )A .B .且C .D .且12.(2018·泉州市期中)若a ab+有意义,那么直角坐标系中点A(a,b)在( A ) A .第一象限B .第二象限C .第三象限D .第四象限知识点二 二次根式的性质 二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。
专题01二次根式的概念和性质(知识点考点串编)【思维导图】例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是()个A .3个B .4个C .5个D .6个练习2.(2021·河北·结果相同的是( ).◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
A .321-+B .321+-C .321++D .321--练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a-C .32a-D .23a -例.(2021·n 的最小值是( )A .2B .4C .6D .8练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B.1C .7D .±1练习3.(2021·全国·n 的值是( )A .B .1C .2D .5例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C.x >2D .x ≠2练习1.(2022·全国·九年级专题练习)函数y =x 的取值范围是( )A .x ≥2B .x >﹣2C .x ≤2D .x <2练习2.(2022·全国·九年级专题练习)函数y 中自变量x 的取值范围是()◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式的定义与性质二次根式基本知识点1.a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)2,(0)a a =≥ (2)==a a 2(3)积的算术平方根的性质:b a ab ⋅=(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积. (4)商的算术平方根的性质b a ba =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.注:注一: 二次根式的概念在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以0a ≥0a ≥)的非负性0a ≥)表示a 的算术平方根,0a ≥)0≥(0a ≥) 这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,0=,则a=0,b=0;||0b =,则a=0,b=0;20b =,则a=0,b=0。
0=,则2018()x y +=____________ a (a >0) a -(a <0) 0 (a =0);注三:二次根式2的性质:2,(0)a a =≥文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
1、 a 是正数还是负数。
若是正数或0,则等于a ||,(0)a a a ==≥若a 是负数,则等于a 的相反数-a,||,(0)a a a ==<;2a 的取值范围可以是任意实数,即不论a3||a ,再根据绝对值的意义来进行化简。
注五:22,(0)a a =≥1、不同点:a 的取值范围不同,化简的结果也可能不同2、相同点:当被开方数都是非负数,即0a ≥时,2=例:1、二次根式有意义(1)、x 的取值范围是 .(2)x 的取值范围是(3)有意义,那么,直角坐标系中点(,)P m n 的位置在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、二次根式定义的运用(1) 若2021y =,则x y +=⇒2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3(2)、当a 1取值最小,并求出这个最小值。
二次根式的概念和性质是什么一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。
下面是店铺给大家整理的二次根式的概念和性质简介,希望能帮到大家!二次根式的概念和性质定义如果一个数的平方等于a,那么这个数叫做a的平方根。
a可以是具体的数,也可以是含有字母的代数式。
即:若,则叫做a的.平方根,记作x= 。
其中a叫被开方数。
其中正的平方根被称为算术平方根。
关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
最简二次根式最简二次根式条件:1.被开方数的因数是整数或字母,因式是整式;2.被开方数中不含有可化为平方数或平方式的因数或因式。
二次根式化简一般步骤:1.把带分数或小数化成假分数;2.把开方数分解成质因数或分解因式;3.把根号内能开得尽方的因式或因数移到根号外;4.化去根号内的分母,或化去分母中的根号;5.约分。
算术平方根非负数的平方根统称为算术平方根,用(a≥0)来表示。
负数没有算术平方根,0的算术平方根为0。
二次根式的性质1. 任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形式中被开方数不能有分母存在。
2. 零的平方根是零,即 ;3. 负数的平方根也有两个,它们是共轭的。
如负数a的平方根是。
4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
5. 无理数可用连分数形式表示,如: 。
6. 当a≥0时, ; 与中a取值范围是整个复平面。
7. [任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。
8. 逆用可将根号外的非负因式移到括号内,如(a>0) , (a<0),﹙a≥0﹚, (a<0)。
9.注意:,然后根据绝对值的运算去除绝对值符号。
10.具有双重非负性,即不仅a≥0而且≥0。
二次根式知识点知识回顾:算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
一、二次根式的概念一般地,我们把形如√a(a≥0)的式子叫做二次根式,“√”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“√”,“√”的根指数为2,即“√2”,我们一般省略根指数2,写作“√”。
