(完整word版)初中数学专题复习资料-----幂的运算性质
- 格式:doc
- 大小:204.89 KB
- 文档页数:6
七年级幂的知识点幂,是我们学习数学中一个非常基础而重要的概念。
在小学,我们曾经了解过乘方的概念,而在七年级学习中,我们开始学习更为深入的幂的知识。
本文将与大家一同回顾七年级幂数的定义、性质、运算法则以及应用等知识点。
一、幂的定义在数学中,幂是指某个数自己乘以自己多次的运算。
比如 2 的3 次方,表示为 2³,即 2×2×2=8。
其中,2 被称为底数,3 被称为指数。
我们可以用如下的式子来表示:aⁿ=a×a×a×a×……×a(n 个 a 相乘)其中,a 表示底数,n 表示指数,aⁿ 表示 n 个 a 相乘的结果。
当 n = 0 时,a⁰恒等于 1,不论 a 的值为多少。
二、幂的性质幂具有多种性质,下面仅列举其中的几种:1. 幂的指数为正整数时,底数越大,幂的结果越大。
例如,当 a > 1 时,a² > a¹。
2. 幂的指数为负整数时,底数越小,幂的结果越大。
例如,当 0 < a < 1 时,a⁻³ > a⁻²。
3. 幂的指数为 0 时,任何底数的幂都等于 1。
例如,当 n = 0 时,a⁰ = 1。
4. 幂的指数相加时,相当于底数相乘。
例如,a²×a³ = a⁵。
5. 幂的指数相减时,相当于底数相除。
三、幂的运算法则在学习幂数时,我们需要了解幂的基本运算法则,即:1. 幂的乘法法则:当两个底数相同时,幂的乘法可以简化为底数不变,指数相加。
例如,2³×2⁴ = 2⁷。
2. 幂的除法法则:当两个底数相同时,幂的除法可以简化为底数不变,指数相减。
例如, 2⁷/2³ = 2⁴。
3. 幂的乘方法则:当幂的指数再次幂运算时,可以简化为底数不变,指数相乘。
4. 幂的倒数法则:根据幂的定义,当底数为非 0 实数时,幂的倒数为:a⁻ⁿ=1/aⁿ。
什么叫乘方,乘方的结果叫什么?求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数,读作a 的n 次幂。
注意: ()()221221n n n n a a a a ++-=-=-,,,同底数幂的乘除法则同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即m n m n a a a +⋅=(m 、n 都是正整数) 逆运用()m nm n p q aa a a a m n p q +=⋅=⋅+=+幂的乘方法则:幂的乘方,底数不变,指数相乘。
即()nm mn a a =(m 、n 都是正整数)逆运用()()()q n m p mn m n a a a a mn pq ⎛⎫==== ⎪⎝⎭积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘即()nn n ab a b =(n 为正整数) 逆运用()nn n a b ab = ()2323mm m a b a b ⋅=同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即m n m n a a a -÷=(m 、n 都是正整数) 逆运用()m nm n p q aa a a a m n p q -=÷=÷-=-()m a b -,当m 奇数时,()()mm a b b a -=--;当m 偶数时,()()mm a b b a -=-.()m a b +,不论m 为奇数还是偶数,都有()()mm a b b a +=+.幂的运算知识讲解知识回顾【例1】 下列计算是否正确?错误的指出错误的原因,并加以改正.(1)339a a a ⋅=; (2)4482a a a ⋅=; (3)336x x x +=; (4)22y y y ⋅=; (5)34x x x ⋅=; (6)236x x x ⋅=【答案】(1)不正确,指数应是相加而不是相乘,应改为336a a a ⋅=(2)不正确,错在将系数也相加了,应改为448a a a ⋅= (3)不正确,336x x x +=是整式的加法,应改为3332x x x += (4)不正确,y 的指数是1而不是0,应改为23y y y ⋅= (5)正确(6)不正确,指数相加而不是相乘,应改为235x x x ⋅=【例2】 100010010⨯⨯的结果是 .【答案】610【变式练习】计算:(1)45371010101010⨯⨯+⨯ (2)32101010010⨯+⨯ 【答案】(1)10210⨯ (2)4210⨯【例3】 计算:(1)231122⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭; (2)102a a a ⋅⋅;(3)()()2322x y y x -⋅- (4)()()()854x y y x x y -⋅-⋅-【答案】(1)511232⎛⎫-=- ⎪⎝⎭; (2)13a ; (3)()52-y x ; (4)()17x y --【例4】 已知:240x y +-=,求:1233x y -的值.【答案】1221333x y x y -+-=∵240x y +-= ∴24x y += ∴2133327x y +-==同步练习【变式练习】已知:2350x y +-=,求:927x y ⋅的值. 【答案】2323927333x y x y x y +⋅=⋅=∵2350x y +-= ∴原式53243==【例5】 在()222m m y y y -+⋅⋅=中,括号中应填的代数式是 .【答案】3m y +【变式练习】已知32131a a x x x x +⋅⋅=,求a 的值. 【答案】9a =【变式练习】若32125a a x x x x +⋅⋅=,则关于y 的方程=28ay a +的解是 . 【答案】7a =,7728355y y =+==,【例6】 已知22380x x y -+-+=,则22y x x y y x ⋅-⋅= .【答案】24x y ==,,原式422224421612192=⨯-⨯=⨯=【例7】 已知2m a =,3n a =,求下列各式的值.(1)1m a +; (2)3n a +; (3)2m n a ++【答案】(1)12m m a a a a +=⋅=(2)3333n n a a a a +=⋅=(3)2222236m n m n a a a a a a ++=⋅⋅=⨯⨯=【变式练习】已知,3n a =,3m b =,则33m n ++的结果是 . 