中考二轮专题复习:第2课时 分类讨论
- 格式:doc
- 大小:586.16 KB
- 文档页数:7
中考数学思想方法专题讲座——分类讨论在数学中,当被研究的问题存在多种情况,不能一概而论时,就需要按照可能出现的各种情况分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法叫分类讨论思想,它不仅是一种重要的数学思想,同时也是一种重要的解题策略.在研究问题时,要认真审题,思考全面,根据其数量差异或位置差异进行分类,注意分类应不重不漏,从而得到完美答案.一、分类讨论应遵循的原则: 1、分类应按同一标准进行; 2、分类讨论应逐级进行; 3、分类应当不重复,不遗漏。
二、分类讨论的主要因素:1、题设本身为分类定义;2、部分性质、公式在不同条件下有不同的结论;3、部分定义、定理、公式和法则本身有范围或条件限制;4、题目的条件或结论不唯一时;5、含参数(字母系数)时,须根据参数(字母系数)的不同取值范围进行讨论;6、推理过程中,未知量的值,图形的位置或形状不确定。
三、分类类讨论的步骤:1、确定分类对象;2、进行合理分类;3、逐类讨论,分级进行;4、归纳并作出结论。
四、分类讨论的几种类型:类型一、与数与式有关的分类讨论热点1.在实数中带有绝对值号,二次根式的化简中,应注意讨论绝对值号内的数、被开方数中的字母的正负性,()()a aaa a≥==-⎧⎪⎨⎪⎩例1. =+==||,则5,3||若2baba。
分析:因b b2=||,故原题可转化为绝对值的问题进行讨论。
解:∵3||=a;∴x= ,∵b b2=||=5;∴x= ,,8|53|||时,5,3当=+=+==baba,2|5-3|||时,5-,3当==+==baba,2|53-|||时,5,3-当=+=+==baba,8|5-3-|||时,5-,3-当==+==baba故应填。
小结:二次根式的化简往往可转化为与绝对值相关的问题。
而去绝对值时一般要根据绝对值的概念进行分类讨论。
【练习】 1. 化简:①︱x︳=②=2. 已知│x│= 4,│y│=12,且xy<0,则xy= .【点评】由xy<0知x,y异与应分x>0,y<0,及x<0,y>0两类.3.若||3,||2,,( )a b a b a b==>+=且则A.5或-1 B.-5或1; C.5或1 D.-5或-14.在数轴上,到-2的点的距离为3的点表示的数是.热点2:与函数及图象有关的分类讨论一次函数的增减性(k有正负之分):【例1】已知直线y=kx+3与坐标轴围成的三角形的面积为2,则k的值等于.【例2】若一次函数当自变量x的取值范围是-1≤x≤3时,函数y的范围为-2≤y≤6,•则此函数的解析式为.0,0,k y xk y xy kx b⎧⎪⎨⎪⎩=+时随的增大而增大时随的增大而减小热点3:不等式中的分类讨论在根据不等式的基本性质解不等式时,当遇到含字母系数的一元一次不等式时,要根据系数的正负性,决定不等号的方向变化,此时需要讨论其正负性;在分式的值大于零或小于零时计算分式中某字母的取值范围,也要讨论分子分母的正负性,以此建立不等式或不等式组求解.【例1】不等式mx >n (m 、n 是常数且m ≠0)的解是 .思路分析:x 前的系数m 的正负性不确定,故要对其讨论,再依据不等式基本性质求x 的取值.【例2】已知分式4-x 2x -3的值为负数,则x 的取值范围是 . 思路分析:欲求x 的取值范围,需要建立关于x 的不等式(组),由“两数相除,异号得负”知4-x 与2x -3异号,因此得⎩⎪⎨⎪⎧ 4-x >02x -3<0或⎩⎪⎨⎪⎧ 4-x <02x -3>0.分别解这两个不等式组即可.【练习】1.关于x 的一元一次不等式(2m +3)x >2m +3的解是 .解析:分2m +3>0和2m +3<0两种情况讨论.2.若分式2x +3x -1的值大于零,则x 的取值范围是 . 3.解不等式 (a +1)x >a 2-1.热点4:涉及问题中待定参数的变化范围的分类讨论。
课前预设
课题:分类讨论课型:中考专题复习设计人:设计时间:
【内容分析】
重点:从问题的实际出发进行分类讨论.
难点:克服思维的片面性,防止漏解.
考点解读:在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。
另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。
把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。
它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。
分类讨论思想方法也是一种重要的解题策略。
分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.
【复习目标】
通过复习能够掌握从问题的实际出发进行分类讨论的思想方法.当问题中存在不确定因素时,能够把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题.
