遗传学果蝇杂交实验报告
- 格式:doc
- 大小:1004.85 KB
- 文档页数:12
果蝇杂交实验报告果蝇杂交实验报告引言:果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。
因其繁殖周期短、易于培养和观察,成为了许多遗传学实验的理想选择。
本实验旨在通过果蝇的杂交实验,探究基因的遗传规律和表现型的变异。
实验设计:实验使用了两个具有明显表型差异的果蝇品系:A品系为黑色眼睛、红色身体;B品系为红色眼睛、黑色身体。
实验中,我们将A品系与B品系进行杂交,并观察F1代和F2代的表型分布情况,以了解基因的遗传规律。
实验过程:1. 实验前,我们首先培养并繁殖A品系和B品系果蝇,确保实验所需的足够数量。
2. 在实验开始时,我们将A品系和B品系的果蝇分别放置在两个不同的培养瓶中,以避免杂交前的交叉繁殖。
3. 在杂交过程中,我们将A品系的雄性果蝇与B品系的雌性果蝇进行交配,确保每组杂交中的配对数量相等。
4. 杂交完成后,我们将交配后的果蝇分别放置在标记有代号的培养瓶中,以便后续观察和记录。
5. 我们观察并记录了F1代果蝇的表型,包括眼睛颜色和身体颜色。
6. 接下来,我们将F1代果蝇进行自交,培养出F2代果蝇,并观察并记录其表型分布情况。
实验结果:在实验中,我们观察到F1代果蝇的表型均为红色眼睛和黑色身体,与B品系相同。
这表明红色眼睛的性状是显性遗传性状,而黑色身体的性状是隐性遗传性状。
在F2代果蝇中,我们观察到了红色眼睛和黑色身体两种表型的存在。
根据孟德尔遗传定律,我们预计红色眼睛和黑色身体的表型比例应为3:1。
然而,我们实际观察到的表型比例略有偏离,为2.8:1。
这可能是由于实验中的样本数量较少,导致统计结果的误差。
讨论:通过本次实验,我们验证了果蝇基因的遗传规律。
红色眼睛是一种显性遗传性状,而黑色身体是一种隐性遗传性状。
这意味着只要果蝇携带了红色眼睛的基因,无论其携带的是纯合子还是杂合子,其表型都会表现为红色眼睛。
而只有当果蝇同时携带两个黑色身体的基因,才会表现出黑色身体的表型。
果蝇杂交实验报告一、实验目的本次果蝇杂交实验旨在研究果蝇的遗传规律,通过对不同性状的杂交组合观察和分析,深入了解基因的分离、组合以及连锁和交换现象,验证孟德尔遗传定律,并探究遗传因子在遗传过程中的作用和表现。
二、实验材料1、实验动物:黑腹果蝇(Drosophila melanogaster)2、实验用具:培养瓶、麻醉瓶、毛笔、放大镜、显微镜等3、实验试剂:培养基(玉米粉、糖、酵母粉、琼脂等)三、实验原理果蝇具有生活周期短、繁殖力强、饲养简便等优点,是遗传学研究的经典材料。
孟德尔遗传定律包括基因的分离定律和自由组合定律。
在杂交实验中,通过观察子代果蝇的性状表现及比例,可以推断亲本果蝇的基因型,从而验证遗传定律。
四、实验步骤1、亲本果蝇的饲养与选择选取野生型长翅、红眼果蝇和残翅、白眼果蝇作为亲本。
将它们分别饲养在不同的培养瓶中,在适宜的温度(25℃左右)和湿度条件下培养,保证果蝇的正常生长和繁殖。
2、杂交一代(F1)的制备选取处女蝇:在亲本果蝇培养瓶中,选取羽化后 8 小时内未交配的雌性果蝇作为处女蝇。
处女蝇的选取对于实验结果的准确性至关重要。
杂交操作:将选取的处女蝇与另一性状的雄蝇放入同一培养瓶中进行杂交,做好标记,记录杂交组合和时间。
3、 F1 代果蝇的观察与培养在适宜条件下培养杂交后的果蝇,待其产卵、孵化和生长。
观察 F1 代果蝇的性状表现,并记录。
4、杂交二代(F2)的制备选取 F1 代中的雌雄果蝇进行自交,同样做好标记和记录。
5、 F2 代果蝇的观察与统计待F2 代果蝇孵化和生长成熟后,观察并统计不同性状的果蝇数量,记录在表格中。
五、实验结果1、 F1 代果蝇的性状表现在长翅红眼×残翅白眼的杂交组合中,F1 代果蝇全部表现为长翅红眼,说明长翅和红眼为显性性状,残翅和白眼为隐性性状。
2、 F2 代果蝇的性状分离F2 代果蝇中出现了长翅红眼、长翅白眼、残翅红眼和残翅白眼四种性状。
经过统计分析,其比例接近 9:3:3:1,符合孟德尔的自由组合定律。
果蝇杂交实验报告(眼色分析)一、实验原理及方法生物某些性状的遗传常与性别联系在一起,这种现象称为伴性遗传(sex-linked inheritance),这是由于支配某些性状的基因位于性染色体上。
果蝇属XY型生物,共有四对染色体,第一对为性染色体,其余三对为常染色体。
雌果蝇的性染色体构型为XX,、雄果蝇为XY。
控制果蝇眼色的基因位于X染色体上,在Y染色体则没有与之相应的等位基因。
将红眼(+)果蝇和白眼(w)果蝇杂交,其后代眼色的表现与性别有关。
而且,正反交的结果不同。
(仅供参考)二、实验材料(品系及性状)亲本正交6#(雌、白眼)X18#(雄、红眼)亲本反交18#(雌、红眼)X 6#(雄、白眼)(可写成基因型)三、实验用品(实验指导书上有)四、杂交实验流程1、培养基的配制,并在培养瓶上写清杂交组合、杂交日期、实验者班级。
室温下培养,至于阴暗温热环境中。
2、两个亲本杂交1、2号培养瓶中分别挑选亲本正交、反交的处女蝇。
3、在接入杂交亲本1、亲本2第七或八天(从开始杂交算第一天)清除所有亲本成蝇。
4、观察正反交组合中不同性别子代1成蝇的眼色,至少观察20只,记录观察结果,并注意是否有例外的情形。
5、从正交组合的子代1中挑选出5对果蝇,放入F 1自交1号培养瓶中,贴上标签,室温下培养(反交组合也一样处理)。
6、在接入子代1培养的第七或八天(从子代1接入新培养瓶算第一天)清除所有子代1成蝇。
7、当子代2数量足够时,观察不同性别的果蝇的眼色,分别统计并做好记录。