【答案】33333327m n m n ab ++=⋅⋅=【例8】 计算:(1)()10110033+- (2)()()2008200922-+-(3)200520042003252622000-⨯+⨯+【答案】(1)()()10110010010110010010010033=3333331323+--=-⨯=-=-⨯(2)()()()()()()()200820092008200820082008222222122-+-=-+-⋅-=-⋅-=-(3)200520042003220032003200325262200022522622000-⨯+⨯+=⨯-⨯⨯+⨯+()20034106220002000=-+⨯+=【例9】 计算:(1)()54x ; (2)()32a b ⎡⎤+⎣⎦;(3)()435a a ⋅; (4)()()23211n n a a -+⋅【答案】(1)()5420x x =; (2)()()326a b a b ⎡⎤+=+⎣⎦; (3)()43517a a a ⋅=; (4)()()23211423371n n n n n a a a a a -+-++⋅=⋅=【变式练习】计算(1)()()()32233x x x -⋅-⋅- (2)()()21321n n x x ++-【答案】(1)()()()3223315x x x x -⋅-⋅-=(2)()()21321423375n n n n n x x x x x +++++-=-⋅=-【例10】 已知25n x =,求6155n x -的值.【答案】()362115555n n x x -=-,25n x =,∴原式3155205⨯-=【变式练习】已知3x a =,5x b =,你能用含有a 、b 的代数式表示14x 吗? 【答案】()31433535x x x x ⨯+==⋅;将3x a =,5x b =代入,原式3a b =【例11】 已知105a =,106b =,求2310a b +的值.【答案】()()2323231010101010a b a b a b +=⋅=⋅将105a =,106b =代入,原式23565400=⨯=【变式练习】若3m n 32m n +的值为多少?【答案】()()323232m n m n m n a a a a a +=⋅=⋅当3m a =,4n a =时, 原式3234432=⨯=【例12】 若35n x =,求代数式()()322324nn x x -+的值.【答案】原式=()()()22233322422550n n n x x x -+==⨯=【变式练习】已知3332m n a b ==,,求()()332242m n m n m n a b a b a b +-⋅⋅⋅的值. 【答案】原式()()2233332232327m n m n a b a b =+-⋅=+-⨯=-【例13】 比较5553,4444,3335的大小.【答案】()111555511133243==;()111444411144256==;()111333311155125==256243125>> 444555333435>>【变式练习】若504030345a b c ===,,,则a b c 、、的大小关系为( )..A .a b c << B .c a b << C .c b a << D .b c a <<【答案】B .【例14】 你能比较68与94的大小吗?【答案】()663188=22=;()99218422==;所以6984=【变式练习】若31416181279a b c ===,,,则a b c 、、的大小关系为( )..A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A .【例15】 求满足2003005n<的最大整数值n .【答案】∵2003005n< ()()100100235n <∴2125n <∴最大整数值n 为11.【变式练习】求满足()507513x -<的x 的最大整数值. 【答案】∵()507513x -< ()()()25252313x -<∴()2127x -< ∴x 的最大整数值6【例16】 已知232122192m m ++-=,求m 的值.【答案】∵232122192m m ++-=∴2322222262192m m m ⨯-⨯=⨯= ∴2232m = 25m = 52m =【变式练习】若x y 、都是正整数,且()22232x y ⋅=,求满足条件的x y 、.【答案】∵()225222322x y x y +⋅===∴25x y += ∴13x y =⎧⎨=⎩或21x y =⎧⎨=⎩【例17】 计算:(1)()4xy - (2)()322ab -(3)()332a b a ⎡⎤--⋅⎢⎥⎣⎦(4)()()35232xy y ---【答案】(1)()()4444441xy x y x y -=-=;(2)()()33233236228ab a b a b -=-=-(3)()()339223219a b a a b a a b ⎡⎤--⋅=--⋅=⎢⎥⎣⎦(4)()()352332128xy y x y ---=-【变式练习】计算:(1)()42234122x yxy z ⎛⎫-⋅ ⎪⎝⎭(2)()()()3222223325a a a a -+⋅+(3)()()4234242a a a a a ⋅⋅+-+- (4)()()()3322337235x x x x x ⋅-+⋅【答案】(1)()42234822411224x yxy z x y z ⎛⎫-⋅= ⎪⎝⎭(2)()()()32222233250a a a a -+⋅+=(3)()()423424826a a a a a a ⋅⋅+-+-=(4)()()()33223372350x x x x x ⋅-+⋅=【例18】 下列各题中,计算正确的是( )..A .()()233266m n m n --= B .()()323321818m n m n ⎡⎤--=-⎢⎥⎣⎦C .()()2322298m n mn m n --=- D .()()332299m n mn m n --=-【答案】B .【例19】 计算:(1)()20042003188⎛⎫-⨯- ⎪⎝⎭(2)2001100021234⎛⎫⎛⎫-⋅ ⎪⎪⎝⎭⎝⎭(3)20012002200311311345⎛⎫⎛⎫⎛⎫⋅-⋅- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】(1)()()()20032004200320032003111111888888888⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-=-⨯-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(2)原式20011000200120002923234323⎛⎫⎛⎫⎛⎫⎛⎫-⋅=-=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(3)原式2001200120012455339=3445520⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-⋅-= ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【例20】 已知155a b ==-,n 为正整数,你能求出2222n n a b b +的值吗?