【教学环节安排】
的坐标?当堂检测
的图象的交点的个数是(A.。
分类讨论型问题的解题策略数学思想和方法属于基础知识的范畴,分类讨论是中学数学中常用的一种数学思想方法。
近年各地中考试题都加强了数学思想方法的考查,其中分类讨论思想的应用最为广泛,成为检测学生分析问题和解决问题能力的常见题型。
分类讨论是在解题过程中,将某一数学对象根据它本身的本质属性,按照一定的原则或标准分成若干类,然后逐类进行讨论解决,再把这几类的结论汇总,得出问题的答案的一种思想方法;其作用是克服思维的片面性,防止漏解。
常见的分类讨论题有:按数分类(绝对值概念,实数的分类等);按字母的取值范围分类(二次根式的化简,一元二次方程概念中二次项不为0等);按图形的位置分类(如点与直线,直线与圆的位置关系等)。
考查方式有填空题,选择题,综合题,特别是在中考压轴题中,往往涉及分类讨论思想。
例1 、若0322=+--+b a b a x x 是关于x 的一元二次方程,求a 、b 的值例3、(04年济南市)如图,已知直线3+=x y 的图象与x 、y 轴交于A 、B 两点.直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2∶1的两部分.求直线l 的解析式.例4、已知:在△ABC 中,∠C=90,AC=BC=8,要在△ABC 中剪出一个扇形,使扇形的半径都在△ABC 的边上,且扇形的弧与△ABC 的其他边相切。
(1) 请画出符合题意的设计方案示意图;(2) 若用剪下的扇形作圆锥的侧面,请计算出此圆锥的底面半径。
例5、如图,等腰△ABC 的两直角边AB=AC=62cm,⊙O 的半径为rcm ,圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 所运动而移动。
(1)若r=2cm,求⊙O 第一次与BC 边相切时,AO 的长;(2)在⊙O 移动过程中,自A 点出发再移动到与A 点重 合,与各边共相切几次?请写出不同情况下r 的取值范围及相切的次数;(3)设⊙O 在整个移动过程中,在△ABC 内部,⊙O 未经过的部分的面积为S (cm 2),在S >0时,求S 关于r 的函数解析式。
中考数学第二轮复习资料—专题复习(一)、初中阶段主要的数学思想1.数形结合的思想把问题中的数量关系与形象直观的几何图形有机的结合起来,并充分利用这种结合寻找解题的思路,使问题得到解决的思想方法,在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法。
涉及实数与数轴上点的对应关系,公式、定理的几何背景问题,函数与方程的对应关系等。
一:【要点梳理】1.数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等2.热点内容(1).利用数轴解不等式(组)(2).研究函数图象隐含的信息,判断函数解析式的系数之间的关系,确定函数解析式和解决与函数性质有关的问题.(3).研究与几何图形有关的数据,判断几何图形的形状、位置等问题.(4).运用几何图形的性质、图形的面积等关系,进行有关计算或构件方程(组),求得有关结论等问题.二:【例题与练习】1.选择:(1)某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的图象如图所示,则该厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月均停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产(2)某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如图所示,正确的是( )(3)丽水到杭州的班车首法时间为早上6时,末班车为傍晚18时,每隔2小时有一班车发出,且丽水到杭州需要4个小时.图中相遇的次数最多为( )A.4次B.5次C.6次.D.7次 2.填空:(1)已知关于X 的不等式2x-a>-3的解集如图所示,则a 的值等于 (2)如果不等式组8 4x-1x mx ⎧+⎪⎨⎪⎩的解集为x>3,则m 的取值范围是3.考虑2xy =的图象,当x=-2时,y= ;当x<-2时,y 的取值范围是 。
中考数学二轮专题复习:分类讨论问题【简要分析】分类讨论问题就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后再逐类进行研究和求解的一种数学解题思想.对于因存在一些不确定因素、解答无法或者结论不能给予统一表述的数学问题,我们们往往将问题划分为若干类或若干个局部问题来解决.分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【典型考题例析】例1:已知直角三角形两边x 、y的长满足240x -=,则第三边长为 .分析与解答 由已知易得122,2, 3.x y y ===(1)若2,2x y ==是三角形两条直角边的长,=(2)若2,3x y ==是三角形两条直角边的长,=(3)若2x =是一角边的长,3y ==∵第三边长为.