第十六章-杂环化合物
- 格式:doc
- 大小:346.50 KB
- 文档页数:64
⾼中化学奥赛有机化学教案16--杂环化合物16--杂环化合物§1. 杂环化合物的分类和命名⼀、杂环⼤体可分为:单杂环和稠杂环两类:1. 分类:稠杂环是由苯环与单杂环或有两个以上单杂环稠并⽽成。
⼆、命名:杂环的命名常⽤⾳译法,是按外⽂名称的⾳译,并加⼝字旁,表⽰为环状化合物。
如杂环上有取代基时,取代基的位次从杂原⼦算起⽤1,2,3,4,5……(或可将杂原⼦旁的碳原⼦依次编为α ,β, γ, δ …)来编号。
如杂环上不⽌⼀个杂原⼦时,则从O,S,N 顺序依次编号,编号时杂原⼦的位次数字之和应最⼩:五元杂环中含有两个杂原⼦的体系叫唑(azole)§2. 呋喃,噻吩,吡咯含有⼀个杂原⼦的五元杂环单环体系:呋喃,噻吩,吡咯。
⼀、呋喃,噻吩,吡咯的电⼦结构和光谱性质电⼦结构:这三个杂环化合物中,碳原⼦和杂原⼦均以sp2杂化轨道互相连接成σ健,并且在⼀个平⾯上,每个碳原⼦及杂原⼦上均有⼀个p轨道互相平⾏,在碳原⼦的p轨道中有⼀个p电⼦,在杂原⼦的p轨道中有两个p电⼦,形成⼀个环形的封闭的π电⼦的共轭体系。
这与休克尔的4n+2规则相符,因此这些杂环或多或少的具有与苯类似的性质,故称之为芳⾹杂环化合物。
芳⾹性⼤⼩,试验结果表明:光谱性质:IR: νc-H = 3077~3003cm-1,νN-H = 3500~3200 cm-1(在⾮极性溶剂的稀溶液中,在3495 cm-1,有⼀尖峰。
在浓溶液中则于3400 cm-1,有⼀尖峰。
在浓和淡的中间浓度时,两种谱带都有),杂环C=C伸缩振动:1600~1300 cm-1(有⼆⾄四个谱带)。
NMR:这些杂环化合物形成封闭的芳⾹封闭体系,与苯环类似,在核磁共振谱上,由于外磁场的作⽤⽽诱导出⼀个绕环转的环电流,此环电流可产⽣⼀个和外界磁场⽅向相反的感应磁场,在环外的质⼦,处在感应磁场回来的磁⼒线上,和外界磁场⽅向⼀致,在去屏蔽区域,故环上氢吸收峰移向低场。
第十六章 杂环化合物、生物碱杂环化合物的定义:在环状有机化合物中,构成环的原子除了碳原子外还含有其他原子,这环状种化合物就叫做杂环化合物(heterocyclic compound )。
除碳以外的其他原子叫做杂原子。
常见的杂原子有:氮、氧、硫。
第一节 杂环化合物的分类和命名 一、 分类按照环的大小和环的数目可分为:杂环单杂环五元环六元环苯环与单杂环的稠合杂环(苯并杂环)两个或两个以上单杂环的稠合杂环O SN H稠杂环NNNNN HN二、 命名1、音译法:根据外文译音,选用同音汉字,加―口‖字旁表示杂环。
O S N H 吡咯呋喃噻吩吡啶N pyrrolefuranthiophenepyridine N H 吲哚indole N N咪啶pyrimidine取代杂环的命名: ① 杂环的编号从杂原子起依次1,2,3 ……(或:α,β,γ……)。
② 如环上不止一个杂原子时,则从O 、S 、N 的顺序依次编号。
③ 有两个相同杂原子的,应从连有H 原子或取代基的开始编号。
④ 编号时注意杂原子或取代基的位次之和最小。
⑤ 稠杂环是特定的母体和固定的编号。
N S 512435-乙基噻唑N N H23454-甲基咪唑CH 3C 2H 5N CH 31234563-甲基吡啶2、根据结构命名:即根据相应于杂环的碳环来命名,把杂环看作是相应的碳环中的碳原子被杂原子置换而形成的。
