七年级下数学第七章_平面直角坐标系知识点总结
- 格式:doc
- 大小:323.32 KB
- 文档页数:13
七年级下册数学《平面直角坐标系》直线
方程知识点整理
本文档旨在整理七年级下册数学《平面直角坐标系》中与直线方程相关的知识点,以便帮助学生更好地研究和理解这一内容。
1. 平面直角坐标系简介
- 平面直角坐标系是由横轴(x轴)和纵轴(y轴)组成的二维坐标系统。
- 坐标系的原点表示为O,横轴正方向为正向,纵轴正方向也为正向。
2. 直线的斜率
- 斜率表示直线的倾斜程度,用k表示。
- 直线的斜率k可以通过两点间的坐标计算得到,公式为 k = (y2 - y1) / (x2 - x1)。
3. 直线的点斜式方程
- 直线的点斜式方程形式为 y - y1 = k(x - x1)。
- 其中,(x1, y1)是直线上的一个已知点,k是直线的斜率。
4. 直线的截距式方程
- 直线的截距式方程形式为 y = kx + b。
- 其中,k是直线的斜率,b是直线与纵轴的交点的纵坐标。
5. 直线的一般式方程
- 直线的一般式方程形式为 Ax + By + C = 0。
- 其中,A、B、C是常数,A和B不能同时为0。
6. 解直线方程的方法
- 通过已知直线上的一点和斜率计算直线方程。
- 通过已知直线上的两个点计算直线方程。
- 通过已知直线的斜率和截距计算直线方程。
7. 直线的特殊情况
- 斜率为0的直线为水平直线。
- 斜率不存在的直线为竖直直线。
以上是七年级下册数学《平面直角坐标系》中与直线方程相关的知识点整理,希望对学生们的研究有所帮助。
参考资料:
- [《平面直角坐标系》教材] - [《数学教学参考资料》]。
平面直角坐标系是平面上用来描述点位置的一种特定的坐标系。
它由两个互相垂直的坐标轴x轴和y轴所构成,x轴和y轴的交点称为原点O。
在平面直角坐标系中,每一个点都可以唯一确定两个坐标值(x,y),其中x称为横坐标,y称为纵坐标。
我们可以通过绘制点在坐标系上的位置来表示点的坐标。
当x轴取正方向为右侧,y轴取正方向为上方时,点在坐标系中的位置可以称为一个有序数对(x,y)。
在平面直角坐标系中,我们可以根据两点之间的距离、两点之间的斜率等概念来进行计算。
1.距离公式:设平面上两点A(x₁,y₁)和B(x₂,y₂),可以通过以下公式计算出两点之间的距离d:d=√[(x₂-x₁)²+(y₂-y₁)²]2.斜率的概念:斜率是用来描述两点之间直线的倾斜程度的概念。
设平面上两点A(x₁,y₁)和B(x₂,y₂),可以通过以下公式计算出两点确定的直线的斜率k:k=(y₂-y₁)/(x₂-x₁)斜率k可以用来判断直线的方向:当k>0时,直线是向上倾斜的;当k<0时,直线是向下倾斜的;当k=0时,直线是水平的;当x₂-x₁=0时,直线是竖直的。
3.点和直线的位置关系:在平面直角坐标系中,我们可以通过比较点到直线的距离来判断点和直线的位置关系。
当点在直线上时,点与直线的距离为0;当点在直线上方时,点与直线的距离为正数;当点在直线下方时,点与直线的距离为负数。
4.点的对称性:在平面直角坐标系中,我们可以通过对称中心来判断点的对称位置。
设平面上有点A(x,y),如果将点A关于原点O对称,则新的点A'的坐标为(-x,-y)。
同样地,我们还可以将点A关于x轴、y轴以及其他直线进行对称。
5.坐标系的变换:可以通过平移、旋转、镜像、缩放等变换对平面直角坐标系进行改变。
平移是指将坐标系沿着平行于x轴或y轴的方向移动一定距离。
旋转是指将坐标系绕原点O或其他点旋转一定角度。
镜像是指将所有点关于条直线、一些点或一些平面进行对称。
七年级下册数学《平面直角坐标系》坐标
点知识点整理
七年级下册数学《平面直角坐标系》坐标点知识点整理
一、坐标点的定义和表示方法
- 坐标点是指平面上的一个点,由x和y两个数值表示。
- 常用的表示方法是将x值和y值以括号的形式写在一起,如(3, 5)。
二、确定坐标点的方法
1. 线段法
- 通过线段在坐标轴上的位置确定坐标点。
- 在x轴上移动x个单位,在y轴上移动y个单位。
2. 有向线段法
- 在坐标轴上画出有向线段,确定起点和终点的坐标。
- 起点坐标和终点坐标分别表示为(x1, y1)和(x2, y2)。
3. 分量法
- 将向量的水平和垂直分量分别表示为x和y的值,得到坐标点的坐标。
三、坐标点的位置关系
1. 同一象限
- 如果两个坐标点的x和y的值都具有相同的符号,则这两个点在同一象限。
2. 不同象限
- 如果两个坐标点的x和y的值具有不同的符号,则这两个点在不同象限。