【答案】()222222n n nab b ab ++=, 原式221515n +⎡⎤⎛⎫=⨯-= ⎪⎢⎥⎝⎭⎣⎦【例21】 若5n a =,2n b =,则()32na b = .【答案】()()()3232nn n a b a b =⋅,当5n a =,2n b =时,原式3252500=⨯=.【变式练习】已知25n x =,求()()24323n n x x -的值.【答案】()()()()24323222343n n n n x x x x -=-,当25n x =时,原式32453550075425⨯-⨯=-=【变式练习】已知n 是正整数,216nx =,求()2232111616n n x x ⎛⎫- ⎪⎝⎭的值.【答案】原式()()322221101616n n x x =-=【例22】 若()2322350a b a b ++++,化简()()3322221aa ax y bxyx y z a ⎛⎫⋅-⋅ ⎪⎝⎭. 【答案】依题可知:3202350a b a b +=⎧⎨++=⎩,解得23a b =⎧⎨=-⎩原式63246661413618998x y x y x y z x y z =⋅⋅=【例23】 若87a =,78b =,则5656= .【答案】()()()78565687567878=⨯=⨯,当87a =,78b =时,原式78a b =【变式练习】已知227373996y x z ⋅⋅=,求2004(2)x y z -+的值. 【答案】∵2339962337=⨯⨯ ∴211x y z ===,,20042004(2)=1=1x y z -+【例24】 若1122222n n n n x y +--=+=+,,其中n 为正整数,则x 与y 的数量关系为 . 【答案】4x y =【变式练习】若21m x =+,34m y =+,用含x 代数式表示y . 【答案】()()22234=3+23124m m y x x x =+=+-=-+【变式练习】已知23x =,26y =,212z =,试求x y z 、、的关系. 【答案】∵12623222y x x +==⨯=⨯= ∴1y x =+∵2221234222z x x +==⨯=⨯= ∴2z x =+ +1z y =【例25】 化简:(1)()()4322222n n ++-=(2)2231424m m m ++--=【答案】(1)78(2)32【例26】 已知311n m +能被10整除,求证42311n m +++也能被10整除.【答案】4242311=33111181312111n m n m n m +++⨯+⨯=⨯+⨯()()31180312011n m n m =++⨯+⨯ ()()31110831211n m n m =++⨯⨯+⨯∴42311n m +++也能被10整除.【例27】 是否存在整数a b c 、、满足9101628915abc⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,若存在,求出a b c 、、的值;若不存在,请说明理由. 【答案】∵()()()()()()233232132322591016235289152353523acb abcb c a b a bc a b c ++⨯⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅== ⎪⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭⨯ ∴b c = 221a b =+ 331b c a +=+∴32a b c ===,【变式练习】若整数x y z 、、满足10981271615256xyz⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求()y x x y z -+-的值. 【答案】∵()()()()()()233243834322510982351127161523525623532yzxxyzx z y x xyzy x z z ++⨯⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅=== ⎪⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭⨯ ∴23348x z y x z x z y =⎧⎪=+⎨⎪+=-⎩ 解得242x y z =⎧⎪=⎨⎪=⎩()2416y xx y z -+-==【例28】 若3436x y ==,,求2927x y x y --+的值. 【答案】∵()()()()()()24233223927333333x yx yx y x y x y x y ----+=+=÷+÷3436x y ==,,∴原式20027=【习题1】下列计算正确的是( ).A .235a a a +=B .236a a a ⋅=C .()326a a = D .236a a a ⨯=【答案】C【习题2】下列计算正确的是( ).A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 【答案】B【习题3】直接写出结果(1)=-⋅-22)(m m (2)=-⋅-24)2()2(m n n m (3)=+43])[(b a (4)=⋅-6243)2(])2[( (5)=-2)2(x (6)=-232)4(b a【答案】(1)224()m m m -⋅-=-; (2)426(2)(2)(2)m n n m m n -⋅-=-(3)()1234[()]a b a b +=+; (4)342624[(2)](2)2-⋅= (5)22(2)4x x -=; (6)23246(4)16a b a b -=【习题4】计算()2323a a -÷的结果是( ).A .49a -B . 46aC .29aD .49a【答案】D【习题5】若0a >且2x a =,3y a =,则x ya -的值为( ).A .1-B .1C .2D .3 课后练习【答案】C【习题6】计算:(1)1716)8()125.0(-⨯ (2)32236])2[()2()2(a a a -----(3)675)21(6)31(-⨯⨯- (4)232332)(3m m m m m ⋅⋅++-)(【答案】(1)1617(0.125)(8)8⨯-=-(2) 632236(2)(2)[(2)]4a a a a -----=-(3)57611()6()1832-⨯⨯-=-(4)23323263()25m m m m m m -++⋅⋅=-()【习题7】 计算:(1)()()43x y x y +⋅+ (2)()()()43m n n m n m -⋅-⋅-(3)()()132()()n n y x x y x y y x +--+--【答案】(1)()()()437x y x y x y +⋅+=+(2)()()()()438m n n m n m n m -⋅-⋅-=-或()8m n -(3)()()()()13332()()0n n n n y x x y x y y x x y x y +++--+--=--+-=【习题8】 计算:(1)(.)0125820032004⨯ (2)1320036009n n +⎛⎫⋅ ⎪⎝⎭ 【答案】(1)20032003200420031(0.125)8=8888⎛⎫-⨯-⨯⨯=- ⎪⎝⎭ (2)1131120032003600920032003n n n n ++⎛⎫⎛⎫⋅=⋅= ⎪ ⎪⎝⎭⎝⎭【习题9】若4)31()9(832=⋅x ,求3x 的值. 