例2:⊙O 的半径为5㎝,弦AB ∥∥CD ,AB=6㎝,CD=8㎝,则AB 和CD 的距离是( )(A )7㎝ (B )8㎝ (C )7㎝或1㎝ (D )1㎝分析与解答 因为弦AB 、CD 均小于于直径,故可确定出圆中两条平行弦AB 和CD 的位置关系有两种可能:一是位于圆心O 的同侧, 二是位于圆珠笔心O 的异侧, 如图2-4-1,过O 作EF ⊥CD ,分别交CD 、AB 于E 、F , 则CE=4㎝,AF=3㎝. 由勾股定理可求出OE=3㎝,OF=4㎝.当AB 、CD 在圆心异侧时,距离为OE+OF=7㎝.当AB 、CD 在圆心同侧时,距离为OF-OE=1㎝.选C .例3:如图2-4-2,正方形ABCD 的边长是2,BE=CE ,MN=1,线段MN 的两端在CD 、AD 上滑动.当DM= 时,△ABE 与以D 、M 、N 为项点的三角形相似.分析与解答 勾股定理可得当△ABE 与以D 、M 、N 为项点的三角形相似时,DM 可以与BE 是对应边,也可以与AB 是对应边,所以本题分两种情况:图2-4-1(1)当DM 与BE 是对应边时,DM MN AB AE =,即1DM DM == (2)当DM 与AB 是对应边时,DM MN AB AE =,即2DM DM == 故DM例4:如图2-4-3,在直角梯形ABCD 中,AD ∥BC ,∠C=900,BC=16,DC=12,AD=21,动点P 从D 出发,沿射线DA 的方向以每秒2个单位长度的速度运动,动点Q 从点C 出发,经线段CB 上以每秒1个单位长度的速度向点B 运动,点P 、Q 分别从D 、C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动时间为t 秒.(1) 设△BPQ 的面积为S ,求S 与t 之间的函数关系式.(2) 当t 为何值时,以B 、P 、Q 三点为项点的三角形是等腰三角形?分析与解答 (1)如图2-4-3,过点P 作PM ⊥BC ,垂足为M ,则四边形PDCM 为矩形,∴PM=DC=12.∵QB=16-t ,∴112(16)9662S t t =⨯⨯-=-.(3) 由图可知,CM=PD=2t ,CQ=t ,若以B 、P 、Q 三点为项点的三角形是等腰三角形,可分为三种情况:① 由图可知,PQ=BQ .在Rt △PMQ 中,2222222212.,12(16)PQ t PQ BQ t t =+=+=-由得,解得72t =.② 若PQ=BQ .在Rt △PMB 中,22222222(16)12.,)12(16)BP t BQ t t =-+=+=-由BP 得(16-2,即23321440t t -+=,∵△=7040-<,∴解得23321440t t -+=无解,∴BP BQ ≠.③若PB=PQ .在Rt △PMB 中,,222222,12(162)12QP t t =+=-+由BP 得.解得1216,163t t ==不合题意,舍去). 综合上面原讨论可知:当72t =秒或163t =秒时,以B 、P 、Q 三点为项点的三角形是等腰三角形.说明 从以上各例可以看出,分灯思想在几何中的较为广泛.这类试题的解题思路是:对具有位置关系的几何图形,要有分类讨论的意识,在熟悉几何问题所需要的基础知识的前提下,正确应用分类思想方法,恰当地选择分类标准,是准确全面求解的根本保证.【提高训练】1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ′B ′C ′,则△A ′B ′C ′中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .1或则图2-4-2E N M D C BA3.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.54.已知点P是半径为2的⊙O外一点,PA是⊙O的切线,切点为A,且PA=2,在⊙O AB,连续PB,则PB的长为内作了长为5.在直角坐标系xoy中,一次函数2=+的图象与x轴交于点A,与y轴交于点B.(1)y x苈以原点O这圆心的圆与直线AB切于点C,求切点C的坐标.(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【参考答案】1.D 2.A 3.A 4.2或5.(1)3()2(2)满足条件的点P存在,它的坐标是或或或---((4(4。
分类讨论型问题探究分类思想是解题的一种常用思想方法,它有利于培养和发展学生思维的条理性、缜密性、灵活性,使学生学会完整地考虑问题、化整为零地解决问题,学生只有掌握了分类的思想方法,在解题中才不会出现漏解的情况.例1(2005年黑龙江) 王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.分析:本题是无附图的几何试题,在此情况下一般要考虑多种情况的出现,需要对题目进行分情况讨论。
分类思想在中考解题中有着广泛的应用,我们在解题中应仔细分析题意,挖掘题目的题设,结论中可能出现的不同的情况,然后采用分类的思想加以解决. 解:(1)当等腰三角形为锐角三角形时(如图1),由勾股定理得AE =25(m )由DE ∥FC 得,FCEDAC AE =,得FC =24(m ) S △ABC =12 ³40³24=480(m 2)(2)当等腰三角形为钝角三角形时(如图2)同理可得,S △ABC =1264³24=768(m 2)说明:本题主要考查勾股定理、相似三角形的判定及性质等内容。