3. 坐标点的位置关系
- 坐标点A(x1, y1)与坐标点B(x2, y2)的x和y的值的比较结果决定了点A和点B的位置关系,
如A在B的左边、右边、上面或下面。
四、坐标点的运算
1. 坐标点之间的加法运算
- 将两个坐标点的x和y值分别相加,得到新的坐标点。
2. 坐标点的相反数
- 一个坐标点的x和y值分别取相反数得到的坐标点与原坐标点关于原点对称。
以上是关于七年级下册数学《平面直角坐标系》坐标点的知识点整理,希望对学生们的研究有所帮助。
平面直角坐标系知识点总结1、 在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点 P 的坐标,都和惟一的一对 有序实数对( a ,b )一一对应;其中 a 为横坐标, b 为纵坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0;Y坐标轴上的点不属于任何象限; bP(a,b)4、 四个象限的点的坐标具有如下特征:1象限横坐标 x纵坐标 y -3 -2 -1 0 1a x-1第一象限正正-2第二象限负 正-3第三象限负负第四象限正负小结:(1)点 P ( x , y )所在的象限横、纵坐标 x 、 y 的取值的正负性;(2)点 P( x , y )所在的数轴横、纵坐标 x 、 y 中必有一数为零;y5、 在平面直角坐标系中,已知点 P (a , b ) ,则 a; bP ( a ,b ) (1) 点 P 到 x 轴的距离为 b ; (2)点 P 到 y 轴的距离为 ab (3) 点 P 到原点 O 的距离为 PO = a 2 b 2Oax6、 平行直线上的点的坐标特征:a) 在不 x 轴平行的直线上, 所有点的纵坐标相等;YAB点 A 、B 的纵坐标都等于 m ;m Xb) 在不 y 轴平行的直线上,所有点的横坐标相等; YC点 C 、D 的横坐标都等于 n ;n7、 对称点的坐标特征:a) 点 P (m , n ) 关于 x 轴的对称点为 P 1 (m ,-n ) , 即横坐标丌变,纵坐标互为相反数; b) 点 P (m , n ) 关于 y 轴的对称点为 P 2 (-m , n ) , 即纵坐标丌变,横坐标互为相反数; c) 点 P (m , n ) 关于原点的对称点为 P 3 (-m ,-n ) ,即横、纵坐标都互为相反数;yyyPPn P2nn PO mX- m- mmXOm XO- n P 1- nP 3关于 x 轴对称关于 y 轴对称 关于原点对称d) 点 P (a , b )关于点 Q (m , n ) 的对称点是 M (2m-a ,2n-b ); 8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m , n )在第一、三象限的角平分线上,则 m = n ,即横、纵坐标相等; b) 若点 P ( m , n )在第二、四象限的角平分线上,则 m = -n ,即横、纵坐标互为相反数;yyn PP nOm X m OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移(1)点的平移将点(x , y )向右(或向左)平移 a 个单位,可得对应点(x+a , y ){或(x-a , y )},可记为“右加左减,纵不变”;将点(x , y )向上(或向下)平移 b 个单位,可得对应点(x , y+b ){或(x , y-b )},可记为“上加下减,横不变”;(2)图形的平移把一个图形各个点的横坐标都加上(或减去)一个正数 a ,相应的新图像就是把原图形向右(或向左)平移 a 个单元得到的。
平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对a,b一一对应;其中a为横坐标, b为纵坐标;Y3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;坐标轴上的点不属于任何象限; b Pa,b4、四个象限的点的坐标具有如下特征:1象限横坐标x纵坐标y-3 -2 -1 0 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:1点 P x,y所在的象限横、纵坐标x、y的取值的正负性;2点 Px,y所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P a,b ,则a; b P a,b1 点 P 到x轴的距离为b; 2点 P 