【答案】()()32223883111(9)()3()4339x x x ⎡⎤⋅=⋅==⎣⎦,()2336x ∴=,36x ∴=±【习题10】如果12m x =,3n x =,求23m n x +的值. 【答案】()()2323m n m n x x x +=⋅,12m x =,3n x =,∴原式274=【习题11】若2530x y +-=,求432x y ⋅的值. 【答案】()()2525432222x yx y x y +⋅=⋅= 当2530x y +-=时,原式328==【习题12】(1)若31381x +=,则=x (2)若319()x a a a ⋅=,则=x .【答案】(1)∵4813= ∴3141x x +==(2)∵331()x x a a a +⋅= ∴31196x x +==【习题13】如果2111m n n x x x -+=且145m n y y y --=,求m ,n 的值.【答案】∵2111m n n x x x -+=,145m n y y y --=∴2111145m n n m n -++=⎧⎨-+-=⎩ 解之64m n =⎧⎨=⎩【习题14】若2211322323⋅=⋅-⋅++x x x x ,求x 的值.【答案】()()()11323233223232x x x x x x x ++⋅-⋅=⋅⨯-⋅⨯=⨯∵1122323223x x x x ++⋅-⋅=⋅∴2x =【习题15】 已知212448n n ++=,求n 的值.【答案】21222242222348n n n n n ++=⨯+=⨯= 242162n == 24n = 2n =【习题16】若21025x =,则110x +的值为_______.【答案】()2221010255x x === 105x = 110101050x x +=⨯=【习题17】 若()a n 29=,求()()1333222a a n n -的值.【答案】()()3232222211()3()=38138116239n n n n a a a a --=-⨯=-【习题18】比较大小 (1)1625与209 (2)1003与605(3)2100与375(4)101726与31724 【答案】(1)()252541001622== ∴1625>209(2)()()2020100533243==;()()202060355125== ∴ 1006035>(3)()251004252216==;()25753253327== ∴2100<375 (4)226421010171717=⨯;2224423317171717⨯=⨯ ∴101726<31724。
幂运算中考知识点总结一、指数和底数在幂运算中,指数和底数是两个非常重要的概念。
指数表示底数相乘的次数,底数则是进行乘方运算的数。
例如,在表达式a的n次幂中,n就是指数,a就是底数。
指数有几个基本的概念需要了解:1. 正指数和负指数正指数表示底数相乘的次数是正整数,负指数表示底数相乘的次数是负整数。
当指数为0时,任何非零数的零次幂都等于1,0的零次幂没有意义。
2. 零指数任何非零数的零次幂都等于1。
3. 幂与乘积的关系a的m次幂和a的n次幂的乘积等于a的m+n次幂。
即a的m次幂乘以a的n次幂等于a的m+n次幂。
4. 幂与幂的关系a的m次幂的n次幂等于a的m×n次幂。
即a的m次幂的n次幂等于a的m×n次幂。
二、幂运算的基本性质1. 乘方的取消律对于任意非零数a,b以及任意整数m,n,有以下基本性质:a的m次幂和b的m次幂相等,则a和b互为m次方根;a的m次幂和a的n次幂相等,那么m和n相等。
(前提是a不等于0)2. 乘方的运算规律对于任何非零数a和整数m,n,p,有以下基本性质:a的m次幂的n次幂等于a的m×n次幂;a的m次幂和a的n次幂的p次幂等于a的m×p次幂;a的m次幂的p次幂和a的n次幂的p次幂等于a的m+n次幂。
3. 乘方的分配律对于任何非零数a和b以及整数m,n,有以下基本性质:a和b相乘后再进行m次幂等于a的m次幂和b的m次幂相乘;a的m次幂和a的n次幂相乘等于a的m+n次幂。
三、幂运算的应用幂运算在实际生活和数学中有着丰富的应用,常见的应用有以下几种:1. 计算面积和体积在几何中,幂运算可以用来计算三角形、矩形、圆等的面积,以及立方体、球体等的体积。
2. 科学计数法幂运算在科学计数法中有着重要的应用,可以帮助我们用较小的数字表示非常大的数,或者较大的数字表示非常小的数。
3. 概率和统计在概率和统计中,幂运算可以用来计算事件发生的可能性,以及表示数据之间的关系。
初中数学幂的运算性质公式
幂的运算性质是指在进行幂的运算过程中,幂与幂之间、幂与数之间
可以进行一系列的运算操作,满足一定的规律和公式。
下面将介绍幂数的
运算性质公式,包括幂数的乘积、幂数的积的幂、幂数的幂的乘积、除法、负指数、零指数等各个方面。
一、幂数的乘积:
在幂数的乘积中,如果底数相同,则指数相加。
例如:a^m*a^n=a^(m+n)
二、幂数的积的幂:
在幂数的积的幂中,先对每一个幂数求幂,再把结果相乘。
例如:(a^m*b^n)^p=(a^m)^p*(b^n)^p=a^(m*p)*b^(n*p)
三、幂数的幂的乘积:
在幂数的幂的乘积中,如果底数相同,则指数相乘。
例如:(a^m)^n=a^(m*n)
四、幂数的除法:
在幂数的除法中,如果底数相同,则指数相减。
例如:a^m/a^n=a^(m-n)
五、负指数:
一个数的负指数等于其倒数的正指数。
例如:a^(-m)=1/a^m
六、零指数:
一个非零数的零指数等于1
例如:a^0=1(其中a不等于0)
七、唯一性:
幂运算满足唯一性,即一个数的幂运算结果只有唯一确定的值。
如果
一个数有两个不同的幂运算结果相等,则这两个幂运算结果必定相等。
例如:若a^m=a^n,则m=n
八、法则的运用:
在运用幂运算性质公式时,可以根据需要将多项幂运算结合起来,进
一步简化计算。
以上是初中数学中幂的运算性质公式的一些基本内容。
在实际运用中,还需要综合运用这些公式,灵活应用于解决各种具体问题。