五、实验结果及分析图谱分析正交 反交P : X w X w (雌白眼)× X +Y (雄红眼) X +X +(雌红眼)× X w Y (雄白眼)F1: X +X w(雌红眼)× X w Y (雄白眼)X +X w (雌红眼)× X +Y (雄红眼)理论: 1 : 1 1 : 1实际: 25 : 16 20 : 19F2: X +X w X w X w X +Y X w Y X +X + X +X w X +Y X w Y雌红眼 雌白眼 雄红眼 雄白眼 雌红眼 雄红眼 雄白眼理论 1 : 1 : 1 : 1 2 : 1 : 1 实际 13 : 9 : 12 : 10 21 : 11 : 52显隐性判断:正交的结果不论雌雄均为红色,反交的结果是雌性为红眼,雄性为白眼。
引言:果蝇杂交实验是遗传学中一项重要的实验方法,通过对果蝇的交配与基因传递进行观察和研究,可以进一步了解和探索基因的遗传规律以及基因变异的机制。
本实验报告旨在阐述果蝇杂交实验的相关概念、实验设计、实验结果及其分析,并提出一些对进一步研究的思考。
概述:果蝇(Drosophilamelanogaster)是一种广泛应用于生物学研究的模式生物。
其繁殖力强、短寿命和基因多样性使其成为遗传学研究的理想模型。
果蝇杂交实验通过对不同基因型的果蝇进行交配,观察后代的表型和基因组成,以了解遗传传递的规律和基因的分离与联合。
正文内容:一、实验设计1.选择适合的果蝇品系2.选择合适的交配模式3.标记果蝇的基因型4.记录并统计实验数据5.设计对照组进行比较分析二、果蝇杂交基础1.果蝇基因的遗传定律2.显性性状和隐性性状3.基因型和表型的关系4.分离比和连锁比的计算方法5.遗传图谱的构建和分析三、果蝇杂交实验的常见模式1.单因素杂交2.双因素杂交3.多因素杂交4.杂交断裂分析5.回交和自交的应用四、果蝇杂交实验的结果与分析1.收集交配后果蝇的数据2.观察和分析后代的表型3.使用分离比和连锁比计算基因频率和遗传距离4.判断基因型的遗传方式(隐性、显性、共显性等)5.通过遗传分析进行基因组定位和识别五、果蝇杂交实验的意义和展望1.果蝇杂交实验在遗传学研究中的重要性2.果蝇杂交实验在基因突变和功能研究中的应用3.果蝇杂交实验在医学和农业领域的潜在应用4.结合其他研究方法和技术的进一步探索5.果蝇杂交实验在深入理解遗传学规律方面的未来挑战总结:通过对果蝇杂交实验的设计、实施和分析,我们可以深入了解基因的遗传规律和遗传变异的机制。
果蝇杂交实验是遗传学研究中不可或缺的工具,对于揭示生物多样性和遗传变异的原因具有重要意义。
通过进一步研究和探索,我们可以更好地利用果蝇模型生物在遗传学、医学和农业领域的潜在应用,为人类的健康和生物多样性的保护做出更大贡献。
果蝇杂交实验报告
实验目的:利用果蝇杂交实验,观察基因的遗传规律和基因型与表现型之间的关系。
实验材料:红眼果蝇、白眼果蝇。
实验步骤:
1. 将红眼果蝇和白眼果蝇分别选出若干只。
2. 将红眼果蝇与白眼果蝇进行杂交,交配前先使其饥饿状态下,然后将它们放在一起,让它们自由交配。
3. 成虫产下的卵子和精子是杂合子,由两对不同的等位基因构成,并能分别由父母两侧遗传给后代。
4. 若果蝇杂合子的两个基因相同,则该果蝇为纯合子,若基因不同,则为杂合子。
5. 将产下的果蝇幼虫放入培养皿中,投喂足够的食物。
6. 在成虫出现后,对产生的后代进行分类和记录,统计各表现型的数量。
实验结果与分析:
在果蝇杂交实验中,由于红眼果蝇是隐性红眼,而白眼果蝇为显性白眼,所以在F1代中,所有果蝇都是带有白眼基因的,但表现型却是红眼。
在F2代中,由于F1代中的果蝇全部是杂合子,所以它们可以产生两种类型的卵子或精子。
当红眼杂合子与白眼杂合子进行杂交时,有以下组合:红眼杂合子与白眼杂合子交配得到红眼表达果蝇和白眼表达果蝇,红眼杂合子与红眼纯合子交配得到红眼表达果蝇,白眼杂合子与白眼纯合子交配得到白眼表达果蝇。
按照孟德尔遗传定律,各表型出现的比例为:红眼表达果蝇和白眼表达果蝇的比例为3:1,符合经典的二项式定律。
实验结论:
果蝇杂交实验结果证明了孟德尔遗传定律。
父母亲的遗传特征会以随机的方式传递给子代,在杂合子的情况下会出现红眼和白眼表达的不同表型,而在杂合子交叉互配的后代中,各表型出现的比例为3:1,遵循了概率的规律。
因此,本实验验证了基因的遗传规律和基因型与表现型之间的关系。
遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。
实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。
正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。
正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。
白眼、卷刚毛、小翅均为X 染色体上的隐性性状。
P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。
第1篇一、实验目的1. 研究果蝇的变性遗传现象,了解变性基因的遗传规律。
2. 掌握果蝇变性遗传的实验方法,包括杂交、观察、统计和分析。
3. 通过实验,加深对遗传学基本原理的理解。
二、实验原理果蝇变性遗传是指由于基因突变或其他因素导致个体性别异常的现象。
本实验主要研究果蝇的X染色体变性遗传,即X染色体上的基因突变导致性别改变。
实验采用杂交方法,观察F1代果蝇的性别表现,分析变性基因的遗传规律。
三、实验材料与器具1. 实验材料:野生型果蝇(红眼、长翅)、突变型果蝇(白眼、残翅)。
2. 实验器具:培养皿、解剖镜、显微镜、放大镜、酒精灯、酒精棉球、毛笔、解剖针、剪刀、镊子、试管、吸管等。
四、实验步骤1. 选择野生型雌蝇和突变型雄蝇进行杂交,得到F1代。
2. 观察F1代果蝇的性别表现,记录红眼雌蝇、白眼雌蝇、红眼雄蝇、白眼雄蝇的数量。
3. 将F1代果蝇与野生型雄蝇进行杂交,得到F2代。
4. 观察F2代果蝇的性别表现,记录红眼雌蝇、白眼雌蝇、红眼雄蝇、白眼雄蝇的数量。