到y轴的距离为ab3 点 P 到原点 O 的距离为 PO=a2b2O a x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上, 所有点的纵坐标相等;YA B点 A、B 的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点 C、D 的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P m , n 关于 x 轴的对称点为 P 1 m ,n , 即横坐标丌变,纵坐标互为相反数; b) 点 P m , n 关于 y 轴的对称点为 P 2 m , n , 即纵坐标丌变,横坐标互为相反数; c) 点 P m , n 关于原点的对称点为 P 3 m ,n ,即横、纵坐标都互为相反数;yyyPPn P2nn PO mXmmmXOm X OnP 1 nP 3关于 x 轴对称 关于 y 轴对称关于原点对称d 点 Pa , b 关于点 Q m , n 的对称点是 M2m-a,2n-b ;8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P m , n 在第一、三象限的角平分线上,则 m n ,即横、纵坐标相等;b) 若点 P m , n 在第二、四象限的角平分线上,则 m n ,即横、纵坐标互为相反数;yynPP nOm X m OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移1点的平移将点x , y 向右或向左平移 a 个单位,可得对应点x+a , y {或x-a , y },可记为“右加左减,纵不变”;将点x , y 向上或向下平移 b 个单位,可得对应点x , y+b {或x , y-b },可记为“上加下减,横不变”;2图形的平移把一个图形各个点的横坐标都加上或减去一个正数 a,相应的新图像就是把原图形向右或向左平移 a 个单元得到的;如果把图形各个点的纵坐标都加上或减去一个正数 a, 相应的新图像就是把原图形向上或向下平移 a 个单元得到的;。
七年级下册数学平面直角坐标系的知识点归纳在学习平面直角坐标系的过程中,我们将一步步掌握如何识别坐标点、平移图形、计算长度、以及求解线性系统方程等基础知识,为深入学习统计分析和解析几何奠定坚实的理论基础。
七年级下册数学中的平面直角坐标系是一个非常重要的知识点,其重要性可见一斑,以下是对这部分知识的归纳:
一、认识坐标系
1. 坐标系是数学中用来表示一个点在一个平面上的方式,是一个由两个数学量(x, y)表示的点的坐标。
2. 坐标系中的x轴和y轴是相互垂直,而原点(0, 0)则是两者交汇的点。
二、用坐标系表示点
1. 一条线可能由无数个点组成,而每个点都可以用坐标系来表示。
2. 点的坐标是确定一个点的方式,可以让学生学习把一个点的位置表现出来。
三、画出坐标平面上的线
1. 通过给定的几点用坐标来表示,就可以画出平面上一条完整的线。
2. 学生要学会分析这几个点之间的位置关系,然后根据直角坐标系的概念画出一条符合要求的完整的线。
四、使用直角坐标系求解几何问题
1. 利用坐标系可以让学生对于几何图形识别和分析更加直观,从而更快更有效地解决问题。
2. 用坐标系去求解几何问题,需要学生做的是理解 num之间的概念,用坐标系来分析,然后解答问题。
总之,七年级下册数学中的平面直角坐标系是一部分十分重要的知识点,要掌握其相关的知识并熟练应用,可以帮助学生理解几何图形,也可以帮助学生解决相关的几何问题。
平面直角坐标系一、本节学习指导本节把重点放在几个象限内点的表示方法上,把四个象限里点的的符号牢牢的记在脑子里。
然后做一些相关练习题就可以掌握,这一节属于比较简单的章节。
二、知识要点1、坐标数轴:规定了原点、正方向、单位长度的直线叫数轴。
注意:1、数轴上的点可以用一个数来表示,这个数叫这个点在数轴上的坐标。
2、数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个实数与之对应。
平面直角坐标系:由互相垂直、且原点重合的两条数轴组成。
横向的是x轴,纵向的是y轴。
说明:平面直角坐标系上的任一点,都可用一对有序实数对来表示,这对有序实数对就叫这点的坐标,如上图点A的坐标用(2,2)这有序实数来表示,(即是用有顺序的两个数来表示,注:x在前,y在后,不能更改),坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。