练习一 1、(2005年资阳市)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A.2a b + B.2a b - C.2a b +或2a b - D. a+b 或a-b2.(2005年杭州)在右图的几何体中, 上下底面都是平行四边形, 各个侧面都是梯形, 那么图中和下底面平行的直线有( )(A) 1条 (B) 2条 (C) 4条 (D) 8条3(2005年潍坊市)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ).A .5cmB .11cmC .3cmD .5cm 或11cm图1图2A4.(2005年北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ²,则∠BCA的度数为____________。
中考数学专题复习:分类讨论题中考数学专题复:分类讨论题直线型分类讨论直线型分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题。
这些问题中,等腰三角形顶角度数和三角形高的长度是重要的考点。
例如,对于一个等腰三角形,如果其中一个角度数为50°,则需要分类讨论这个角是顶角还是底角。
如果这个角是顶角,则可以通过求解另外两个角的度数得到顶角的度数;如果这个角是底角,则可以通过计算底角的度数来得到顶角的度数。
因此,顶角可能是50°或80°。
同样地,在解决三角形高的问题时,也需要分类讨论。
例如,如果一个三角形的底边和斜边长度已知,需要求解这个三角形的高的长度,则需要分类讨论这个高是否在三角形内部。
如果高在三角形内部,则可以利用勾股定理和相似三角形的性质求解高的长度;如果高在三角形外部,则可以利用平移和相似三角形的性质求解高的长度。
圆形分类讨论圆形分类讨论主要是解决圆的有关问题。
由于圆是轴对称图形和中心对称图形,因此在解决圆的问题时,需要注意分类讨论,以避免漏解。
例如,对于一个直角三角形,如果以直角为圆心画圆,则这个圆与斜边只有一个公共点。
这个问题可以分类讨论,分别考虑圆与斜边相切和圆与斜边相交的情况,从而得到圆的半径的取值范围。
函数方程分类讨论函数方程分类讨论主要是解决复杂的函数方程和方程组的问题。
在解决这些问题时,需要注意分类讨论,以避免遗漏解或得到错误的解。
例如,对于一个函数方程,如果该方程在某个区间内有多个解,则需要分类讨论这些解的性质,例如它们是否为连续函数、是否为单调函数等等。
从而可以得到方程的解的取值范围。
总之,分类讨论是解决数学问题的重要方法之一,尤其适用于复杂的问题。
在进行分类讨论时,需要认真分析问题,将问题分成若干个互不重叠的情况,并对每种情况进行单独的讨论和求解。
本题涉及到函数的分类讨论和解析式的求解,同时也需要注意特殊点的情况。
2018年中考第二轮专题复习《分类讨论》导学案一.复习导入1.动脑筋:一张矩形纸片有四个角,剪掉一个角后,还剩几个角?二.方法归纳在解答某些数学时,因为存在一些不确定的因素,解答无法用统一的方法或结论,所以对这类问题依情况加以分类,并逐类求解,然后综合作答,这种解题的方法叫分类讨论法.常见的分类讨论的类型有:(1)概念中的分类讨论 (2)图形不确定的分类讨论(3)含参变量的分类讨论(4)运动变化中的分类讨论三.基础检测1.在半径为3的⊙O中,有长为3cm 的弦,则此弦所对的圆周角为2.直角三角形的两边长为3、4,则第三边长为3.已知线段AB=8cm ,在直线AB 上有一点C,BC=4cm, M 是线段AC 的中点,那么线段AM 的长是四.典型例题例1. 如图,在平面直角坐标系中,O为坐标原点,点A的坐标是(2,1),点P在x 轴上,⊿AOP 为等腰三角形,求出P 点的坐标.例2.⊙O与⊿ABC 按如图所示的位置摆放,在直线l 上,BC=DE=8,EC=6, ∠ABE= 30°,将⊙O以2cm/s 的速度从左向右平移,在运动过程中,圆心O始终在l 上,设运动时间为t(s),当t 为何值时,⊙O与⊿ABC 的边所在的直线相切?O A B A B x y A O E D C A B O B A C B ACBA C五.课堂演练:1、经过同一平面内四个点中的任意两点可以画 条不同的直线。
2、若函数a x x a y 24)1(2+--=的图像与坐标轴有且只有两个交点,a =3、直线y = 4x +b 不经过第二象限,那么b 的取值范围为4、如图,在△ABC 中,AB=18,AC=12,D 为AC 边的中点,点E 在AB 上,如△ADE 与△ABC 相似,那么AE 的长为5.在Rt ⊿ABC, ∠A= 90°, 有一个锐角为60°,BC=6,若点P 在直线AC 上(不与AC 重合),且∠ABP= 30°,则CP 的长为第4题图 第5题图六、拓展提高如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D .(1)求b ,c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形?若存在,求出所有点P七、课堂小结 D A B C A A八、课外训练1、等腰三角形的腰长为8,腰上的高为4,则等腰三角形的顶角为2、等腰三角形的两边的比为4:3,则此等腰三角形底角的余弦值为3.一个点到圆的最大距离为11cm,最短距离为5cm,则圆的半径为4、矩形ABCD ,AD=3,AB=2,以矩形的一边所在直线为轴旋转一周得到的圆柱表面积为____.5. 在半径为5的⊙O中,弦A B ∥CD,AB=8,CD=6,则两弦间的距离是6、一次函数y=kx+b 的自变量的取值范围是-3≤x ≤6,相应的函数值的取值范围是-5≤y ≤-2 ,则这个函数的解析式 。