如√52可以写作√5。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子√a表示非负数a的算术平方根,因此a≥0,√a≥0。
其中a≥0是√a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式√a,就意味着给出了a≥0这一隐含条件。
(5)形如b√a(a≥0)的式子也是二次根式,b与√a是相乘的关系。
要注意当b是分数时不能写成带分数,例如83√2可写成8√23,但不能写成223√2。
二、二次根式的性质:=|a|=a (a≥0)或=|a|= - a(a<0)★(√a)2(a≥0)与√a2的区别与联系:典型例题剖析题型一:二次根式有意义的条件当x取何值时,下列各式在实数范围内有意义?;(3)√x−3+√3+x(1)√x+5-√3−2x;(2)√2x−1√1−x题型二:利用二次根式的非负性化简求值已知a+√b−2=4a-4,求√ab的值。
题型三:二次根式非负性的简单应用已知实数x,y满足|x-4|+√y−8=0,则以x,y的值为两边长的等腰三角形的周长是()题型四:利用√a2=|a|并结合数轴化简求值已知实数a,b在数轴上的位置如图所示。
试化简:√a2+√b2+√(a−b)2+√(b−1)2-√(a−1)2题型五:√a2=|a|与三角形三边关系的综合应用在△ABC中,a,b,c是三角形的三边长,化简√(a−b+c)2-2|c-a-b|题型六:逆用(√a)2= a(a≥0)在实数范围内分解因式在实数范围内分解因式:(1)x-4;(2)x-4√x+4三、二次根式的乘除:1、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
二次根式的有关概念及性质
一、二次根式的有关概念:
1.二次根式:式子(a≥0)叫做二次根式。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。
如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
如与,a+与a-,-与+,互为有理化因式。
二、二次根式的性质:
1.(a≥0)是一个非负数, 即≥0;
2.非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);
3.某数的平方的算术平方根等于某数的绝对值,即=|a|=
4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·
(a≥0,b≥0)。
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=
(a≥0,b>0)。
三、例题:
例1.x为何值时,下列各式在实数范围内才有意义:
(1)(2)(3)
(4)+(5)(6)+
分析:这是一组考察二次根式基本概念的问题,要弄清每一个数学表达式的含义,根据分式和根式成立的条件去解,即要考虑到分式的分母不能为0并且偶次根号下被开方数要大于或等于零。
解:(1)∵6-x≥0,∴x≤6时原式有意义。
(2)∵x2≥0, ∴x2+3>0, ∴x取任意实数原式都有意义。
(3)
∵∴
∴当x<3且x≠-3时,原式有意义。
(4)
∵∴
∴当-≤x<时,原式有意义。
(5)
∴
∴当x≥0且x≠1时,原式有意义。
(6)
∵∴∴x=2
∴当x=2时,原式有意义。
例2.写出下列各等式成立的条件:
(1)=-3x(2)=-mn
(3)=1+2a(4)=·(5)-=7
分析:本题考察算术平方根的概念及二次根式的性质。
解:(1)∵=|3x|=-3x,
∴-3x≥0,3x≤0, ∴x≤0.
(2)∵==|mn|=-mn,
∴mn≤0, ∵成立,隐含m≥0,
∴m≥0且n≤0.
(3)∵=|2a+1|=1+2a
∴1+2a≥0, ∴a≥-.
(4)由题意得∴
∴x=±1.
(5)∵-
=-
=|x+5|-|2-x|=7
∴只有|x+5|=x+5, |2-x|=x-2时才成立,
∴∴∴x≥2.
例3.化简下列各式:
(1)(2)a2(m<0) (3)+|2-x|+(2<x<3) (4)(5)(x-y)+
(6)(y<0) (7)+
分析:
在二次根式化简的题目中,若有已知条件或隐含条件,则根据已知或隐含条件化简,若没有已知条件或隐含条件时,则必须加以讨论,特别是对于开方后式中有两个绝对值以上的题目,要采取零点分段的方法逐一加以考虑。
解:(1)∵π>3, ∴=|3-π|=π-3.
(2)∵m<0, 要使有意义,则a<0,
∴a2=a2=a2·=-=-a.
(3)∵2<x<3, ∴原式=+|2-x|+
=|2-x|+|2-x|+|x-3|
=x-2+x-2+3-x=x-1.
(4)=|3x-1|=
在这里我们分3x-1≥0或3x-1<0两种情况进行了讨论。
(5)(x-y)+
∵有意义,∴y-x>0
∴原式=(x-y)·+
=+|x-y|
=+y-x=-+y-x.
(6)∵y<0,
∴原式=
=2|xy|
=-2|x|y
当x≥0时, 原式=-2xy,
当x<0时, 原式=2xy。
(7)+
=+=|4-x|+|x+1|
∵若|4-x|=0,则x=4;若|x+1|=0则x=-1,则本题需要将x的取值分成三段,即分x≤-1, -1<x<4, x≥4三段来进行讨论。
当x≤-1时,原式=4-x+(-x-1)=4-x-x-1=3-2x.
当-1<x<4时, 原式=4-x+x+1=5.
当x≥4时,原式=x-4+x+1=2x-3.
例4.把根号外的因式移至根号内:
(1)2(2)-5(3)m(m≥0)
(4)x(x≤0)(5)a
分析:本题需逆用性质=·(a≥0,b≥0)只能将根号外的正因式移至根号内。
解:(1)2=·=。
(2)-5=-·=-。
(3)∵m≥0, ∴m=·=。
(4)x(x≤0) ∴x=-·=-。
(5)∵成立,∴隐含a<0,
∴a·=-·=-=-。
例5.(1)已知:y-1=,求:x+2y的值。
(2)若+|x-2y|=0, 求:x2+y2的值。
分析:(1)观察已知条件,等式右边有两个根式,要使两个根式有意义,则
∴x=2,
∴y=1, 从而可求出x+2y的值。
(1)解:由已知可得:∴x=2, y=1
当x=2, y=1时
x+2y=2+2×1=4.
(2)解:∵+|x-2y|=0
两个非负数的和为零,则只有每个非负数都为零,
∴∴
当x=0, y=0时
∴x2+y2=0+0=0.。