【重点】2、象限及坐标平面内点的特点四个象限:如图,平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限、第二象限、第三象限和第四象限。
【重点】注:1、坐标轴(x轴、y轴)上的点不属于任何一个象限。
如上图,点B(4,0)和点C(0,-2)不在任何象限。
坐标平面内点的位置特点:①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0 (表示一条直线)【重点】⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)【重点】例:若P(x,y),已知xy>0,则P点在第______象限;已知xy<0,则P点在第_____象限。
分析:xy>0说明x,y同号,所以是在第一或第三象限,xy<0说明x,y异号,所以是在第二或第四象限点到坐标轴的距离:坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。
初一数学平面直角坐标系知识点总结初一数学平面直角坐标系知识点总结在日复一日的学习中,大家都没少背知识点吧?知识点也可以通俗的理解为重要的内容。
哪些知识点能够真正帮助到我们呢?以下是店铺整理的初一数学平面直角坐标系知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
初一数学平面直角坐标系知识点总结1平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初一数学平面直角坐标系知识点总结2平面直角坐标系的用用很广,可以用坐标表示地理位置,也可以用坐标表示平移。
平面直角坐标系在平面“二维”内画两条互相垂直,并且有公共原点的数轴。
简称直角坐标系。
平面直角坐标系有两个坐标轴,其中横轴为X轴(x-axis),取向右方向为正方向;纵轴为Y轴(y-axis),取向上为正方向。
坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。
X轴和Y轴把坐标平面分成四个象限(quadrant),右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。
一般情况下,x轴和y轴取相同的单位长度。
点的坐标建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标(coordinate)。
反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
人教版七年级下册数学平面直角坐标系知识点总结一、直角坐标系的构建1. 直角坐标系由两条数轴(横轴和纵轴)组成,相交于原点O。
2. 横轴又称为x轴,纵轴又称为y轴。
3. 坐标轴上的点用坐标来表示,x轴上的点的坐标为(x, 0),y轴上的点的坐标为(0, y),原点的坐标为(0, 0)。
二、点在直角坐标系中的表示1. 在直角坐标系中,一个点的坐标由它在x轴上的横坐标和在y轴上的纵坐标组成。
2. 坐标的表示方式通常为(x, y)。
三、点的位置关系1. 点在x轴上时,其纵坐标为0。
2. 点在y轴上时,其横坐标为0。
3. 如果两个点的横坐标相同,纵坐标不同,则它们在直角坐标系中的位置在不同的纵向位置。
4. 如果两个点的纵坐标相同,横坐标不同,则它们在直角坐标系中的位置在不同的横向位置。
5. 如果两个点的横坐标和纵坐标都相同,则它们在直角坐标系中的位置相同。
四、关于直角坐标系的基本概念1. 坐标轴上的刻度:坐标轴上通常用单位长度表示刻度,用于测量坐标的值。
2. 坐标轴上的正方向:x轴正方向为向右,y轴正方向为向上。
3. 坐标轴的比例:直角坐标系中横轴和纵轴通常不是一样的比例。
五、直角坐标系中的图形1. 点:直角坐标系中的一个点可以表示为一个坐标。
2. 线段:在直角坐标系中,两个点之间的连线称为线段,可以通过计算两点之间的距离来求得线段的长度。
3. 矩形:在直角坐标系中,由四条线段围成的闭合图形称为矩形,可以通过计算边长来求得矩形的面积和周长。
六、直角坐标系中的坐标运算1. 坐标的加法:在直角坐标系中,两点的坐标分别相加得到新点的坐标。
2. 坐标的减法:在直角坐标系中,两点的坐标分别相减得到新点的坐标。
3. 坐标的乘法:在直角坐标系中,一个点的坐标与一个实数相乘得到新点的坐标。
以上为人教版七年级下册数学平面直角坐标系的知识点总结。