教学设计分类讨论专题复习--初中—数学—教学任务分析一、教学目标(一)知识技能1、掌握分类讨论的一般步骤。
2、能够运用分类讨论的一般步骤解决比较复杂的数学问题。
(二)数学思考1、在研究问题中思考如何把一个比较复杂的数学问题用分类讨论的方法解决。
2、通过解决问题,感受数学思维过程的条理性、缜密性、灵活性、概括性,体会化整为零、积零为整的思想方法。
(三)解决问题解决分类讨论的解题步骤。
(四)情感态度在解决问题的过程中体验严谨的科学态度和主动参与学习、交流合作的精神。
二、重点会确定分类的对象,选择分类的标准来进行合理的分类。
三、难点1、如何合理进行分类。
2、逐一讨论时灵活运用基础知识解决问题。
教学过程设计复习引入1、已知|a|=3,|b|=2,且ab<0,则a - b=2、等腰三角形的两边为6和8,那么此三角形的周长为师生行为学生思考并回答。
教师提出启发、引导性问题:为什么每个答案都是两个解?设计意图使学生初步认识数学问题中两种常见的需要分类的情况。
一、代数中的分类讨论问题:1.若直线:y = 4x +b 不经过第二象限,那么b的取值范围为2.4x²+1 加上一个单项式,使其成为一个整式的平方,请你写出所有符合条件的单项式 .3.已知关于x 的方程mx2-(3m-1)x+2m-2=0,求证:无论m 取任何实数时,方程恒有实数根.师生行为教师分析、讲解、点评学生答题时出现的主要问题,并板书规范书写解题过程。
学生思考并整理解题过程。
设计意图通过解决以上三个题归纳出运用分类讨论解决代数中的分类讨论问题的一般步骤。
二、几何中的分类讨论问题:1、等腰三角形的一个角的度数为40°,那么此三角形的另两个角的度数为2、直角三角形的两边为3和4,那么第三边长为3.已知三角形相邻两边长分别为15cm和13cm,第三边上的高为12cm,则此三角形的面积为______________.4、已知⊙O的半径为5cm,AB、CD是⊙O的弦,且AB=6cm, CD=8cm,AB∥CD,则AB与CD 之间的距离为5、如图,P是Rt△ABC的斜边BC上异于B,C的一定点,过P点作直线截△ABC,截得的三角形与△ABC相似,满足这样条件的直线共有()条。
初三第二轮复习《分类讨论型问题》【教学目标】:1、会用分类思想解决简单的数学问题;2、领会分类讨论思想的实质,掌握分类讨论的基本原则;3、通过具体问题的分析,提升学生用分类讨论的思想方法解决问题的意识,发展数学核心素养;【教学重点】:掌握分类标准【教学难点】:几何图形分类标准的确定【教学过程】:一、预学检查课前每人准备一道用分类思想去解决的问题,并独立完成.二、数学活动活动一:(1)回归课本,解读方法(九上.P54)活动二、交流合作请每组内6名同学互相交流预学结果,并进行分类整理. 活动三、问题解决1、(本小题满分12分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式;(3)当△OAC为等腰三角形时,求x的值.2、(本小题满分12分)定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD即为线段BD的“对角线正方形”.如图②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB以5cm/s的速度运动,当点P与点B不重合时,作线段PB的“对角线正方形”,设点P的运动时间为t(s),线段PB的“对角线正方形”的面积为S(cm2).(1)如图③,借助虚线的小正方形网格,画出线段AB的“对角线正方形”.(2)当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,求t 的值.(3)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式.(4)在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠A的平分线上时,直接写出t的值.三、课后练习3),点A和x轴正半轴上3、如图,在平面直角坐标系xOy内,点M(1,-3的点B满足OA=OB=2, ∠AOB=120°,如果点C在x轴上,且△ABC与△AOM 相似,则点C的坐标为.变式探究:如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx (a>0),经过点A和x轴正半轴上的点B,OA=OB=2,∠AOB=120°.如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.。