5. 分析F1代和F2代的性别比例,确定变性基因的遗传规律。
五、实验结果与分析1. F1代果蝇的性别表现:- 红眼雌蝇:30只- 白眼雌蝇:20只- 红眼雄蝇:50只- 白眼雄蝇:0只F1代果蝇的性别比例为:雌性:雄性 = 1:1.52. F2代果蝇的性别表现:- 红眼雌蝇:60只- 白眼雌蝇:40只- 红眼雄蝇:70只- 白眼雄蝇:30只F2代果蝇的性别比例为:雌性:雄性 = 1:1.75分析:1. F1代果蝇的性别比例为1:1.5,说明变性基因在X染色体上,遵循伴性遗传规律。
2. F2代果蝇的性别比例为1:1.75,说明变性基因在X染色体上,且存在显性和隐性基因。
3. 结合F1代和F2代的性别比例,推测变性基因的遗传模式为:X^WY(野生型)、X^wY(突变型)、X^WX^w(雌性)、X^wX^w(雌性)。
六、实验结论1. 果蝇变性基因位于X染色体上,遵循伴性遗传规律。
第1篇一、实验目的1. 通过果蝇实验,验证孟德尔遗传学定律,包括分离定律、自由组合定律和连锁定律。
2. 学习和掌握果蝇的饲养、观察和杂交技术。
3. 提高对遗传学实验设计、操作和数据分析的能力。
二、实验原理果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。
果蝇具有以下优点:1. 饲养简单,繁殖速度快,便于实验操作。
2. 染色体数目少,便于观察和分析。
3. 遗传变异丰富,便于研究基因和性状之间的关系。
本实验主要研究果蝇的遗传学定律,包括分离定律、自由组合定律和连锁定律。
三、实验材料与仪器1. 实验材料:野生型果蝇、突变型果蝇(如红眼、白眼、长翅、残翅等)、培养皿、培养箱、显微镜、解剖针、酒精灯、镊子等。
2. 实验仪器:电子天平、温度计、计时器、酒精棉球、乙醚、酒精、清水等。
四、实验方法1. 果蝇饲养:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。
2. 果蝇杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代;将F1代雌雄果蝇进行杂交,得到F2代。
3. 果蝇观察:观察F1代和F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
4. 数据分析:根据观察结果,分析遗传学定律。
1. 饲养果蝇:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。
2. 杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代。
3. 观察F1代:观察F1代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
4. 杂交F1代:将F1代雌雄果蝇进行杂交,得到F2代。
5. 观察F2代:观察F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
6. 数据分析:根据观察结果,分析遗传学定律。
六、实验结果与分析1. F1代观察结果:F1代果蝇全部表现为红眼和长翅,说明红眼和长翅为显性性状。
2. F2代观察结果:F2代果蝇中,红眼:白眼=3:1,长翅:残翅=3:1,符合孟德尔的分离定律。
果蝇杂交实验实验报告11页实验说明:本实验旨在通过果蝇的杂交实验,验证遗传学中显性、隐性基因的遗传规律,并说明分离定律和自由组合定律的遗传规律。
实验步骤:1. 选择个体:从实验室的果蝇窝中选取发育良好的雄性和雌性果蝇各10只。
2. 成对交配:将这20只果蝇按性别配对,即将10只雄性和10只雌性挑选成5对进行交配。
3. 接孢子:在交配后72小时内,用细长的玻璃棒蘸取成熟的孢子接触到交配后12小时的果蝇卵上,使其受精。
4. 观察子代:将接孢子得到的果蝇卵培养至成熟,观察并记录子代果蝇的性状数量比例。
实验结果及分析:实验结果表格如下:| | 种类 | 数量 | 雌果蝇 | 雄果蝇 || ------ | -------- | ------ | -------- | -------- || F1代 | 紫体黑眼 | 161 | 86 | 75 || | 灰体红眼 | 165 | 80 | 85 || | 紫体红眼 | 18 | 10 | 8 || | 灰体黑眼 | 21 | 12 | 9 || 总计 | | 365 | 188 | 177 || F2代 | 紫体黑眼 | 472 | 265(5/16)| 207(11/16)|| | 灰体红眼 | 472 | 279(11/16)| 193(5/16)|| | 紫体红眼 | 36 | 22(3/4) | 13(1/4) || | 灰体黑眼 | 27 | 16(1/16)| 10(15/16)|| 总计 | | 1007 | | |通过对F1代的观察,我们可以得出以下结论:1. 紫体和灰体基因是显性、黑眼和红眼基因是隐性。
2. 紫体和黑眼的组合是常态,是最为普遍的基因型。
4. 基因在生殖细胞中随机组合,随机性导致每个基因分离的可能性是相等的。
5. 在F1代中,四个基因组合表现为2:1:1:2。
随后,我们进行了F1代的自由组合定律实验,结果如下:1. 同一对基因之间的相互组合是随机的。
果蝇杂交实验实验报告(范文大全)第一篇:果蝇杂交实验实验报告果蝇杂交实验正式报告姓名:学号:班级:日期:****年**月**日果蝇得杂交实验一、实验目得1、了解伴性遗传与常染色体遗传得区别;2、进一步理解与验证伴性遗传与分离、连锁交换定律;3、学习并掌握基因定位得方法、二、实验原理红眼与白眼就是一对相对性状,控制该对性状得基因位于X 染色体上,且红眼对白眼就是完全显性。
当正交红眼雌蝇与白眼雄蝇杂交时,无论雌雄均为红眼;反交时雌蝇都就是红眼,雄蝇都就是白眼。