新人教版七年级数学下册《平面直角坐标系》知识点概述及实例1. 平面直角坐标系概述平面直角坐标系是解决平面上点的位置关系问题的一种工具。
它由横轴(x轴)和纵轴(y轴)组成,两条轴相互垂直,且通过原点。
在平面直角坐标系中,每个点可以用一个有序数对表示,即(x, y),其中x代表横坐标,y代表纵坐标。
平面直角坐标系有助于求解图形的性质和方程的解等问题。
2. 平面直角坐标系的基本概念- 原点:平面直角坐标系的交点,用O表示。
- 横轴:平行于x轴的直线。
- 纵轴:平行于y轴的直线。
- 横坐标:表示点在横轴上的位置,用x表示。
- 纵坐标:表示点在纵轴上的位置,用y表示。
3. 平面直角坐标系的象限平面直角坐标系将平面分为四个象限,以原点为中心,顺时针分别为第一象限、第二象限、第三象限和第四象限。
每个象限有其特点和性质。
4. 平面直角坐标系中的图形平面直角坐标系可以用来描述和研究各种图形,如直线、圆、抛物线等。
通过确定图形上的点的坐标,可以进一步研究图形的性质和方程的解等问题。
5. 平面直角坐标系举例以下是一些示例,帮助理解和应用平面直角坐标系:- 示例1:图形A的两个顶点分别为(-2, 3)和(4, -1),求图形A 的边长和对角线长度。
- 示例2:有一条直线L过点(-3, 2)和(1, 6),求直线L的斜率和方程。
- 示例3:给定圆心坐标为(1, -2)且半径为3的圆C,求圆C上一点的坐标。
- 示例4:已知抛物线的顶点为(0, 4)且对称轴为y轴,求抛物线的方程。
以上是对新人教版七年级数学下册《平面直角坐标系》知识点的概述及实例介绍。
通过深入理解和应用平面直角坐标系,可以更好地解决与图形和方程有关的问题。
七年级下数学第七章 平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。
1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。
3、坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;4、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系 平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
3、各种特殊点的坐标特点。
象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0 第四象限:x>0,y<0横坐标轴上的点:(x ,0) 纵坐标轴上的点:(0,y )(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;XY点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
c) 若点P (n m ,)在第一、三象限的角平分线上,则nm =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e)点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八 、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。
七年级数学平面直角坐标系知识点七年级数学平面直角坐标系知识点在现实学习生活中,是不是听到知识点,就立刻清醒了?知识点就是学习的重点。
你知道哪些知识点是真正对我们有帮助的吗?以下是店铺精心整理的七年级数学平面直角坐标系知识点,仅供参考,希望能够帮助到大家。
七年级数学平面直角坐标系知识点1平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
七年级数学平面直角坐标系知识点2一、平面解析几何的基本思想和主要问题平面解析几何是用代数的方法研究几何问题的一门数学学科,其基本思想就是用代数的方法研究几何问题。
例如,用直线的方程可以研究直线的性质,用两条直线的方程可以研究这两条直线的位置关系等。
平面解析几何研究的问题主要有两类:一是根据已知条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质。
二、直线坐标系和直角坐标系直线坐标系,也就是数轴,它有三个要素:原点、度量单位和方向。
如果让一个实数与数轴上坐标为的点对应,那么就可以在实数集与数轴上的点集之间建立一一对应关系。