苏教版七年级数学第八章幂的运算知识点整理有理数的乘方1.乘方的看法求 n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在 a n中,a叫做底数,n叫做指数。
2.乘方的性质(1〕负数的奇次幂是负数,负数的偶次幂的正数。
〔 2〕正数的任何次幂都是正数,0 的任何正整数次幂都是0。
有理数的混杂运算做有理数的混杂运算时,应注意以下运算序次:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
科学记数法把一个大于 10 的数表示成a 10n的形式〔其中1 a 10, n 是正整数〕,这种记数法是科学记数法。
1幂的运算一、同底数幂的乘法乘法法那么 :同底数幂相乘,底数不变,指数相加符号语言: a m a n a m n(m,n都是正数)公式实行:同底数幂的乘法法那么的逆用及分解〔有目的的分解指数〕。
【注意】: 1、同底数幂是指底数相同的幂,乘法运算性质中的a能够是单项式,也能够是多项式〔整体思想〕。
2、指数相加的和作为最后结果的幂的指数,即同底数幂的乘法,结果仍为幂的形式。
〔指数为 1 的时候,省略不写,不要忽略也许以为是0〕3、不是同底数幂的乘法,不能够盲目套用公式,先转化,尔后在运用,切记同底数4、互为相反数的偶次幂与奇次幂的差异与联系,先确定符号,转变成同底数,尔后运用公式运算。
二、幂的乘方幂的乘方法那么:幂的乘方,底数不变,指数相乘符号语言:(a m ) n a mn(m,n都是正数)公式实行:幂的乘方公式有目的的逆用分解n 当为偶数时),一般地 , ( a) na (nn(当为奇数时).互为相反数的两个数的奇次偶次幂a n同底数幂的乘法与幂的乘方的差异和联系2条件结论公式运算的变化同底数幂的乘法同底数的幂相乘1、底数不变a m a n a m n指数相加2、指数相加1、底数不变(a m namn幂的乘法幂的乘方)指数相乘2、指数相乘三、积的乘方积的乘方法那么:积的乘方等于每个因式乘方的积。
幂的运算
要点一、同底数幂的乘法性质
(其中m,n都是正整数)。
即同底数幂相乘,底数不变,指数相加。
要点诠释:
(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式。
(2)三个或三个以上同底数幂相乘时,也具有这一性质,即
(m,n,p都是正整数)。
(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即(m,n都是正整数).
要点二、幂的乘方法则
(其中都是正整数)。
即幂的乘方,底数不变,指数相乘.
要点诠释:
(1)公式的推广: (a≠0,m,n,p均为正整数)
(2)逆用公式:根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题
要点三、积的乘方法则
(其中n是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
要点诠释:
(1)公式的推广:(n为正整数).
(2)逆用公式:逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:
要点四、注意事项
(1)底数可以是任意实数,也可以是单项式、多项式.
(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏。
(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.
(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要乘方.
(5)灵活地双向应用运算性质,使运算更加方便、简洁.
(6)带有负号的幂的运算,要养成先化简符号的习惯。
(完整word版)初中数学专题复习资料-----幂的运算性质初中数学专题复习资料-----幂的运算性质【知识梳理】1、知识结构2、知识要点(1)同底数幂相乘,底数不变,指数相加,即 nm nma a a +=?←→a m+n=a m·a n(2)幂的乘方,底数不变,指数相乘,即()mn nma a =←→a mn =(a m )n=(a n )m(3)积的乘方,等于每个因式分别乘方,即()nn nb a ab =←→a n b n=(ab)n(4)同底数幂相除,底数不变,指数相减,即 nm n m a a a -=÷←→a m-n=a m÷a n (a ≠0)(5)零指数和负指数:规定10=a ,ppa a1=-(其中a ≠0,p 为正整数)(其中,m 、n 均为整数) 3、中考预测对于幂的运算性质的考查,在中考中多以选择题和填空题出现,以考查对该性质的掌握,题目侧重于基础知识的掌握和运用,以及对该性质的理解,题目不会很难,但是会有一定的综合性,应准确把握和理解幂的运算性质,防止混淆。
(一)同底数幂的乘法【解题讲解-------基础训练】【例1】 1、(-12)2×(-12)3= 。
2、(-b )2·(-b )4·(-b)= ,(m+n )5·(n+m )8= 。
3、a 16可以写成() A .a 8+a 8; B .a 8·a 2; C .a 8·a 8; D .a 4·a 4。
4、下列计算正确的是() A .b 4·b 2=b 8B .x 3+x 2=x 6C .a 4+a 2=a 6D .m 3·m =m 4【解题讲解-------能力提升】【例2】1、下面的计算错误的是()A .x 4·x 3=x 7B .(-c )3·(-c )5=c 8C .2×210=211D .a 5·a 5=2a 102、x2m+2可写成() A .2xm+2Bx 2m +x2C .x 2·xm+1D .x 2m ·x 23、若x ,y 为正整数,且2x·2y=25,则x ,y 的值有()对。
八年级上册数学幂的知识点幂的概念幂是指以底数为因数的连乘积。
其中,底数为幂的底,指数为幂的指。
幂通常表示为an,表示n个a的乘积。
其中,a为实数,n为自然数。
幂的性质1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
例如:4的2次方乘以4的3次方等于4的5次方,即4的2次方乘以4的3次方=4的5次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(m>n)。
例如:6的5次方除以6的3次方等于6的2次方,即6的5次方除以6的3次方=6的2次方。
3.幂的乘方法则:(a的m次方的n次方)等于a的m×n次方。
例如:3的4次方的2次方等于3的8次方,即(3的4次方的2次方)=3的8次方。
4.幂的0次方等于1,即a的0次方=1。
例如:2的0次方等于1,即2的0次方=1。
5.幂的负次方等于其倒数的幂,即a的-n次方等于1÷a的n次方(a≠0)。
例如:4的-2次方等于1÷4的2次方,即4的-2次方=1÷4的2次方。
幂的应用在实际生活中,幂的应用很广泛。