例如,吡啶可看作是苯环上一个碳原子被氮原子置换而成的,所以叫做氮杂苯。
OSN HN茂(环戊二烯)氮茂氧茂硫茂NN苯氮苯1,3-二氮苯第二节 一杂五元杂环化合物含有一个杂原子的典型五元杂环是呋喃、噻吩、吡咯。
O SN H一、 呋喃、噻吩、吡咯的结构1、据现代物理方法证明:① 呋喃、噻吩、吡咯都是一个平面的五元环结构,即成环的四个C 原子和一个杂原子都是以SP 2杂化轨道成键的。
②环上每个碳原子的P 轨道有一个电子,杂原子P 轨道上有两个电子。
③ P 轨道垂直于五元环的平面,互相侧面重叠而形成一个与苯环相似的闭合共轭体系。
第十六章杂环化合物和生物碱学习要点:掌握各类常见杂环化合物如呋喃、噻吩、吡咯、吡啶等的结构、命名和化学性质,了解常见生物碱的分类及提取方法。
环状有机化合物中,构成环的原子除了碳原子外还有诸如氮、氧、硫等其它原子,该类结构的化合物一般具有芳香性,这类有机化合物都属于杂环化合物。
组成杂环的原子除碳原子以外都叫杂原子。
杂环上可以具有一个、两个或者多个杂原子。
杂环氢化后可以形成饱和的或者部分饱和的环。
习惯上把这种氢化后的环看作杂环的衍生物。
如:四氢呋喃可以看作呋喃的衍生物。
所以含有这些环的化合物,不论饱和的、不饱和的或者芳香结构的都可以称为杂环化合物。
O O四氢呋喃呋喃tetrahydrofuran furan至于某些含有杂原子的环状化合物如:环状酸酐、内酯、环氧乙烷等,因它们的性质同酐、酯、醚,所以习惯上不看作杂环化合物。
第一节杂环化合物的分类和命名杂环类化合物可以按照芳香性分为非芳香性杂环和芳香性杂环两大类。
非芳香性杂环化合物具有环内杂原子所具有的典型性质,例如:四氢噻吩是典型的硫醚,六氢吡啶是典型的胺类化合物。
S N H四氢噻吩六氢吡啶tetrahydrothiophene piperidine杂环类化合物按照环来分类可以分为单杂环和稠杂环两大类。
常见的单杂环为五元杂环和六元杂环。
稠杂环是由苯环与单杂环或由两个以上的单杂环稠合而成的。
杂环的命名常用音译法。
按照外文名词音译,用带“口”字旁的同音汉字表示。
例如:O 呋喃N 吡啶SNH噻吩thiophene吡咯pyrroleNNN嘧啶pyrimidine喹啉quinolineN H吲哚indolefuranpyridine如杂环上有取代基时,取代基的位次从杂原子算起依次用1,2,3,4,5等(或α,β,δ等)编号。
如杂环上不止一种杂原子时,则从O ,S ,N 顺序依次编号。
编号时杂原子的位次数字之和应最小。
例如:N H N2-羧基咪唑COOH12345N H N 123453-苯基吡唑表16-1常见杂环化合物的分类和名称对于没有特定名称的杂环,可以看作是相应碳环中碳原子被杂原子取代的衍生物来命名。
第十六章杂环化合物教学要点:掌握五元杂环化合物的结构、性质;了解吡啶和生物碱。
教学时数: 6 学时教学方法:教师讲授、教学手段:多媒体、自制模型第一节杂环化合物的分类和命名杂环大体可分为:单杂环和稠杂环两类。
1. 分类:稠杂环是由苯环与单杂环或有两个以上单杂环稠并而成。
2.命名:杂环的命名常用音译法,是按外文名称的音译,并加口字旁,表示为环状化合物。
如杂环上有取代基时,取代基的位次从杂原子算起用1,2,3,4,5……(或可将杂原子旁的碳原子依次编为α ,β, γ, δ …)来编号。