点与实数对应,则称点的坐标为,记作,如点坐标为,则记作;点坐标为,则记为。
直角坐标系是由两条互相垂直且有公共原点的数轴组成,两条数轴的度量单位一般相同,但有时也可以不同,两个数轴的交点是直角坐标系的原点。
在平面直角坐标系中,有序实数对构成的集合与坐标平面内的点集具有一一对应关系。
一个点的坐标是这样求得的.,由点向轴及轴作垂线,在两坐标轴上形成正投影,在轴上的正投影所对应的值为点的横坐标,在轴上的正投影所对应的值为点的纵坐标。
初一下册数学平面直角坐标系的知识点一、引言数学是一门抽象而又实用的学科,平面直角坐标系是数学中的一个基本概念,也是进一步学习代数和几何的基础。
本文将介绍初一下册数学中关于平面直角坐标系的知识点,帮助同学们更好地理解和应用这一概念。
二、平面直角坐标系的定义平面直角坐标系是由两个相互垂直的数轴(横轴和纵轴)组成,通常被称为x轴和y轴。
每个点在平面上都可以用一个有序数对(x, y)来表示,其中x表示横坐标,y表示纵坐标。
三、平面直角坐标系中的四个象限根据坐标系的定义,我们可以将平面分为四个象限。
第一象限是指所有x和y都大于0的区域;第二象限是指所有x小于0,y大于0的区域;第三象限是指所有x和y都小于0的区域;第四象限是指所有x 大于0,y小于0的区域。
四、直角坐标系上的点和有序数对在直角坐标系中,每个点都可以用一个有序数对(x, y)来表示。
x轴上的点都满足y=0,y轴上的点都满足x=0。
例如,点A(3, 4)表示x轴上到原点的距离为3,y轴上到原点的距离为4的点。
五、平面直角坐标系中的距离在直角坐标系中,我们可以通过勾股定理计算两个点之间的距离。
设点A(x1, y1)和点B(x2, y2)是直角坐标系上的两个点,它们之间的距离d可以用以下公式计算:d = √((x2-x1)² + (y2-y1)²)。
六、平面直角坐标系中的图形在平面直角坐标系中,我们可以用数学语言和符号来描述和表示不同的图形。
例如,直线可以用方程y = mx + b来表示,其中m是斜率,b是截距。
圆可以用方程(x-a)² + (y-b)² = r²来表示,其中(a, b)是圆心的坐标,r是半径的长度。
七、平面直角坐标系中的对称性在平面直角坐标系中,我们可以通过对称性来找到图形的特殊性质。
例如,关于x轴对称指的是将图形绕x轴翻转180度后能够重合;关于y轴对称指的是将图形绕y轴翻转180度后能够重合;关于原点对称指的是将图形绕原点翻转180度后能够重合。
平面直角坐标系知识点总结平面直角坐标系是数学中一个重要的概念,它在几何图形的分析与研究中起到了关键作用。
在本文中,我们将对平面直角坐标系的概念、性质以及常见的应用进行总结。
通过阅读本文,读者将更好地理解和应用平面直角坐标系。
1. 平面直角坐标系的定义平面直角坐标系是由两条相互垂直的数轴(x轴和y轴)所确定的坐标系统。
其中,x轴被称为横轴,y轴被称为纵轴。
x轴和y轴的交点称为坐标原点O,它是平面直角坐标系的起点。
通过在每个轴上引入单位长度,我们可以对平面上的点进行精确的描述。
2. 平面直角坐标系的性质- 平面直角坐标系中的任意一点都可以通过一对有序实数(x, y)来表示,这对实数分别表示点在x轴和y轴上的投影长度,称为该点的坐标。
- 坐标原点O的坐标为(0, 0)。
横轴上的点的坐标形式为(x, 0),纵轴上的点的坐标形式为(0, y)。
- 平面上两点的距离可以通过坐标计算公式来确定。
对于两个点A(x₁, y₁)和B(x₂, y₂),它们之间的距离为√((x₂ - x₁)² + (y₂ - y₁)²)。
- 平面上两条线段垂直的条件是它们的斜率互为相反数。
3. 平面直角坐标系的应用- 几何图形的位置表示:通过平面直角坐标系,我们可以精确地确定几何图形在平面上的位置。
通过计算坐标,我们可以判断图形的相对位置、大小和形状。
- 直线方程的表示:平面直角坐标系能够方便地将直线的方程表示出来。
一般地,直线的方程可以表示为y = kx + b的形式,其中k是斜率,b是与y轴的截距。
- 坐标变换:平面直角坐标系中,我们可以对坐标进行平移、旋转、缩放等变换操作。
这些操作对于解决几何问题和数学推导具有重要意义。
总结:通过本文的介绍,我们对平面直角坐标系的定义、性质以及应用有了更深入的了解。
平面直角坐标系不仅仅是一个几何概念,它在数学和实际问题的求解中具有广泛的应用。
希望读者通过阅读本文,能够更好地理解和运用平面直角坐标系,为进一步的数学学习和问题解决提供帮助。
数学七下第七章知识点总结
哎呀呀,咱来说说数学七下第七章的知识点哈!