三、实验材料与器具野生型雌蝇雄蝇,突变型雌蝇雄蝇、放大镜、麻醉瓶、毛笔、超净台、乙醚、酒精棉球、酵母、玉米粉、丙酸、蔗糖、琼脂四、实验流程配培养基→选处女蝇→杂交(正交,反交)→观察F1五、实验步骤1、配培养基2、选处女蝇在超净台上选取野生型与突变型得雄蝇雌蝇3、杂交(1)正交取红眼雌蝇 5 个与白眼雄蝇 4 个,放入培养瓶中(♀)红眼()×(♂)白眼()(2)反交取红眼雌蝇3个与白眼雄蝇 4 个,(♀)白眼()×(♂)红眼()贴上标签,放于恒温箱饲养 4、观察并记录分别将正反交得F1 代用乙醚麻醉,倒在白纸上,分别数红白眼得雌蝇与雄蝇,记录数据。
六、实验结果与分析在正交实验中,F1 代雌雄硬都就是红眼;在反交实验中,雌性都就是红眼,雄性都就是白眼,但也出现了个不该出现得雌性白眼分析:在伴性遗传中,也有个别例外产生,这就是由于2条X不分离造成得,F1 中出现得不该出现得雌性白眼,但就是这种情况极为罕见。
七、注意事项要经常观察,如果培养瓶内有生霉得,必须将果蝇转移到干净得培养瓶中F1代幼虫出现即可将亲本放出或处死要严格控制温度,偏高得温度或者偏低得温度都可能引起果蝇得死亡亲本必须就是处女蝇,其原因就是雌蝇生殖器官有受精囊,可以保存交配所得得大量精子,能使交配后卵巢产生得卵受精。
在杂交时若不就是处女蝇,其体内已储有另一类型雄蝇得精子,会严重影响实验结果,导致整个实验失败。
果蝇杂交实验结论果蝇杂交实验结论一、引言果蝇杂交实验是遗传学研究中十分重要的一项实验,通过对果蝇的杂交繁殖,可以观察不同基因型在后代中的表现,揭示基因传递规律。
本文旨在总结果蝇杂交实验的结果,探讨其中的遗传规律。
二、方法本实验选取了两个具有明显表型差异的果蝇品种,分别为黑色翅膀果蝇(AA)和红色翅膀果蝇(aa)。
通过人工配对,得到了F1代。
F1代果蝇为黑色翅膀与红色翅膀基因的杂合体(Aa)。
三、结果1. F1代果蝇为黑色翅膀在实验中观察到,所有F1代果蝇的翅膀颜色均为黑色。
这说明黑色翅膀基因(A)对红色翅膀基因(a)具有显性作用,即A是显性基因,a 是隐性基因。
遗传学中,我们将呈现显性表型的基因称为“显性基因”。
2. F2代果蝇表型比例分析进一步观察F2代果蝇的表型,我们发现出现了黑色翅膀与红色翅膀的两种表型。
统计数据如下:黑色翅膀果蝇(AA):125只红色翅膀果蝇(aa):108只黑色翅膀与红色翅膀混合表型(Aa):257只通过计算比例可以得知,黑色翅膀与红色翅膀表型之间的比例接近3:1,这符合孟德尔的遗传规律。
根据这个比例,我们可以推断黑色翅膀与红色翅膀基因之间的遗传关系。
四、讨论基于上述实验结果,我们可以得出以下结论:1. 黑色翅膀果蝇基因(A)是对红色翅膀果蝇基因(a)的显性基因。
只要果蝇身上存在着一个黑色翅膀基因(A),就能够表现出黑色翅膀的外部特征。
2. 红色翅膀果蝇基因(a)是显性基因A的隐性基因,只有在两个基因都是红色翅膀基因的情况下(aa),才能够表现出红色翅膀的外部特征。
3. 黑色翅膀与红色翅膀基因的遗传比例接近3:1,符合孟德尔的遗传规律。
每个果蝇拥有两个基因座,其中一个来自母亲,一个来自父亲。
对于表现显性特征的基因,只需拥有一个该基因就能够表现出相应表型。
五、结论综上所述,果蝇杂交实验结果表明黑色翅膀基因对红色翅膀基因具有显性作用,而红色翅膀基因则是显性基因的隐性形态。
此外,黑色翅膀与红色翅膀基因的遗传比例接近3:1,遵循孟德尔的遗传规律。
果蝇杂交实验【实验目的】通过实验验证分离规律、自由组合规律、伴性遗传和连锁互换规律,掌握果蝇杂交的实验技术和基因定位的三点测验方法,在实验中纯熟运用生物记录的方法对实验数据进行分析。
【实验原理】1. 果蝇(fruit fly)是双翅目(Diptera)昆虫,属果蝇属(genus Drosophila),约有3000多种,我国已发现800多种。
大部分的物种以腐烂的水果或植物体为食,少部分则只取用真菌,树液或花粉为其食物。
以果蝇作为遗传学研究的材料,运用突变株研究基因和性状之间的关系已近一百年,至今,各种研究遗传学的工具已达完善的地步,果蝇对今日的遗传学的发展有其不可磨灭的奉献;从1980年初,Drs. C. Nesslein-V olhard和E. Weichaus以果蝇作为发育生物学的模式动物,运用其完备的遗传研究工具来探讨基因是如何调控动物体胚胎的发育,也带动了其它模式生物(线虫、斑马鱼、小鼠和拟南芥等)的研究,且有非常具体的成果。
通常用作遗传学实验材料的是黑腹果蝇(Drosophila melanogaster)。
用果蝇作为实验材料有许多优点:⑴饲养容易。
在常温下,以玉米粉等作饲料就可以生长,繁殖。
⑵生长迅速。
十天左右就可完毕一个世代,每个受精的雌蝇可产卵400~500个,因此在短时间内就可获得大量的子代,便于遗传学分析。
⑶染色体数少。
只有4对。
⑷唾腺染色体制作容易。
横纹清楚,是细胞学观测的好材料。
⑸突变性状多,并且多数是形态突变,便于观测。
果蝇的生活史:果蝇的生活周期长短与温度有密切关系。
一般来说,30℃以上温度能使果蝇不育或死亡,低温能使生活周期延长,生活力下降,饲养果蝇的最适温度为20~25℃。
生活周期长短与饲养温度的关系果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。
果蝇的生活史如下:雌蝇→减数分裂→卵受精雄蝇→减数分裂→精子第一批成虫羽化(第八天)(可活26~33天)产第一批卵蛹(第四天)第二次蜕皮第一批卵孵化(第二天)(第零天)第一次蜕皮幼虫(第一天)果蝇的生活周期和各发育阶段的通过时间果蝇的性别及突变性状的鉴别:果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是同样的,称常染色体。
第1篇一、实验目的1. 了解果蝇的生物学特性及其在遗传学研究中的应用。
2. 掌握果蝇的培养方法及杂交技术。
3. 验证孟德尔的分离定律和自由组合定律,以及伴性遗传的规律。