如杂环上不止一个杂原子时,则从O,S,N 顺序依次编号,编号时杂原子的位次数字之和应最小:五元杂环中含有两个杂原子的体系叫唑(azole)第二节五元杂环化合物一.含有一个杂原子的五元杂环单环体系:呋喃,噻吩,吡咯。
(1)呋喃,噻分,吡咯的电子结构和光谱性质。
电子结构:这三个杂环化合物中,碳原子和杂原子均以sp2杂化轨道互相连接成σ健,并且在一个平面上,每个碳原子及杂原子上均有一个p轨道互相平行,在碳原子的p轨道中有一个p电子,在杂原子的p轨道中有两个p电子,形成一个环形的封闭的π电子的共轭体系。
这与休克尔的4n+2规则相符,因此这些杂环或多或少的具有与苯类似的性质,故称之为芳香杂环化合物。
芳香性大小,试验结果表明:光谱性质:IR: νc-H = 3077~3003cm-1,νN-H = 3500~3200 cm-1(在非极性溶剂的稀溶液中,在3495 cm-1,有一尖峰。
在浓溶液中则于3400 cm-1,有一尖峰。
在浓和淡的中间浓度时,两种谱带都有),杂环C=C伸缩振动:1600~1300 cm-1(有二至四个谱带)。
NMR:这些杂环化合物形成封闭的芳香封闭体系,与苯环类似,在核磁共振谱上,由于外磁场的作用而诱导出一个绕环转的环电流,此环电流可产生一个和外界磁场方向相反的感应磁场,在环外的质子,处在感应磁场回来的磁力线上,和外界磁场方向一致,在去屏蔽区域,故环上氢吸收峰移向低场。
化学位移一般在7ppm左右。
呋喃:α-H δ=7.42ppm β-H δ=6.37ppm噻吩:α-H δ=7.30ppm β-H δ=7.10ppm吡咯:α-H δ=6.68ppm β-H δ=6.22ppm二.呋喃,噻吩,吡咯的制备。
1.玉米心,稻糠,花生壳,大麦壳,高粱秆等用稀硫酸处理得戊糖,戊糖失水得糠醛,再在400℃下加热,同时在催化剂ZnO,Cr2O3存在下,失去一氧化碳而得呋喃。
2.工业上制备噻吩是用丁烷,丁烯或丁二烯与硫磺混合,在600℃反应得到:3.噻吩也可用琥珀酸钠盐与五硫化二磷一起加热反应制得:4.帕尔——克诺尔(C.Paal—L.Knorr)合成法:1,4—二羰基化合物常在无水的酸性条件下,得到呋喃及其衍生物。
1,4—二羰基化合物与氨或硫化合物反应,可制备噻吩,吡咯及他们的衍生物,这个方法称为帕尔—克诺尔合成法:5.取代吡咯的另一个一般的合成法,称为克诺尔合成法,即用氨基酮与有α-亚甲基的酮进行缩合。
例如用氨基酮酸酯与酮酸酯或1,3—二酮缩合,氨基酮酸脂由相应的β-羰基酯制得。
α—氨基酮α—亚甲基酮(三)呋喃,噻吩,吡咯的反应。
1.亲电取代反应:(1)呋喃,噻吩,吡咯亲电取代活泼顺序呋喃,噻吩,吡咯亲电取代反应很容易进行。
这是由于环上五个原子共有六个π电子,故π电子出现的几率密度比苯环大。
换句话说,环上的杂原子有给电子的共轭效应,能使杂环活化。
所以,在亲电取代反应中的速度比苯环快的多。
亲电取代反应活泼顺序为:杂原子给电子共轭效应愈强,环上电子云密度愈大,亲电取代愈易进行。
N 电负性3.0, O 电负性3.5, S 电负性2.4,N、O与碳在同一周期,S在第三周期,其p 轨道与碳的p轨道重叠较小。
(2)亲电基团容易进入杂环的2,5 位(即α, α′位),若杂环的2,5位已有基团存在,则进入3位。
