一般地,判断三角形形状的关键在于要先求出三角形的 三个内角度数或三条边长,或找到角(边)所满足的重要数 量关系,然后再利用等腰(等边)三角形的判定方法,进行 三角形形状的判断.
初中数学
知识运用
二、运用等腰三角形的判定和性质进行边角等有关计算
初中数学
例 如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AB
2、特殊的等腰三角形:等边三角形
本课小结
AE=ED=DB=BC
A
D
C
等腰三角形:△AED,△EDB,△BCD.
初中数学
初中数学
变式: 如图,在△ABC中,∠ABC=120°,点D,E分别在AC和
AB上,且AE=ED=DB=BC,若∠A的度数为x°,则用x的代数
式表示∠C为__3_x_°_,并求∠A=_1_5__°.
初中数学
例 已知三角形△ABC的三边长为a,b,c.
(4)当满足(a-b)²+(b-c)²+(c-a)²=0时,则三角形的形状为 等边三角形 .
分析: ∵(a-b)²+(b-c)²+(c-a)²=0; (a-b)²,(b-c)²,(c-a)²均具有非负性, ∴(a-b)²=0,且(b-c)²=0,且(c-a)²=0. ∴a=b 且 b=c 且 c=a. 根据等边三角形定义,得△ABC是等边三角形.
初中数学
初中数学
例 如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别
为D,E.若AB=8,则BD=____4_,BE=____2_.
分析:
等边三角形△ABC
AB=AC=BC=8 ∠BAC=∠B=∠C=60°
A
AD⊥BC AD: 三线合一
DE⊥AB ∠BED=∠AED=90°