4. 通过实验学习基因的定位方法。
二、实验原理果蝇(Drosophila melanogaster)是双翅目昆虫,因其繁殖周期短、易于培养、染色体数目少、突变性状丰富等优点,被广泛应用于遗传学研究。
本实验通过观察果蝇的性别决定、眼色、翅型等性状,验证孟德尔的遗传定律,并学习基因的定位方法。
三、实验材料与仪器1. 实验材料:- 野生型果蝇(红眼、长翅)- 突变型果蝇(白眼、残翅)- 酵母- 玉米粉- 蔗糖- 丙酸- 乙醚- 毛笔- 麻醉瓶- 放大镜- 超净台- 玻璃培养皿- 纱布2. 实验仪器:- 热水浴- 电子天平- 显微镜- 移液器- 计数板四、实验方法1. 果蝇的培养:- 将酵母、玉米粉、蔗糖、丙酸等混合物均匀铺在玻璃培养皿中,制成培养基。
- 将野生型和突变型果蝇分别饲养在培养皿中,保持适宜的温度和湿度。
- 观察果蝇的繁殖情况,记录雌雄比例和性状表现。
2. 果蝇的杂交:- 将野生型果蝇和突变型果蝇进行正交和反交实验,分别记录F1代和F2代的性状表现。
- 对F2代进行统计,分析基因的分离和自由组合规律。
3. 基因的定位:- 通过观察F2代果蝇的性状分离比,确定基因所在的染色体位置。
五、实验步骤1. 果蝇的培养:- 将酵母、玉米粉、蔗糖、丙酸等混合物均匀铺在玻璃培养皿中,制成培养基。
- 将野生型和突变型果蝇分别饲养在培养皿中,保持适宜的温度和湿度。
- 观察果蝇的繁殖情况,记录雌雄比例和性状表现。
2. 果蝇的杂交:- 将野生型果蝇和突变型果蝇进行正交和反交实验,分别记录F1代和F2代的性状表现。
- 对F2代进行统计,分析基因的分离和自由组合规律。
3. 基因的定位:- 通过观察F2代果蝇的性状分离比,确定基因所在的染色体位置。
六、实验结果与分析1. 果蝇的培养:- 野生型和突变型果蝇均能正常繁殖,雌雄比例约为1:1。
一、实验目的1. 通过果蝇杂交实验,验证孟德尔的分离定律和自由组合定律。
2. 掌握果蝇的杂交技术,学习基因的伴性遗传规律。
3. 了解果蝇的生物学特性,为后续的遗传学研究奠定基础。
二、实验原理果蝇(Drosophila melanogaster)是遗传学研究中常用的实验材料,具有繁殖速度快、染色体数目少、突变类型丰富等特点。
果蝇的性别决定为XY型,红眼(B)和白眼(b)是一对相对性状,由X染色体上的基因控制,红眼为显性,白眼为隐性。
三、实验材料与仪器1. 实验材料:野生型果蝇(红眼、常翅)、突变型果蝇(白眼、残翅)、麻醉瓶、毛笔、超净台、乙醚、酒精棉球、酵母、玉米粉、丙酸、蔗糖、琼脂。
2. 实验仪器:放大镜、显微镜、培养皿、恒温箱、计数器。
四、实验步骤1. 配制培养基:将酵母、玉米粉、丙酸、蔗糖按比例混合,加水搅拌均匀,制成培养基。
2. 选择果蝇:在超净台上,分别挑选野生型和突变型果蝇。
3. 杂交:a. 正交:将红眼雌蝇与白眼雄蝇进行杂交,每组杂交10对。
b. 反交:将白眼雌蝇与红眼雄蝇进行杂交,每组杂交10对。
4. 观察与记录:将杂交后的果蝇放在恒温箱中培养,每隔一段时间观察并记录果蝇的性别、眼色和翅型。
五、实验结果与分析1. 正交实验结果:- 雌蝇:红眼、常翅- 雄蝇:红眼、常翅- 红眼雌蝇与白眼雄蝇的比例为1:12. 反交实验结果:- 雌蝇:红眼、常翅- 雄蝇:白眼、常翅- 红眼雌蝇与白眼雄蝇的比例为1:1根据实验结果,我们可以得出以下结论:1. 正交和反交实验结果一致,说明红眼和白眼性状遵循孟德尔的分离定律。
2. 正交和反交实验中,雌蝇和雄蝇的眼色和翅型比例均为1:1,说明红眼和白眼性状遵循孟德尔的自由组合定律。
3. 红眼和白眼性状由X染色体上的基因控制,红眼为显性,白眼为隐性,符合伴性遗传规律。
六、实验讨论1. 本实验中,我们使用了野生型和突变型果蝇进行杂交,观察了红眼和白眼性状的遗传规律。
果蝇杂交实验实验报告一、引言果蝇(Drosophila melanogaster)作为一种经典的模式生物,在遗传学研究中起到了重要的作用。
正是通过对果蝇的杂交实验,使我们对于遗传学的规律和机制有了更深入的了解。
本实验通过对果蝇的杂交实验,旨在探究果蝇常染色体和性染色体的遗传规律。
二、材料与方法1.材料:雄果蝇、雌果蝇、香蕉培养基、实验室培养箱等。
2.方法:(1)将一对纯合的雌雄果蝇分别放置于不同的培养箱中,在香蕉培养基上放置果蝇饲料。
(2)观察果蝇的交配情况,记录下雌雄果蝇的表型特征。
(3)将获得的F1代果蝇杂交,在新的培养箱中培养。
(4)观察F2代果蝇的表型特征,并记录相关数据。
三、结果与分析通过本实验观察得到的结果如下:1.F1代果蝇:观察F1代果蝇时,发现它们的表型特征与亲本两代的表型特征之间存在显然的差异。
亲本雌雄果蝇分别具有红眼和白眼的表型特征,而F1代果蝇则全部表现出了红眼的表型特征。
这表明红眼是显性基因,白眼则是隐性基因。
2.F2代果蝇:观察F2代果蝇时,发现红眼和白眼出现的比例约为3:1、这符合孟德尔遗传定律中隐性基因与显性基因出现的比例。
同时,红眼果蝇分为两个类型,红色身体和灰色身体的比例也约为3:1通过对F1代和F2代果蝇的观察分析,我们可以推测雌雄果蝇的眼色以及身体颜色的遗传方式:红眼为显性遗传,白眼为隐性遗传,红色身体为显性遗传,灰色身体为隐性遗传。
四、讨论与结论通过果蝇杂交实验,我们可以得出结论:果蝇眼色和身体颜色的遗传是由显性和隐性基因控制的。
红眼和红色身体为显性基因,白眼和灰色身体为隐性基因。
此外,从F2代果蝇的比例来看,显性基因和隐性基因出现的比例接近3:1,符合孟德尔遗传定律。
果蝇杂交实验不仅对于遗传学的研究具有重要的意义,也对我们理解生物的遗传规律和机制提供了深刻的启示。
通过实际操作与观察,我们不仅理论上了解了遗传学的基础知识,还培养了我们在实验中观察、分析和解读数据的科学素养。
设计果蝇杂交实验报告引言果蝇(Drosophila melanogaster)是一种常见的模式生物,因其短寿、易于培养和遗传特性而被广泛应用于遗传学研究中。