α位比较活泼的原因是因为在反应中形成的中间体正离子有三个共振式参与共振。
如果在β位发生反应,形成的中间体正离子只有两个共振式参与共振,参与共振的共阵式愈多,杂化体愈稳定,故在α位发生反应的中间体正离子比较稳定,稳定的中间体正离子的过渡态能量低,反应速度快。
因此亲电取代反应容易在α位发生。
稳定(3)呋喃,噻吩,吡咯,遇强酸及氧化剂很容易使环破坏,因此进行取代反应须在较温和的条件下进行。
(a)硝化呋喃,噻吩,吡咯很容易被氧化,甚至也能被空气氧化。
硝酸是强氧化剂,因此一般不用硝酸直接氧化。
通常用比较温和的非质子的硝化试剂—硝酸乙酰酯进行硝化,反应还须在低温进行:乙酐乙酰基硝酸酯(硝酸乙酰酯)杂环亲电取代反应的活泼性越强,反应温度控制的越低。
呋喃比较特殊,在此反应中首先生成稳定的或不稳定的2,5—加成产物,然后加热或用吡啶除去乙酸,得硝化产物:呋喃易生成2,5—加成物,与反应物的离域能大小有关。
离域能大,过渡态已具有稳定的芳香族化合物的部分性质,能量也就较低,活化能小,容易发生亲电取代反应。
呋喃的离域能较小(呋喃66.9kJ/mol,噻吩121.3 kJ/mol,吡咯87.8 kJ/mol)易与乙酰氧基负离子发生亲核加成反应,而吡咯具有较高的芳香性,因此,易于失去质子发生亲电取代反应。
但必须注意到呋喃与大多数亲电试剂发生亲电取代反应,只有在强的亲核试剂存在时,才发生亲核加成反应(邢其毅等《基础有机化学》第二版874页)噻吩可以用一般的硝化试剂进行硝化,但反应非常猛烈。
(b)磺化呋喃,噻吩,吡咯也需避免直接用硫酸进行磺化,常用温和的非质子磺化试剂,如用吡啶与三氧化硫加成物作为磺化剂进行反应:吡咯—2—磺酸反应首先得到吡啶的磺酸盐,在用无机酸转为游离的磺酸。
由于噻吩比较稳定(芳香性强),可以用硫酸直接进行磺化,但产率不如上述试剂所得到的高。
从煤焦油中得到的苯通常含有少量的噻吩。
可在室温下反复用硫酸提取,由于噻吩比苯容易磺化,磺化的噻吩溶于浓硫酸内,可以与苯分离。
然后水解,将磺酸基去掉,可得到噻吩:噻吩—2—磺酸69~76%(溶于浓H2SO4)(c)卤化呋喃,噻吩在室温与氯或溴反应很强烈,得到多卤代的产物。
如希望得到一氯代和一溴代的产物,须在温和的条件下(如用溶剂稀释)及低温下进行反应。
不活泼的碘则须在催化剂作用下进行:吡咯卤代常得到四卤化物。
2—氯吡咯很不稳定,是唯一能直接卤化制得的2—卤吡咯。
(d)傅氏酰基化呋喃用酸酐或酰氯在傅氏催化剂作用下发生酰基化反应,酸酐如用三氟化硼做催化剂产率最高:呋喃,吡咯,噻吩亲电取代反应小结:呋喃,吡咯遇强酸容易开环或产生聚合物。
故所使用的亲电试剂一般比较温和。
噻吩很稳定,与酸不发生上述反应。
噻吩傅氏酰基化反应非常有用,但需要小心控制反应条件,如用无水三氯化铝,氯化锡等催化剂易于噻吩产生树脂状物质。
必须将三氯化铝等先与酰化试剂反应生成活泼的亲电试剂,然后在与噻吩反应。
吡咯可用乙酸酐在150~200℃直接酰化:(e)傅氏烷基化呋喃,噻吩,吡咯进行烷基化反应很难得到一烷基取代的产物。
常得到混合的多烷基取代物。
甚至不可避免的产生树脂状物质,因此用处不大。
2.加成反应:(a) D-A反应呋喃的离域能较小,芳香性较差,故环的稳定性较低。
可以看作是1,3—二烯。