以下是几个常见的应用场景。
1.计算长方形面积。
长方形的面积可以看作是长和宽的乘积,即s=a×b。
其中a和b都是实数,也可以是整数或分数。
2.计算立方体的体积。
立方体的体积可以看作是长度、宽度和高度的乘积,即V=a×b×h。
其中a、b和h也都是实数,也可以是整数或分数。
3.计算复利。
复利是利滚利的一种形式,也是幂的一种应用场景。
复利的计算公式为A=P×(1+r/n)的nt。
其中,A是最终的本利和,P是本金,r是年利率,n是年复利次数,t是时间(以年为单位)。
总结在学习数学幂的知识点时,需要掌握幂的概念和性质,以及幂的应用场景。
幂是数学中的重要概念,应用非常广泛。
熟练掌握幂的知识,有助于我们更好地理解和应用数学。
课 题(课型) 幂的运算 学生目前情况(知识遗漏点):复习巩固教 学 目 标或考 点 分 析:1. 学会应用同底数幂的乘法和除法。
2. 掌握幂的乘方和积的乘方。
3. 幂的混合运算和科学计数法 教学重难点: 同底数幂的乘法和除法、幂的乘方和积的乘方 教学方法:知识梳理,例题讲解,知识巩固,巩固训练,拓展延伸幂的运算知识点一、同底数幂的乘法 1、同底数幂的乘法 同底数幂的乘法法则:文字叙述:同底数幂相乘,底数不变,指数相加。
字母表示:________________________2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即m n p m n pa a a a ++⋅⋅= 注意点:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.3、逆用同底数幂的乘法法则: =m n a a例1、计算列下列各题(1) x 3·x 5+(x 4)2; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-例2、若15(3)59n n x x x -⋅+=-,求x 的值.()2 (3)例11、(1)已知5544222,36a b c ---===,比较a,b,c 的大小。
(2)当a,b 满足什么条件时,等式1)1(=+b a 成立?4、绝对值小于1的数的科学计数法把一个正数写成10n a ⨯的形式(其中110a ≤<,n 为整数),这种计数法称为科学计数法,其方法如下:(1)确定a ,a 是只有个位整数的数;(2)确定n ,当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中做起第一个非0数前0的个数(包括整数位上的0)。
. 例12、(1)用科学计数法表示:0.000096=________________________. (2) 用小数表示4102-⨯-=______________________________.(3)为减少全球金融危机对我国经济产生的影响,国务院决定拿出40000亿元以扩大内需,保持经济平稳较大增长.这个数用科学记数法表示为 亿元. (4)2015nm =_______________________m. (5)最薄的金箔的厚度为m 000000091.0,用科学记数法表示为 m .例13、(1)计算并用科学计数法表示:78106.41067.3⨯-⨯(2)有一句谚语:“捡了芝麻,丢了西瓜,”意思是说有些人办事只抓一些无关紧要的小 事,却忽略了具有重大意义的大事.据测算,5万粒芝麻才200g,请你计算1粒芝麻有多少千克?练习:1.下列计算正确的是( )A .1)1(0-=-B .1)1(1=--C .33212a a =- D .4731)()(aa a =-÷- 2.下列各式:①5151=-,②0)00001.0(0=,③001.0102=-,④ 313310=÷-正确的有( )A .0个B .1个C . 2 个D .3个3.下列计算错误的是 ( )A .1)0001.0(0=B .01.0)1.0(2=-C .1)5210(0=⨯-D .0001.0104=-4.若,)31(,3,3.0022-=-=-=-c b a 则 ( )A .d c b a <<<B .c d a b <<<C .b c d a <<<D .b d a c <<<5.通过世界各国卫生组织的努力,甲型H1N1流感疫情得到了有效地控制,到目前为止,全球感染人数为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学计数法表示为( )A .5101.3-⨯B .6101.3-⨯C .7101.3-⨯D .8101.3-⨯6.=÷6622_____________.=-2)21(______________.7.肥皂泡表面厚度大约是0.0007mm,用科学记数法表为____________________mm8. 当___________时, .1)12(0=-a9. 已知==-=x x x 则且,1)3(,30_____________. 10.已知==-x x 则,1312___________________.11.计算:(1)031452222)21(2+⨯⨯++---- (2)02213)2()21(])1(8)2[(-⨯-⨯-⨯------π。
完整版)幂的运算知识点总结
第八章幂的运算知识点总结
知识点一:同底数幂相乘
同底数幂相乘的法则是底数不变,指数相加,即a^m *
a^n = a^(m+n)(m,n是正整数)。
逆运算是同底数幂的乘法。
正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
知识点二:幂的乘方与积的乘方
幂的乘方的法则是底数不变,指数相乘,即(a^m)^n =
a^(mn)(m,n是正整数)。
逆运算是(a^m)^n = a^(mn)。
积的乘方的法则是把每一个因式分别乘方,再把所得的幂相乘,即(ab)^n = a^n * b^n(n是正整数)。
知识点三:同底数幂的除法
同底数幂相除的法则是底数不变,指数相减,即a^m ÷
a^n = a^(m-n)(a不等于0,m,n是正整数,m大于n)。
零指数幂的意义是规定a^0 = 1(a不等于0),即任何不等于0的数的零次幂都等于1.负整指数幂的意义是规定a^(-n) = 1/(a^n)(a不等于0,a是正整数)。
科学记数法是一种方便表示极大或极小数的方法。
例如,可以写成6.96×10^5(10的几次方等于原数字个数减1),而0.xxxxxxx可以写成5.02×10^(-5)(10的负几次方等于第一个非零数字前的个数)。
另外,1/10^m可以写成10^(-m)。
初二上册数学辅导资料之《幂的运算》
不断努力学习,及时对知识点进行归纳,才能让自己的知识更加丰富,下面是查字典数学网为大家整理的初二上册数学辅导资料,欢迎大家阅读。
一. 知识要点:
指数运算律是整式乘除的基础,有以下4个:
am?an?am?n,(am)n?anm,(ab)n?an?bn,am?an?am?n.