果蝇的杂交实验可以帮助我们理解基因的遗传规律以及基因型与表型之间的关系。
本实验旨在通过果蝇杂交,观察不同基因型的果蝇交配后后代的表型分布,并验证孟德尔遗传定律。
实验方法实验材料和设备- 双眼突变型白眼果蝇(眼睛呈白色)- 原生型红眼果蝇(眼睛呈红色)- 无翅型果蝇(翅膀退化)- 硬纸板盒子- 室温恒温培养箱- 透明胶带实验步骤1. 准备双眼突变型白眼果蝇组,计划交配白眼果蝇与红眼果蝇。
2. 将双眼突变型白眼果蝇和红眼果蝇分别放养于不同的果蝇匣中,培养3天以保证果蝇的适应环境。
3. 在交配前一天,将两种果蝇分别转移到新的果蝇匣中,同时粘贴一层透明胶带在果蝇匣的一侧,以阻止果蝇之间的接触。
4. 第二天,取下透明胶带,让白眼果蝇与红眼果蝇自由交配。
5. 观察交配后果蝇的表型特征。
6. 培养交配后的果蝇约10天,观察后代果蝇的表型特征。
实验结果交配后果蝇的表型观察交配后果蝇的表型特征符合预期:部分果蝇眼睛呈现为白色,部分果蝇眼睛呈现为红色。
后代果蝇的表型观察经过10天培养,观察到后代果蝇中有白眼果蝇和红眼果蝇。
白眼果蝇占据了约1/4的比例,而红眼果蝇占据了约3/4的比例。
这与孟德尔的等位基因分离定律相符,并且支持了白眼果蝇为显性突变基因。
讨论本实验通过果蝇杂交,成功观察到了不同基因型果蝇交配后后代的表型分布,并验证了孟德尔遗传定律。
在果蝇的杂交实验中,白眼果蝇是由于突变基因导致的,而红眼果蝇是其正常的基因型。
通过将白眼果蝇与红眼果蝇交配,我们观察到了白眼果蝇和红眼果蝇在后代中的分布比例,证明了显性突变基因对其后代的影响。
然而,本实验也存在一些限制。
首先,在果蝇的杂交实验中,由于果蝇繁殖速度较快,可能会出现自然杂交的情况。
为了尽量避免这种情况的发生,我们采取了粘贴透明胶带的措施,并尽可能将果蝇放养在不同的果蝇匣中。
果蝇培养杂交实验报告通过果蝇的杂交实验,观察和分析种质间的基因表达情况,探究遗传规律以及基因型的相互作用。
实验材料与方法:1. 实验材料:- 雄性果蝇:纯种黑色果蝇(BB),纯种白色果蝇(WW)。
- 雌性果蝇:纯种黑色果蝇(BB),纯种白色果蝇(WW)。
2. 实验装置与方法:- 实验装置:果蝇培养箱、显微镜、显微镜玻片、玻璃注射器、培养基等。
- 实验方法:a) 将纯种黑色果蝇与纯种白色果蝇交配,记录下自交和杂交的结果。
b) 观察产生的杂种果蝇,并统计各个表型的数量。
c) 根据观察结果,对各个表型的遗传关系进行分析和总结。
实验结果与分析:根据实验操作,我们观察到了产生的杂种果蝇及其表型。
在本实验中,我们假设黑色为显性基因B的表达,白色为隐性基因b的表达。
根据这个假设,我们可以得出以下结果并进行分析:1. F1代杂种果蝇:- 外观:所有杂种果蝇均为黑色,没有白色果蝇出现。
- 分析:由于黑色为显性基因B的表达,而白色为隐性基因b的表达,说明黑色基因B在F1代中占据主导地位。
2. F2代杂种果蝇:- 外观:F2代果蝇中,出现了黑色和白色两个表型。
- 数量:黑色表型的果蝇数量明显多于白色表型的果蝇数量。
- 分析:根据孟德尔遗传规律,F1代后代中两个相对纯合的个体的杂交后代,基因型组合比例为1:2:1。
因此,F2代果蝇中黑色和白色表型的数量比例为3:1,符合孟德尔遗传规律。
实验结论:通过果蝇培养的杂交实验,我们观察并分析了果蝇的遗传特征和表型的分离情况。
根据实验结果,我们总结出以下结论:1. 基因型:黑色为显性基因B的表达,白色为隐性基因b的表达。
2. F1代:所有F1代杂种果蝇均为黑色,即显性表型。
3. F2代:F2代果蝇中,出现了黑色(显性表型)和白色(隐性表型)两个表型,数量比例符合孟德尔遗传规律的3:1。
通过这个实验,我们可以初步了解基因的传递规律,对后续的遗传研究以及物种保育等方面有着重要的参考价值。
果蝇杂交实验报告分析引言果蝇(学名:Drosophila melanogaster)是一种常见的实验动物,在遗传学研究中被广泛应用。
本实验旨在通过果蝇的杂交实验,观察和分析不同基因型对果蝇性状的影响,从而深入了解遗传变异的规律与原理。
实验步骤和观察结果1. 杂交配对:选取纯合的黑色果蝇(基因型:BB)与纯合的白色果蝇(基因型:WW)进行交配,得到所有子代的F1代果蝇。
观察结果:F1代果蝇全部为黑色,表现出显性性状。
2. F1代后代配对:将F1代果蝇杂交繁殖,选取纯合的黑色果蝇与纯合的白色果蝇再次交配,得到所有子代的F2代果蝇。
观察结果:F2代果蝇中有黑色和白色两种表型,黑色果蝇数量较多,白色果蝇数量较少。
3. F2代观察结果分析:- 出现黑色果蝇和白色果蝇两种表型,符合复等位基因的基本规律。
- 黑色果蝇与白色果蝇的比例约为3:1,符合孟德尔第二定律中的基因分离规律。
- 分析黑色果蝇和白色果蝇的基因型,根据孟德尔定律和复等位基因原理,推测黑色果蝇为纯合子(基因型:BB),白色果蝇为纯合子(基因型:WW)。
- 推测F1代果蝇是黑色基因(B)与白色基因(W)的单等位基因的杂合子(基因型:BW)。
4. 基因型比例分析:根据孟德尔第二定律,F2代果蝇的表型比例符合1:2:1的分离比例。
从实际观察结果来看,黑色果蝇的数量约为白色果蝇数量的三倍,符合约为3:1的比例关系。
结论通过果蝇杂交实验,我们观察到了复等位基因的表现。
在本实验中,黑色果蝇为显性基因型,白色果蝇为隐性基因型。
F1代果蝇是由纯合的黑色果蝇与纯合的白色果蝇杂交得到的,表现出了显性性状(全为黑色)。
而在F2代果蝇中,黑色果蝇和白色果蝇的比例符合3:1的分离比例,推测黑色果蝇是纯合子(基因型:BB),白色果蝇也是纯合子(基因型:WW)。
根据实验结果和分析,我们可以推测F1代果蝇的基因型为杂合子(基因型:BW)。
这个实验展示了遗传学中的一个重要规律——复等位基因的表现。
最新果蝇杂交实验实验报告在本次实验中,我们旨在探究果蝇(Drosophila melanogaster)杂交后的遗传特性及其表现。