这一章主要讲的是平面直角坐标系。
嘿,你可别小瞧这个平面直角坐标系,它可厉害啦!就像是给每个点都安了个家一样。
有了它,咱就能准确地找到每个点的位置啦。
先说坐标轴吧,那可是有横的和竖的两条线呢。
横着的叫x 轴,竖着的叫y轴。
它们相交的地方就是原点,原点可重要啦,就像个中心一样。
然后呢,坐标就有意思啦。
一个点的坐标就是用一对数来表示的,比如说(x,y),x表示在x轴上的位置,y表示在y轴上的位置。
这就好像是给点起了个名字一样,一下子就能找到它啦。
在平面直角坐标系里,还能分象限呢。
一、二、三、四象限,每个象限都有自己的特点。
第一象限里的点,x和y都是正数;第二象限里,x是负数,y是正数;第三象限里,x和y都是负数;第四象限里,x是正数,y是负数。
是不是挺好玩的呀。
还有平移呢!点在坐标系里可以平移哦。
往上移,y就变大;往下移,y就变小。
往左移,x就变小;往右移,x就变大。
就像小蚂蚁在坐标系里走来走去一样。
再说坐标和图形的关系。
给你一些点的坐标,就能画出图形来啦。
反过来,看到图形也能找到那些点的坐标。
这就像是玩拼图一样,可有意思啦。
这一章的知识点真的很重要哦!学会了平面直角坐标系,以后学好多知识都用得上呢。
不管是在数学里,还是在其他学科里,或者是在生活中,都能看到它的影子。
比如说,在地图上找地方,不就跟在平面直角坐标系里找。
七年级下数学第七章平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
a,)3、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b一一对应;其中,a为横坐标,b为纵坐标坐标;4、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、各种特殊点的坐标特点。
象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
c) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;XXX在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。
即A(x,y),到x轴的距离=|y|,到y轴的距离=|x|例、若点A到x轴的距离为5,到y轴的距离为4则A的坐标为分析:到x轴的距离为5说明点A的|纵坐标|=5,则纵坐标为5或-5,到y轴的距离为4,说明|横坐标|=4,则横坐标为4或-4。
综述,点A的坐标为(4,5)、(4,-5)、(-4,5)、(-4,-5)。
类似的,若点M到x轴的距离为3,到y轴的距离为6,且在第二象限,则点M坐标为(前两个条件的分析方法一样,可和四个分类,再加上点M在第二象限,可知点M坐标符号为(-,+),便可确定答案。
)九、对称两点的坐标特征:1、关于x轴对称两点:横坐标相同,纵坐标互为相反数。
2、关于y轴对称两点:横坐标互为相反数,纵坐标相同。
3、关于原点对称两点:横、纵坐标均互为相反数。
即:若A(a,b) ,B(a,-b), 则A与B关于x 轴对称,若A(a,b), B(-a,b),则A与B关于y轴对称。
若A(a,b),B(-a,-b),则A 与B关于原点对称二、经典例题知识一、坐标系的理解例1、平面内点的坐标是()A 一个点B 一个图形C 一个数D 一个有序数对知识二、已知坐标系中特殊位置上的点,求点的坐标点在x轴上,坐标为(x,0)在x轴的负半轴上时,x<0, 在x轴的正半轴上时,x>0点在y轴上,坐标为(0,y)在y轴的负半轴上时,y<0, 在y轴的正半轴上时,y>0第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x,y)xy>0第二、四象限角平分线上的点的横纵坐标相反(即在y= -x直线上);坐标点(x,y)xy<0,则点P的坐标是,若点例1 点P在x轴上对应的实数是31,则点Q的坐标是,Q在y轴上对应的实数是3例2 点P(a-1,2a-9)在x轴负半轴上,则P点坐标是。
学生自测1、点P(m+2,m-1)在y轴上,则点P的坐标是 .2、已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为。
3、已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是 .4.平行于x轴的直线上的点的纵坐标一定()A.大于0 B.小于0 C.相等D.互为相反数(3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .(3)已知点P(x2-3,1)在一、三象限夹角平分线上,则x= . 5.过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为().A.(0,2)B.(2,0)C.(0,-3)D.(-3,0)6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是().A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等知识点三:点符号特征。
点在第一象限时,横、纵坐标都为,点在第二象限时,横坐标为,纵坐标为,点有第三象限时,横、纵坐标都为,点在第四象限时,横坐标为,纵坐标为;y轴上的点的横坐标为,x轴上的点的纵坐标为。