学习指数运算律应注意:
1.运算律成立的条件;
2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;
3.运算律的正向运用、逆向运用、综合运用.
二. 基础巩固提高
ab1.如果a-4=-3b,求3×27的值。
(绍兴市竞赛题).
2.若102x?25,求10x?1的值。
13.若10m=20,10n=5,求9m÷32n的值
2741,961 4.比较下列一组数的大小. 8131,
比较大小:3555,4444,5333
10232
比较6与4大小 1717
5.已知2x?27y?37z?3996,求(x?2y?z)2021的值
小编为大家整理的初二上册数学辅导资料,大家阅读了吗?,
最后祝大家有好的成绩。
幂的运算性质
1. 概念:
指数运算是一种数学运算,它将一个数字乘以另一个数字次数的运算,用来计算乘方。
指数运算可以分为正数指数和负数指数。
2. 正数指数运算:
正数指数运算指的是表示形式为“a^n”的运算,其中a是被乘数,n是
乘方,用来求a乘以n次的结果,或称为a的n次方。
它的规律性质:(1)a^m * a^n = a^(m+n)
(2)(a^m)^n = a^(m*n)
(3)1为底的指数运算,不论指数是多少,结果都是1
(4)0次幂的数是1
3. 负数指数运算:
负数指数运算指的是以a^(-n)表示的运算,要求a的倒数的n次方(n
为正数),它的结果是a^n的倒数,等价于1除以a^n.负数指数运算的
规律性质:
(1)a^(-m)*a^(-n) = a^(-m-n)
(2)(a^(-m))^(-n) = a^(m*n)
(3)负数指数运算的结果就是a^m的倒数,即1除以a^m
4. 幂的运算性质:
(1)可交换性:a^m * b^m = b^m * a^m
(2)乘法律:a^m * a^n = a^(m+n)
(3)假性次方:(a*b)^n = a^n * b^n
(4)被乘数等于1:a^n * 1 = 1 * a^n = a^n (5)折叠:(a^m)^n = a^(m*n)
(6)幂的乘法:a^m * a^n * a^k = a^(m+n+k) (7)指数为0:a^0 = 1 或 b^0 = 1。
初中数学专题复习资料-----幂的运算性质【知识梳理】1、知识结构2、知识要点(1)同底数幂相乘,底数不变,指数相加,即 nm nma a a +=⋅←→a m+n=a m·a n(2)幂的乘方,底数不变,指数相乘,即()mn nma a =←→a mn =(a m )n=(a n )m(3)积的乘方,等于每个因式分别乘方,即()nn nb a ab =←→a n b n=(ab)n(4)同底数幂相除,底数不变,指数相减,即 nm n m a a a -=÷←→a m-n=a m÷a n (a ≠0)(5)零指数和负指数:规定10=a ,ppa a1=-(其中a ≠0,p 为正整数)(其中,m 、n 均为整数) 3、中考预测对于幂的运算性质的考查,在中考中多以选择题和填空题出现,以考查对该性质的掌握,题目侧重于基础知识的掌握和运用,以及对该性质的理解,题目不会很难,但是会有一定的综合性,应准确把握和理解幂的运算性质,防止混淆。
(一)同底数幂的乘法【解题讲解-------基础训练】【例1】 1、(-12)2×(-12)3= 。
2、(-b )2·(-b )4·(-b)= ,(m+n )5·(n+m )8= 。
3、a 16可以写成( ) A .a 8+a 8; B .a 8·a 2; C .a 8·a 8; D .a 4·a 4。
4、下列计算正确的是( ) A .b 4·b 2=b 8B .x 3+x 2=x 6C .a 4+a 2=a 6D .m 3·m =m 4【解题讲解-------能力提升】【例2】1、下面的计算错误的是( )A .x 4·x 3=x 7B .(-c )3·(-c )5=c 8C .2×210=211D .a 5·a 5=2a 102、x2m+2可写成( ) A .2xm+2Bx 2m +x2C .x 2·xm+1D .x 2m ·x 23、若x ,y 为正整数,且2x·2y=25,则x ,y 的值有( )对。
A .4;B .3;C .2;D .1。
4、若a m=3,a n=4,则a m+n=( ) A .7 B .12 C .43D .345、若102·10n=102010,则n = 。
幂的运算性质同底数幂相乘 幂的乘方积的乘方同底数幂相除【例3】、解答: 1、计算:(1)(m -n )·(n -m )3·(n -m )4(2)(x -y )3·(x -y )·(y -x )2(3)x ·x 2+x 2·x2、(1)已知:3x=2,求3x+2的值. (2)已知x m+n·xm -n=x 9,求m 的值.(3)若52x+1=125,求(x -2)2011+x的值. (4)(二)幂的乘方【解题讲解-------基础训练】【例1】、1、计算:(1)(23)2= ; (2)(-22)3= ;(3)-(-a 3)2= ; (4)(-x 2)3= 。
2、如果x 2n=3,则(x 3n)4= 。
3、下列计算错误的是( ).A .(a 5)5=a 25;B .(x 4)m=(x 2m)2;C .x 2m=(-x m)2;D .a 2m=(-a 2)m。
4、在下列各式的括号内,应填入b 4的是( ).A .b 12=( )8B .b 12=( )6C .b 12=( )3D .b 12=( )25、如果正方体的棱长是(1-2b )3,那么这个正方体的体积是( ). A .(1-2b )6B .(1-2b )9C .(1-2b )12D .6(1-2b )66、计算(-x 5)7+(-x 7)5的结果是( ). A .-2x 12;B .-2x 35;C .-2x 70;D .0。
