有理数基础测试题含答案解析

  • 格式:doc
  • 大小:287.00 KB
  • 文档页数:10

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数基础测试题含答案解析

一、选择题

1.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( ) A .±1

B .1

C .-1

D .0 【答案】C

【解析】

【分析】 根据已知和根与系数的关系12c x x a =

得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.

【详解】

解:设1x 、2x 是22

(2)0x k x k +-+=的两根,

由题意得:121=x x ,

由根与系数的关系得:212x x k =, ∴k 2=1,

解得k =1或−1,

∵方程有两个实数根,

则222

=(2)43440∆--=--+>k k k k ,

当k =1时,34430∆=--+=-<,

∴k =1不合题意,故舍去,

当k =−1时,34450∆=-++=>,符合题意,

∴k =−1,

故答案为:−1.

【点睛】

本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.

2.如图,a 、b 在数轴上的位置如图,则下列各式正确的是( )

A .ab >0

B .a ﹣b >0

C .a+b >0

D .﹣b <a

【答案】B

【解析】

解:A 、由图可得:a >0,b <0,且﹣b >a ,a >b

∴ab <0,故本选项错误;

B 、由图可得:a >0,b <0,a ﹣b >0,且a >b

∴a+b <0,故本选项正确;

C 、由图可得:a >0,b <0,a ﹣b >0,且﹣b >a

D 、由图可得:﹣b >a ,故本选项错误.

故选B .

3.已知a b >,下列结论正确的是( )

A .22a b -<-

B .a b >

C .22a b -<-

D .22a b >

【答案】C 【解析】

【分析】

直接利用不等式的性质分别判断得出答案.

【详解】

A. ∵a>b ,∴a −2>b −2,故此选项错误;

B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;

C.∵a>b ,∴−2a<−2b ,故此选项正确;

D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;

故选:C.

【点睛】

此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.

4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )

A .1a b <<

B .11b <-<

C .1a b <<

D .1b a -<<-

【答案】A

【解析】

【分析】

首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.

【详解】

解:根据实数a ,b 在数轴上的位置,可得

a <-1<0<1<

b ,

∵1<|a|<|b|,

∴选项A 错误;

∵1<-a <b ,

∴选项B 正确;

∵1<|a|<|b|,

∴选项C 正确;

∴选项D 正确.

故选:A .

【点睛】

此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.

5.在实数-3、0、5、3中,最小的实数是( )

A .-3

B .0

C .5

D .3

【答案】A

【解析】

试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.

解:在实数-3、0、5、3中,最小的实数是-3;

故选A .

考点:有理数的大小比较.

6.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )

A .0a b +=

B .0a b -=

C .a b <

D .0ab >

【答案】A

【解析】

由题意可知a<0<1

∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,

∴选项A 正确,选项B 、C 、D 错误,

故选A.

7.下列说法错误的是( )

A .2 a 与()2a -相等

B ()2a -2a -

C .3 a 3a -

D .a 与a -互为相反数

【答案】D

【解析】

【分析】

根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.

【详解】

解:A 、()2a -=2 a ,故A 正确;

B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确;

C 、3 a 与3a -互为相反数,故C 正确;

D 、a a -=,故D 说法错误;

故选:D.

【点睛】

本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.

8.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )

A .﹣74

B .﹣77

C .﹣80

D .﹣83 【答案】B

【解析】

【分析】

序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.

【详解】

解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;

第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;

第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;

第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;

第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;

…;

则点51A 表示:

()()511312631781772

+⨯-+=⨯-+=-+=-, 故选B .