实验采用了两种不同品系的果蝇进行杂交,一种是具有红色眼睛的纯合子品系(rr),另一种是具有白色眼睛的纯合子品系(RR)。
我们通过精确的遗传学方法,详细记录了杂交后代的表现型和基因型,并对结果进行了统计分析。
实验步骤如下:1. 从两个品系中各选取健康的成年果蝇,确保它们分别具有纯合的红眼和白眼基因。
2. 将这些果蝇按照性别比例1:1混合在特定的培养容器中,允许它们自由交配。
3. 观察并记录F1代果蝇的眼色,以确定显性特征。
4. 选取F1代中的成年果蝇进行再次杂交,产生F2代。
5. 对F2代果蝇的眼色进行详细观察和分类,记录各种表现型的比例。
6. 利用孟德尔遗传定律对实验结果进行解释,并计算期望的表现型比例与实际观察到的比例之间的吻合度。
实验结果显示,在F1代中所有果蝇均表现为白色眼睛,这表明白眼基因(R)是显性的,红眼基因(r)是隐性的。
在F2代中,我们观察到大约3:1的表现型比例,即3/4的果蝇具有白色眼睛,1/4的果蝇具有红色眼睛。
这一结果与孟德尔的分离定律相符,进一步验证了基因的显性和隐性关系。
此外,我们还对杂交果蝇的生存率、繁殖能力和行为特征进行了观察,以评估杂交对果蝇整体适应性的影响。
结果表明,杂交后代并未表现出明显的适应性下降,这为杂交优势提供了一定的生物学依据。
综上所述,本次果蝇杂交实验不仅加深了我们对遗传规律的理解,而且为未来的遗传学研究和应用提供了重要的实验数据。
未来的研究可以进一步探索不同基因座的杂交效应,以及环境因素对杂交后代表现型的影响。
广州大学综合性实验报告实验课题:遗传学果蝇杂交实验学院生命科学学院年级:14级专业班级:生物技术142班姓名陈子禧学号1414300004实验地点:广州大学生化楼指导教师汪珍春老师1、前言果蝇(fruit fly)是双翅目(Diptera),属果蝇属(genus Drosophila)。
Morgan(1909)利用黑腹果蝇 (Drosophila melanogaster)发现了连锁与互换定律。
果蝇作为实验材料有许多优点:(1)饲养容易,生长繁殖要求较低, 在常温下, 以玉米粉等作饲料就可以生长、繁殖;(2)生长迅速,12天左右就可完成一个世代, 25℃条件下黑腹果蝇平均产卵量高达375.4粒(P<0.01)[1],因此在短时间内就可获得大量的子代,便于遗传学分析;(3)染色体数少,只有4对;故本研究采用黑腹果蝇e#和6#为研究材料进行正交和反交实验,对果蝇的性状(眼色、体色和翅型)进行观察记录并结合统计学对实验结果进行分析,以验证遗传学三大定律,并尝试培养和分析小量的F2代数据观察连锁交换现象。
关键词:黑腹果蝇;遗传学;正交;统计学;遗传学三大定律;连锁交换2、实验材料品种:黑腹果蝇(Drosophila melanogaster)品系:突变型(e#):长翅、黑檀体、红眼;突变型(6#):小翅、灰身、白眼工具:显微镜、电子天平、培养瓶、棉塞、量筒、烧杯、温度计、玻璃棒、解剖针、毛笔、解剖剪、镊子、恒温恒湿培养箱、电炉药品及材料:燕麦、玉米粉、蔗糖、琼脂粉、酵母粉、丙酸、乙醚等3、实验方法3.1、果蝇的饲养3.1.1培养基的配制:①称量100ml水+0.85g琼脂+7g蔗糖,将上述三份材料倒入白瓷杯,保留约30ml的水待用,将电炉打开,搅拌至80°C煮溶②将称量的8g燕麦玉米粉干燥混合物与上述保留的30ml冷水混匀成浆糊,搅匀并加入白瓷杯中③不断搅拌体系约5min直至煮沸(此时应成糊状),关火④等待体系自然降温,温度计测温至80°C,倒入1g干性酵母粉和0.4ml丙酸⑤冷却至70°C,趁热将白瓷杯的混合物转移至大烧杯,并分装到各个培养瓶。
⑥待水珠或水雾散去后,封上纱布并写上制作日期和品系信息及使用者姓名,待24小时或至少隔一夜后使用。
⑦新配制的培养基有效使用期最长为7天,超过7天的培养基水分不足易与瓶壁分离且滋生霉菌,影响实验结果质量。
3.1.2 生活周期:果蝇的生活周期包括四个发育阶段:卵、幼虫、蛹和成虫四个发育阶段,本实验中从初生卵发育至新羽化的成虫为一个完整的发育周期,在25℃,60%相对湿度条件下,大约为9至10天(因交配到产卵的时间未能准确观察,故仅能推算为9至10天)。
3.1.3 培养条件:25°C恒温、60%相对湿度恒湿的培养箱中培养。
3.2、果蝇杂交的流程3.2.1杂交实验的果蝇品系本人实验组:突变型(e#)♀(黑檀色、红眼、长翅)╳突变型(6#)♂(灰黄色、白眼、短翅)组员实验组:突变型(6#)♀(黑檀色、红眼、长翅)╳突变型(e#)♂(灰黄色、白眼、短翅)3.2.2杂交实验前的准备工作①每一培养瓶要封好纱布绑好橡皮筋贴好标签,注明品系、时间、班别及姓名。
②分别取原种e#和6#于两个培养瓶中培养7~8d,当出现较多蛹或蛹变黑时除去原种。
③然后每隔8h取一次处女蝇,雌雄性别的鉴定主要通过性梳的有无以及背上条纹数量的差异来区分[2](见图1),若超过8h的雌蝇除去,可保留雄蝇,将取出处女雌和雄性果蝇分别置于两个培养瓶中,直到各瓶有6—8只果蝇。
④将收集到的处女蝇和雄性果蝇分别置于1号、2号瓶进行杂交,(杂交时间2016.10.12 8:00 转瓶时间10.18 12:00),将转瓶瓶号标记为3号、4号。
⑤根据亲本的生活周期(原种产卵至亲本羽化为成虫的时间),推测出本人组的F1由亲本杂交到羽化成虫的时间约为9天。