7、计算:(1)x ·(x 2)3(2)(x m)n·(x n)m(3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m8(5)[(a -b )n ] 2[(b -a )n -1]235,335,311,377,a a b c d b c d+====+=已知求证:(6)[(a -b )n ] 2 [(b -a )n -1] 2(7)(m 3)4+m 10m 2+m·m 3·m8(8)[(-1)m ]2n+1m-1+02012―(―1)2011【解题讲解-------能力提升】【例2】、1、填空:(1)若x m·x 2m=2,求x 9m= ;若a 2n=3,求(a 3n)4= ;已知a m=2,a n=3,求a2m+3n= 。
(2)已知a =355,b =444,c =533,请把a ,b ,c 按大小排列为 。
2、解答:(1)若644×83=2x,求x 的值。
(2)已知a 2m=2,b 3n=3,求(a 3m)2-(b 2n)3+a 2m·b 3n的值.(3)若2x=4y+1,27y=3x- 1,试求x 与y 的值。
(三)积的乘方【解题讲解-------基础训练】【例1】、1、(ab )2= ;(ab )3= ;(a 2b )3= ,(2a 2b )2= ,(-3xy 2)2= 。
2、下列计算中,正确的是( )A .(xy )3=xy 3B .(2xy )3=6x 3y 3C .(-3x 2)3=27x 5D .(a 2b )n=a 2n b n3、如果(a m b n)3=a 9b 12,那么m ,n 的值等于( )A .m =9,n =4B .m =3,n =4C .m =4,n =3D .m =9,n =6 4、a 6(a 2b )3的结果是( ) A .a 11b 3;B .a 12b 3;C .a 14b ;D .3a 12b 。
5、计算:8.计算:(1)(2×103)2(2)(-2a 3y 4)3(3)244243)2()(a a a a a-++⋅⋅(4)7233323)5()3()(2x x x x x⋅+-⋅(5)(-2a 2b )2·(-2a 2b 2)3(6)[(-3mn 2·m 2)3] 2【解题讲解-------能力提升】【例2】、1、用简便方法计算:(4)(-0.125)12×(-123)7×(-8)13×(-35)9.2、若x 3=-8a 6b 9,求x 的值。
3、已知x n=5,y n=3,求(xy )3n的值.4、已知 x m= 2 , x n=3,求下列各式的值:(1)x m+n(2) x 2m x 2n(3) x3m+2n【基础验收题】一、选择题 1、计算20022003)2()5.0(-⋅的结果是 ( ) (A )、5.0-;(B )、5.0;(C )、1;(D 、2。
2、下列各式计算出错的是 ( )(A )、95310101010=⨯⨯;(B )、 834a a a a =⋅⋅-(C )、nnx x x x +-=--532)()(;(D )、n n n y y y211=⋅-+。
3、计算:100101)2()2(-+- 的结果是( ) (A )、1002-;(B )、2-;(C )、2;(D )、1002。
4、的结果是11001000+⋅x x( ) (A )12100000+x ;(B )2510+x ;(C )2210+x ;(D )3510+x 。
5、下面计算:52510251275105225257252;;;)(;)(;)(x y x x y x x y x x x x x x x ======中,其中错误的结果的个数是 ( ) (A )、5 个 ;(B )、 4 个;(C )、 3 个 ;(D )、2 个。
二、填空题55201020112432513()...................(2)(0.125)(8)...............(3)()()()()35432n n n n⨯--⨯-⋅⋅⋅()1、计算:______)(32=-⋅-a a ;2、计算:__________)()(23=--x y y x ;3、_______53213519971997=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-;4、当_____=n 时,823)3(=n;5、计算:()()2533-÷-= , ()4)(p p -÷-= 。
三、解答题1、计算:23422225)()()()(2a a a a ⋅-⋅; 2、(3x 3)2·(-2y 2)5÷(-6xy 4)【综合能力测试题 】一、选择题1、已知n28232=⨯,则n 的值为 ( )。
(A ) 18 ; (B )8 ; (C )、7; (D )11。
2、若()1520=-x ,则x 的取值是( )。
(A )25>x ;(B )x ≥—25;(C) x >—25;(D )x ≠25。
3、已知,5,3==bax x 则=-ba x23( )。
(A )2527; (B )109; (C )53; (D )52。
4、下列计算结果正确的是( ) (A ) 100×103=106;(B )1000×10100=103000;(C )1002 n ×1000=104 n+3;(D)1005×10=10005=10155、下面计算中,正确的是( )(A )3338)2(n m mn -=-; (B )5523)()(n m n m n m +=++(C )69323)(b a b a -=--; (D )262461)31(b a b a =- 二、填空题 1、计算:()()()=---a a a 222、已知9121a a a m m =⋅-+,则m = 。
3、若._______________,,3,423====+n m n n mx x x x则4、计算:)3()6(12b ab a n n -⋅-= 。
5、计算:.________)21(________,)2(2223=⎥⎦⎤⎢⎣⎡--=--ab三、解答题1、计算:(-2)3×(-2)-2-(-32)÷(32)-2+(-100)02、已知的值求n nnb a b a 422)(,3,21-==.3、在括号内填上适当的数; 53×63=30( ) 5n ×6n =30( );若105=10n,则n =( )4、解方程:3x +1·2x +1=62x -3。