专题二分类讨论题命题预测因题目已知条件存在一些不确定因素,解答无法用统一的方法或者结论不能给以统一表述的数学问题,我们往往将问题划分为若干类,或若干个局部问题来解决.2017年安徽中考中,将近10年的结论判断正误题被分类讨论题所代替,这给我们传递了一个信号,安徽中考压轴填空题将改变题型.分类讨论题难度大,同学们容易漏掉解,出题角度多,可以很好地考查同学们思维的条理性、缜密性、科学性.2018年中考压轴填空题设置为分类讨论题可能性非常大.1.对问题进行分类讨论时,必须按同一标准分类,且做到不重不漏.解题中,分类讨论一般分为四步:第一,确定讨论的对象以及讨论对象的取值范围;第二,正确选择分类标准,合理分类;第三,逐类、逐段分类讨论;第四,归纳并做出结论.2.引起分类讨论的七种基本形态.并非所有的数学问题都需要进行分类讨论,但若涉及以下七种情况,常常需要进行分类讨论使问题简单化.(1)概念分段定义.像绝对值这样分段定义的概念,在中学数学中还有直线的斜率等,当这些概念出现时,一般要进行分类讨论.(2)公式分段表达.在解决数学问题时,常常要用到数学公式,若该公式是分段表达的,那么在应用到这些公式时,需分类讨论.(3)实施某些运算引起分类讨论.在解决数学问题时,不论是化简、求值还是论证,常常要进行运算,若在不同条件下实施这些运算时会得到不同结果时,会引起分类讨论.(4)图形位置不确定.如果图形的位置不确定,常常会引起分类讨论,因此,如果图形可能处于不同位置并且影响问题的结果时,首先要有分类讨论的意识,其次要全面考察,分析各种可能的位置关系,然后合理分类讨论,防止漏解.(5)图形的形状不同.当图形的形状不确定时,要对各种可能出现的形状进行分析讨论.(6)字母系数参与引起分类讨论.字母系数的出现,常常会使问题出现多种不同的情况,从而影响问题结果,因此引起分类讨论.(7)条件不唯一引起分类讨论.由于条件不唯一,可能引起方程类型不确定,曲线种类不确定,位置关系不确定,形状不确定等出现,需要对不同情况合理分类,正确讨论.类型一图形形状不同引起的分类讨论例1(2017·安徽,14)在三角形纸片ABC中,cm,=90?∠将该纸∠A30?30=AC=C片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm.类型二图形不确定引起的分类讨论例2(2012·安徽,10)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的边长是( )A.10B.54C.10或54D.10或172类型三 运算引起的分类讨论例3(2015·安徽,14)已知实数a,b,c 满足a+b=ab=c,有下列结论: 111,0=+≠b a c 则若②9;=c +b 则3,=a 若③0;=abc 则c,=b -a 若④8.=c +b +a 则,中只有两只有两个c b,a,若其中正确的是_______________.(把所有正确结论的序号都选上)走向全国1.(2017·山东潍坊) 定义[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数[x]的图象如图所示,则方程[x]= x2的解为( )20.A 或20.B 或 2-1.C 或 22.D -或2.(2017·山东莱芜)对于实数b,a,定义符号b}min{a,,其意义为:b≥a 当时,min{a,b}=b;当a<b 时,min{a,b}=a.例如min{2,-1}=-1.若关于x 的函y=min{2x-1,-x+3},则该函数的最大值为( )32.A 1.B 34.C 35.D3.(2017·黑龙江齐齐哈尔)如图,在等腰三角形纸片ABC 中,AB=AC=10,BC=12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______________.4.(2017·青海西宁)若点A(m,n)在直线y=kx(k ≠0)上,当-1≤m ≤1时,-1≤n ≤1,则这条直线的函数解析式为________.5.(2017·黑龙绥化)在等腰△ABC 中,AD ⊥BC 交直线BC 于点D,若AD=21BC,则△ABC 的顶角的度数为_________________.6.(2017·黑龙江牡丹江)菱形ABCD 的周长为8,∠ABC+∠ADC=90°,以AB 为腰,在菱形外作底角是45°的等腰△ABE,连接AC,CE,请画出图形,并直接写出△ACE 的面积.7.(2017·山东烟台)如图1,抛物线y=ax2+bx+2与x 轴交于A,B 两点,与y 轴交于点C,AB=4.矩形OBDC 的边CD=1,延长DC 交抛物线于点E.(1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G,作PH ⊥EO,垂足为H.设PH 的长为l,点P 的横坐标为m,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N 为顶点的四边形是平行四边形? 若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.。