例1 .如果a-b<0,且ab<0,那么点(a,b)在( )A、第一象限B、第二象限C、第三象限,D、第四象限.y<0,那么点P(x,y)在()例2、如果x(A) 第二象限(B) 第四象限(C) 第四象限或第二象限(D) 第一象限或第三象限学生自测1.点P的坐标是(2,-3),则点P在第象限.2、点P(x,y)在第四象限,且|x|=3,|y|=2,则P点的坐标是。
3.点A在第二象限,它到x轴、y轴的距离分别是3、2,则坐标是;4. 若点P(x,y)的坐标满足xy﹥0,则点P在第象限;若点P(x,y)的坐标满足xy﹤0,且在x轴上方,则点P在第象限.若点P(a,b)在第三象限,则点P'(-a,-b+1)在第象限;5.若点P(m -1, m )在第二象限,则下列关系正确的是 ( )A.10<<mB.0<mC.0>mD.1>m 6.点(x,1-x )不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( )A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤3 8.设点P 的坐标(x ,y ),根据下列条件判定点P 在坐标平面内的位置: (1)0xy =;(2)0xy >;(3)0x y +=. (2)点A(1-π,2)在第 象限. (3)横坐标为负,纵坐标为零的点在( )(A)第一象限 (B)第二象限 (C)X 轴的负半轴 (D)Y 轴的负半轴 (4)如果a-b <0,且ab <0,那么点(a ,b)在( )(A)第一象限, (B)第二象限 (C)第三象限, (D)第四象限. (5)已知点A (m ,n )在第四象限,那么点B (n ,m )在第 象限(6)若点P(3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),那么a=知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。
过点作x 轴的 线,垂足所代表的 是这点的横坐标;过点作y 轴的垂线,垂足所代表的实数,是这点的 。
点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第个位置,中间用隔开。
例1、X轴上的点P到Y轴的距离为2.5,则点P的坐标为()A(2.5,0) B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0)学生自测1、点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。
2.若点A的坐标是(-3,5),则它到x轴的距离是,到y轴的距离是.3.点P到x轴、y轴的距离分别是2、1,则点P的坐标可能为。
4.已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为().A.(3,2)B.(-3,-2)C.(3,-2)D.(2,3),(2,-3),(-2,3),(-2,-3)5.若点P(a,b)到x轴的距离是2,到y轴的距离是3,则这样的点P有()A.1个B.2个C.3个D.4个6.已知直角三角形ABC的顶点A(2 ,0),B(2 ,3).A是直角顶点,斜边长为5,求顶点C的坐标 .7.已知等边△ABC的两个顶点坐标为A(-4,0),B(2,0),求:(1)点C的坐标;(2)•△ABC的面积知识点五:对称点的坐标特征。
关于x对称的点,横坐标不,纵坐标互为;关于y轴对称的点,坐标不变,坐标互为相反数;关于原点对称的点,横坐标,纵坐标。
例1.已知A(-3,5),则该点关于x轴对称的点的坐标为_________;关于y轴对的点的坐标为____________;关于原点对称的点的坐标为___________;关于直线x=2对称的点的坐标为____________。
例2.将三角形ABC的各顶点的横坐标都乘以1-,则所得三角形与三角形ABC 的关系()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将三角形ABC向左平移了一个单位学生自测1在第一象限到x轴距离为4,到y轴距离为7的点的坐标是______________;在第四象限到x轴距离为5,到y轴距离为2的点的坐标是________________;3.点A(-1,-3)关于x轴对称点的坐标是.关于原点对称的点坐标是。
4.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .5.已知:点P的坐标是(m,1-),且点P关于x轴对称的点的坐标是(3-,n2),则_____m;____,==n6.点P(1-,2)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是,关于原点的对称点的坐标是;7.若)nmmM关于原点对称,则_____N3-,(1()与,m;_____,==nmn,则点(m,n)在;8.已知0=9.直角坐标系中,将某一图形的各顶点的横坐标都乘以1-,纵坐标保持不变,得到的图形与原图形关于________轴对称;将某一图形的各顶点的纵坐标都乘以1-,横坐标保持不变,得到的图形与原图形关于________轴对称.10.点A(3-,4)关于x轴对称的点的坐标是()A.(3,4-)B. (3-,4-) C . (3, 4) D. (4-, 3-)11.点P(1-,2)关于原点的对称点的坐标是()A.(1,2-) B (1-,2-) C (1,2) D. (2,1-) 12.在直角坐标系中,点P(2-,3)关于y轴对称的点P1的坐标是()A (2,3) B. (2,3-) C. (2-, 3) D. (2-,3-)知识点六:利用直角坐标系描述实际点的位置。