具有共轭双烯的性质,可以发生双烯加成类型的反应:吡咯与顺丁烯酸酐不发生D—A反应,可能是氮原子的未共用电子对参加了共轭体系,典型的亲二烯试剂丁炔二酸(或酯)与之发生迈克尔加成反应。
吡咯能发生下列加成反应:噻吩发生上述加成反应的倾向性很小。
噻吩与乙炔的亲二烯试剂加成的研究较多,双烯加成产物通常不稳定,失硫而得苯的衍生物。
噻吩和吡咯中,由于硫和氮原子的电负性较小,芳香性较强,共轭二烯的性质较差。
(b)催化氢化反应呋喃,噻吩,吡咯均可进行催化氢化反应,失去芳香特性而得到饱和杂环化合物。
呋喃和吡咯可用一般催化剂还原,噻吩能使一般催化剂中毒,需使用特殊催化剂:3.吡咯的弱碱性和弱酸性从结构上看,吡咯是环状第二胺,但因氢原子上的未共用电子对参与了环的共轭体系,使氮原子上的电子出现的几率密度降低。
减弱吸引H+的能力,故吡咯的碱性极弱,K b=2.5×10-14,比苯胺弱的多,苯胺Kb=3.8×10-10.另一方面,吡咯氮原子上的氢原子却有极微弱的酸性,其酸性电离常数Ka=10-15,较醇强而较酸弱。
苯酚Ka=1.3×10-10,乙醇Ka≈10-18。
故吡咯能与固体氢氧化钾加热成为钾盐:吡咯也能与格氏试剂作用放出烃(RH)而成吡咯卤化镁:吡咯卤化镁吡咯钾盐及吡咯卤化镁都可以用来合成吡咯衍生物。
N—苯甲酰基吡咯70%4.吡咯的其它反应:吡咯的性质与酚很类似,可发生下列反应:2—吡咯甲醛(瑞穆尔—梯曼反应)2—吡咯甲酸铵盐(柯尔柏反应)第二节五元杂环化合物(二)二.呋喃,吡咯的衍生物1.糠醛(α—呋喃甲醛):糠醛是无色透明液体,糠醛在工业上由农副产物如甘蔗渣,花生壳,高粱秆,棉子壳等用稀酸加热蒸煮制取。
(1)糠醛是良好的溶剂:糠醛常用作精炼石油的溶剂,以溶解含硫物质及环烷等。
还可以精制松香,脱除色素,溶解硝酸纤维等。
(2)催化加氢。
(3)氧化反应:(4)歧化反应:(无α-H的醛)(5)安息香缩合:(6)合成四氢呋喃2.卟吩化合物:四个吡咯环和四个次甲基交替相连组成的大环,叫卟吩环。
含卟吩环的化合物称卟啉化合物。
卟吩环碳上氢原子被取代及部分或全部取代后形成的化合物,叫做卟啉。
卟吩化合物广泛分布于自然界,例如血红素和叶绿素。
血红素存在于哺乳动物的红血球中,它与蛋白质合成为血红蛋白质。
血红蛋白质的功能是运载氧气及二氧化碳。
叶绿素与蛋白质结合存在于植物的叶和绿色的茎中。
植物光合作用时,叶绿素吸收太阳能转变为化学能,是植物进行光合作用时必需的催化剂。
自然界的叶绿素不是一个单纯的化合物,而是由两种叶绿素组合而成,即蓝绿色的叶绿素a(熔点:117~120 ℃)和黄绿色的叶绿素b(熔点:120~130 ℃),两者的比例为:3a:4b,叶绿素环中含镁。
叶绿素a 已经被合成(1960年)叶绿素α 的结构维生素B12,是含钴的类似卟啉环化合物。
但其卟啉环在δ-位少一个碳原子。
它具有强的医治贫血的功能。
三.含有一个杂原子的五元杂环苯并体系苯与呋喃,噻吩,吡咯共用两个碳原子而成的苯并体系,成为苯并呋喃,苯并噻吩,吲哚:这三类化合物中,以吲哚环系比较重要,因此主要对吲哚环系进行一些介绍。
吲哚本身为线状结晶,具有极臭的气味,但在其稀薄时则有香味,可以当作香料用。
含吲哚环的生物碱广泛存在于植物中,如麦角碱,马钱子碱,利血平等。
植物生长调节剂β-吲哚乙酸,哺乳动物及人脑中思维活动的重要物质5—羟基色胺,植物染料靛蓝以及蛋白质组分的色氨酸都会有吲哚环。