2014年中考数学二轮复习精品资料数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2013•吉林)若a-2b=3,则2a-4b-5= .思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可.解:2a-4b-5=2(a-2b)-5=2×3-5=1.故答案是:1.点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值.对应训练1.(2013•福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.1.1000考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
教学设计分类讨论专题复习--初中—数学—教学任务分析一、教学目标(一)知识技能1、掌握分类讨论的一般步骤。
2、能够运用分类讨论的一般步骤解决比较复杂的数学问题。
(二)数学思考1、在研究问题中思考如何把一个比较复杂的数学问题用分类讨论的方法解决。
2、通过解决问题,感受数学思维过程的条理性、缜密性、灵活性、概括性,体会化整为零、积零为整的思想方法。
(三)解决问题解决分类讨论的解题步骤。
(四)情感态度在解决问题的过程中体验严谨的科学态度和主动参与学习、交流合作的精神。
二、重点会确定分类的对象,选择分类的标准来进行合理的分类。
三、难点1、如何合理进行分类。
2、逐一讨论时灵活运用基础知识解决问题。
教学过程设计复习引入1、已知|a|=3,|b|=2,且ab<0,则a - b=2、等腰三角形的两边为6和8,那么此三角形的周长为师生行为学生思考并回答。
教师提出启发、引导性问题:为什么每个答案都是两个解?设计意图使学生初步认识数学问题中两种常见的需要分类的情况。
一、代数中的分类讨论问题:1.若直线:y = 4x +b 不经过第二象限,那么b的取值范围为2.4x²+1 加上一个单项式,使其成为一个整式的平方,请你写出所有符合条件的单项式 .3.已知关于x 的方程mx2-(3m-1)x+2m-2=0,求证:无论m 取任何实数时,方程恒有实数根.师生行为教师分析、讲解、点评学生答题时出现的主要问题,并板书规范书写解题过程。
学生思考并整理解题过程。
设计意图通过解决以上三个题归纳出运用分类讨论解决代数中的分类讨论问题的一般步骤。
二、几何中的分类讨论问题:1、等腰三角形的一个角的度数为40°,那么此三角形的另两个角的度数为2、直角三角形的两边为3和4,那么第三边长为3.已知三角形相邻两边长分别为15cm和13cm,第三边上的高为12cm,则此三角形的面积为______________.4、已知⊙O的半径为5cm,AB、CD是⊙O的弦,且AB=6cm, CD=8cm,AB∥CD,则AB与CD 之间的距离为5、如图,P是Rt△ABC的斜边BC上异于B,C的一定点,过P点作直线截△ABC,截得的三角形与△ABC相似,满足这样条件的直线共有()条。
第二轮复习二 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=. 点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O2沿x 轴向右平移,在平移的过程中与x轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG ·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
解(1)直线l 经过点A (-12,0),与y 轴交于点(0,-,设解析式为y =kx +b ,则b =-k =所以直线l 的解析式为y -(2)可求得⊙O 2第一次与⊙O 1相切时,向左平移了5秒(5个单位)如图所示。
在5秒内直线l 平移的距离计算:8+1230所以直线l 平移的速度为每秒(6(3)提示:证明Rt △EFG ∽Rt △AE O 2 于是可得:222FG EG 1 O E EG O E AO 2=(其中=) 所以FG ·A O 2=21EG 2,即其值不变。
点拨:因为⊙O 2不断移动的同时,直线l 也在进行着移动,而圆与圆的位置关系有:相离(外离,内含),相交、相切(外切、内切〕,直线和圆的位置关系有:相交、相切、相离,所以这样以来,我们在分析过程中不能忽略所有的可能情况.【例3】如图,在矩形ABCD 中,AB=3,BC=2,点A 的坐标为(1,0),以CD 为直径,在矩形ABCD 内作半圆,点M 为圆心.设过A 、B 两点抛物线的解析式为y=ax 2+bx+c ,顶点为点N .(1)求过A 、C 两点直线的解析式;(2)当点N 在半圆M 内时,求a 的取值范围;(3)过点A 作⊙M 的切线交BC 于点F ,E 为切点,当以点A 、F,B 为顶点的三角形与以C 、N 、M 为顶点的三角形相似时,求点N 的坐标.解:(1)过点A 、c 直线的解析式为y=32x -32 (2)抛物线y=ax 2-5x+4a .∴顶点N 的坐标为(-52 ,-94a). 由抛物线、半圆的轴对称可知,抛物线的顶点在过点M 且与CD 垂直的直线上,又点N 在半圆内,12 <-94 a <2,解这个不等式,得-98 <a <-29. (3)设EF=x ,则CF=x ,BF=2-x在Rt △ABF 中,由勾股定理得x= 98 ,BF= 78【例4】在平面直角坐标系内,已知点A(2,1),O 为坐标原点.请你在坐标轴上确定点P,使得ΔAOP 成为等腰三角形.在给出的坐标系中把所有这样的点P 都找出来,画上实心点,并在旁边标上P 1,P 2,……,P k,(有k 个就标到P K 为止,不必写出画法)解:以A 为圆心,OA 为半径作圆交坐标轴得1(4,0)P 和2(0,2)P ;以O 为圆心,OA 为半径作圆交坐标轴得3P ,4(P ,5P 和6(0,P ;作OA 的垂直平分线交坐标轴得75(,0)4P 和85(0,)2P 。