⑦开始对F1的数目与性状进行统计并记录(第一批成虫羽化时间:2016.10.21)以7天为保守时间收集F1代(1、2号瓶的可收集时间截止10.28,已于当天17:30停止收集,3、4号瓶收集时间延迟至10.31)图1 实验过程中雌雄果蝇外形比较及雄性性征.A:雌雄果蝇外形侧面观 B:雄性果蝇性梳Fig.1 External characters of Drosophila melanogaster between male and female;Male sexuality. A:Lateral view of male(left) and female(right); B:Sexual comb---thesexual character of male4、 实验结果 表1 6# × e #果蝇杂交F1实验结果e #♀×6#♂ (本人) e #♂×6#♀(组员)♀ ♂ ♀ ♂红灰长 172 171 162 0白灰小 0 0 0 156合 计 172 171 162 156Table 1.Characters of filial generation 1st5、 结果分析5.1、性别比分析根据表1,雌果蝇合计334,雄果蝇合计327,雌雄比例约为1.02以下将假设性别决定的方式为XY 型,描绘遗传流程为(图2),X 2检验(卡方检验)(列表)亲本:P♀X X ×♂X Y配子: X X X YF1: X X X Y X X XY 雌性 雄性1 : 1图2 果蝇性别遗传流程图示Fig.2 Procedure of genetic sexuality in Drosophila melanogaster2Table 2.X 2-Test of sex ratio由表2计算结果可得:X 2=0.027< X 20.05=3.84,上述分析均与实验数据基本吻合。
所以可以证明果蝇的性别决定方式为XY 型。
5.2、眼色分析根据实验数据可知(表1),在F1代中,e#♀×6#♂正交的结果是不论雌雄均为红色,反交的结果是雌性为红眼,雄性为白眼,故可以判定红眼为显性性状,白眼为隐性性状,且控制该性状的基因位于X 染色体上,红眼基因以X W表示,白眼基因以X w 表示。
Table 3.The staticstics of eyes’ colour上述表3统计数据中正交e #♀×6#♂产生的子代均为红眼,而反交e #♂×6#♀中的子代雌性均为红眼,雄性均为白眼。
为明显的交叉遗传现象,故假设控制眼色的基因位于X 染色体上,正交组e #♀×6#♂的遗传过程如下图(图3)所示。
正交组 亲本:P ♀XW X W ×♂X w Y配子: X W X W X w YF1: X W X w X W Y X W X w X WY 雌雄均为红眼异不显著。
准下理论值与实际值差说明在0.05显著标,0,即表明p x x 20.05205.>< 84.3X 205.0,2=反交组亲本:P♀X w X w×♂X W Y配子:X w X w X W YF1:X W X w X w Y X W X w X w Y雌性红眼雄性白眼1 : 1图3. 果蝇眼色遗传流程图示Fig.3 Procedure of genetic eye colour in Drosophila melanogaster据上述图3可知,正交组中红眼雌性和红眼雄性的比例符合1:1的关系(在0.05显著标准下符合),同理可知,反交实验会出现交叉连锁,即6#♀产生的X w将和e#♂产生的Y配子结合,导致F1中雄性全为白眼,雌性全为红眼。
上述分析均与实验数据基本吻合。
故综上所述,假设成立,成功验证控制眼色的基因位于X染色体上。
5.3、翅形分析正交e#♀×6#♂中,雌性亲本的翅形为长翅,雄性亲本的翅形为短翅,子一代全部为长翅;其反交e#♂×6#♀的雌性亲本为短翅,雄性为长翅,F1的雄性全部为短翅,雌性全部为长翅,由此可见,无论是正交还是反交,都出现了长翅性状,由此可推测长翅由显性基因决定而短翅由隐性基因决定。
另外在组员的反交实验中,性状与性别有关,且出现了交叉遗传现象,其中小翅性状和白眼性状出现连锁现象,因此可以假设短翅基因位于X染色体上,相对长翅基因为隐性,短翅基因用X m表示,故其等位基因用表示XM表示。
假设本人正交组e#♀×6#♂遗传过程如下图(图4)所示。
正交组亲本:P♀X M X M×♂X m YX M X M X m Y配子:X M X m X M Y X M X m X M YF1:雌雄均为长翅反交组亲本:P♀X m X m×♂X M YX m X m X M Y配子:X M X m X m Y X X m X m YF1:雌性长翅雄性短翅1 : 1图4. 果蝇翅型遗传流程图示Fig.4 Procedure of genetic wing type in Drosophila melanogaster故由上图4可得知,e#♀×6#♂的子代雄雌均为长翅,同理可推知,反交实验会出现交叉连锁,即6#♀产生的X m将和e#♂产生的Y配子结合,导致F1中雄性全为短翅,雌性全为长翅,长翅雌性和短翅雄性的比例符合1:1的关系(在0.05显著标准下符合)。
另外其中短翅性状和白眼性状出现连锁现象可以进一步支持假设。
上述分析均与实验数据基本吻合。
故综上所述,假设成立,成功验证控制翅型的基因位于X染色体上。
5.4、体色分析根据表1显示,突变型(e#)的体色为黑檀色,突变型(6#)的体色为灰黄色,而F1代的体色均为灰黄色。
子代体色不因性别不同而有差异,故假设控制体色的基因位于常染色体上,并且黑檀色为隐性性状,灰黄色为显性性状,故控制显性性状的基因以E表示,控制隐性性状的基因以e表示。
遗传过程如图5示。
ee ×EE亲本:Pe e E E配子:E e E e E e E eF1:均为灰色图5 果蝇体色遗传流程图示Fig.5 Procedure of genetic body colour in Drosophila melanogaster故由上图可知,正交组e#♀×6#♂的子代均为灰色,同理可得反交组的子代也为灰色,以上分析均与实验数据符合,故综上所述,假设成立,成功验证控制体色的基因位于常染色体上。
6、结论6.1基因位置本实验研究的性状主要为3种,分别为体色、颜色、翅型,而控制以上三种性状的基因分别以眼色 W-w 翅型 M-m体色E-e 表示。
而通过对性别比例(sex ratio)进行卡方检验(X2-Test)我们推断XY染色体控制果蝇性别。