点拨:应分三种情况:①OA=OP 时;②OP=P 时;③OA=PA 时,再找出这三种情况中所有符合条件的P 点. Ⅲ、同步跟踪配套试题(60分 45分钟)一、选择题(每题 3分,共 15分)1.若等腰三角形的一个内角为50\则其他两个内角为( )A .500 ,80oB .650, 650C .500 ,650D .500,800或 650,6502.若||3,||2,,( )a b a b a b ==>+=且则A .5或-1B .-5或1;C .5或1D .-5或-13.等腰三角形的一边长为3cm ,周长是13cm ,那么这个等腰三角形的腰长是( )A .5cm B.3cm C .5cm 或3cm D .不确定4.若⊙O 的弦 AB 所对的圆心角∠AOB=60°,则弦 AB 所对的圆周角的度数为( )A .300B 、600C .1500D .300或 15005.一次函数y=kx+b ,当-3≤x ≤l 时,对应的y 值为l ≤y ≤9, 则kb 值为( )A .14B .-6C .-4或21 D.-6或14二、填空题(每题3分,共15分)6.已知||3,||2,0,x y xy x y ==<+=且则_______.7.已知⊙O 的半径为5cm ,AB 、CD 是⊙O 的弦,且 AB=8cm ,CD=6cm ,AB ∥CD ,则AB 与CD 之间的距离为__________.8.矩形一个角的平分线分矩形一边为1cm 和3 cm 两部分,则这个矩形的面积为__________.9.已知⊙O 1和⊙O 2相切于点P ,半径分别为1cm 和3cm .则⊙O 1和⊙O 2的圆心距为________.10 若a 、b 在互为倒数,b 、c 互为相反数,m 的绝对值为 1,则2()ab b c m m m++-的值是______. 三、解答题(每题10分,共30分)11 已知 y=kx +3与两坐标轴围成的三角形的面积为 24,求其函数解析式.12 解关于x 的方程(2)1a x b -=-.13 已知:如图3-2-8所示,直线l 切⊙O 于点C ,AD 为⊙O 的任意一条直径,点B 在直线l 上,且∠BAC=∠CA D(AD 与AB 不在一条直线上),试判断四边形ABCO 为怎样的特殊四边形?Ⅳ、同步跟踪巩固试题(10分 60分钟)一、选择题(每题4分,共20分)1.已知等腰三角形的两边长分别为5和6,则这个三角形的周长是( )A .16B .16或 17 C.17 D .17或 182.已知11||1,||a a a a-=+则的值为( ). .5 3 .51A C 3.若2222122,a b a b ab ab a b +++-=+则值为() A .2B .-2C .2或-2D .2或-2或04.若直线4y x b =-+与两坐标轴围成的三角形的面积是5,则b 的值为( ). 21 . .210A B C D ±± 5.在同一坐标系中,正比例函数-3y x =与反比例函数k y x=的图象的交点的个数是( ) A .0个或2个 B .l 个 C .2个 D .3个二、填空题(每题4分,共24分)6.已知点P (2,0),若x 轴上的点Q 到点P 的距离等于2,则点Q 的坐标为_________.7.已知两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径是________.8.等腰三角形的一个内角为70°,则其预角为______.9.要把一张面值为10元的人民币换成零钱,现有足够的面值为2元、1元的人民币,那么有______种换法. 10 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.11 矩形ABCD ,AD=3,AB=2,则以矩形的一边所在直线为轴旋转一周所得到的圆柱的表面积为_____.三、解答题(56分)12.(8分)化简|1|x -.13.(9分)抛物线 2y ax c =+与y 轴交点到原点的距离为3,且过点(1,5),求这个函数的解析式.14.(13分)已知关于 x 的方程22(23)10x k k --++=.⑴ 当k 为何值时,此方程有实数根;⑵ 若此方程的两实数根x 1,x 2满足12||||3x x +=,求k 的值.15.(13分)抛物线222y x bx =+-经过点A (1,0).⑴ 求b 的值;⑵ 设P 为此抛物线的顶点,B (a ,0)(a ≠1)为抛物线上的一点,Q 是坐标平面内的点.如果以A 、B 、P 、Q 为顶点的四边形为平行四边形,试求线段PQ的长.16.(13分)已知矩形的长大于宽的2倍,周长为12,从它的一个顶点,作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边所成的角的正切值等于12,设梯形的面积为S,梯形中较短的底的长为x,试写出梯形面积S关于x的函数关系式,并指出自变量x的取值范围.。