水轮机调速器的机械液压系统
- 格式:ppt
- 大小:13.62 MB
- 文档页数:13
水轮机调速器的机械液压系统一、概述在水轮机调速器中,机械液压部分的主要功能是将微机调节器的输出电信号成比例的转换成接力器的机械位移,并以足够的大的推力驱动导水机构,控制进入水轮机的水流大小,实现机组转速和功率的调整。
微机调速器的机械液压部分是微机调速器的液压放大和执行机构,它接受的机械、电气或液压输入的控制信号较弱,经过转换和放大而成为相当大的能量机械位移输出,是一个功率增益很大的系统。
要精确控制增益如此大的系统,就必须采用闭环控制。
因此,微机调速器的机械液压系统是一个闭环系统。
随着现代水轮机微机调速器的品种和数量不断增加,出现了很多工作原理和系统结构各异的机械液压系统。
归纳起来,目前我国水轮机微机调速器的机械液压系统根据反馈信号的物理性质可分为两类,即电液随动系统和机械液压随动系统。
前者的反馈量为电气信号,后者的反馈量为机械位移。
它们主要由电液转换、液压放大(包括前置液压放大器)、液压执行(主配压阀、主接力器等)、紧急停机装置、电气反馈元件及过滤器等主要部件组成。
这一节主要介绍以上两种常用的机械液压系统及其主要部件。
二、电液随动系统电液随动系统在电子调节器加电液随动系统结构的调速器中,起执行机构的作用。
它是一个闭环自动控制系统,接受电子调节器输出信号VPID的控制,其输出量Y将跟随控制信号VPID成比例地变化,电液随动系统地输出量是主接力器的位置。
因此,电液随动系统实现了主接力器位置跟随调节器输出变化,执行了调节器控制主接力器的任务。
电液随动系统中的转换元件的输出量有机械位移和流量两种形式。
电液转换元件的输出形式不同,电液随动系统的工作原理、系统结构和配置差别较大。
因此,现代水轮机调速器的电液随动系统有两大类,即采用流量输出转换元件的电液随动系统和采用位移输出转换元件的电液随动系统。
2.1 采用流量输出转换部件的电液随动系统在采用转换元件为流量输出的电液随动系统中,转换部件的输出流量都是控制主配压阀的辅助接力器。
水轮机调速器结构及工作原理水轮机调速器是水轮机系统中的重要设备,其主要功能是控制水轮机的转速,以满足不同负载工况下的运行要求。
本文将从结构和工作原理两个方面介绍水轮机调速器的基本知识。
一、水轮机调速器的结构水轮机调速器一般由调速机构、液压控制系统和电气控制系统三部分组成。
1. 调速机构调速机构是水轮机调速器的核心部分,它通过改变水轮机的导叶开度来调节水轮机的转速。
调速机构主要由调节器、传动装置和导叶机构组成。
调节器是水轮机调速器的关键部件,它通过接收输入信号,控制传动装置的运动,从而改变导叶的开度。
常见的调节器有液压调节器和电动调节器两种。
传动装置是将调节器的运动转化为导叶运动的装置,常见的传动装置有丝杠传动和液压传动两种。
导叶机构是通过传动装置将调节器的运动传递给导叶,改变导叶的开度。
导叶机构主要由导叶轴、导叶臂和导叶组成。
2. 液压控制系统液压控制系统是水轮机调速器的控制部分,它通过控制液压元件的工作状态,实现对调速机构的控制。
液压控制系统一般由液压泵站、液压缸和液压阀组成。
液压泵站负责提供液压能源,液压缸负责执行调速机构的运动,液压阀负责控制液压缸的工作状态。
3. 电气控制系统电气控制系统是水轮机调速器的辅助部分,它通过控制电气元件的工作状态,实现对液压控制系统的控制。
电气控制系统一般由控制柜、传感器和执行器组成。
控制柜负责接收输入信号和控制输出信号,传感器负责感知水轮机的运行状态,执行器负责执行控制柜的输出信号。
二、水轮机调速器的工作原理水轮机调速器的工作原理主要是通过调节水轮机的导叶开度来改变水轮机的转速。
当负载增加时,调速器接收到输入信号后,调节器会发出相应的指令,通过传动装置将运动转化为导叶的运动,导叶的开度逐渐增大。
导叶开度增大会减小水轮机叶片与水流的夹角,使水轮机的输出功率增加,从而使转速稳定在设定值附近。
当负载减小时,调速器接收到输入信号后,调节器会发出相应的指令,通过传动装置将运动转化为导叶的运动,导叶的开度逐渐减小。
大型水轮机调速液压系统首页»液压行业知识»大型水轮机调速液压系统大型水轮机调速液压系统水轮机调速系统是一典型电液伺服控制系统,用于实现对水轮发电机组的开停机、增减有功功率、频率凋节、调相及紧急停机等自动和手动操作及远距离控制。
液压控制系统原理图如图1所示。
该系统可分为导叶和桨叶控制两部分。
二者在原理及结构上大体相同,均由电液伺服加机液伺服系统组成。
只是导叶伺服系统部分设置了餐急停机功能。
该系统总体上有自动和手动两种运行方式。
自动运行是指液压系统接收来自微机调节器的控制量,实行电液随动控制,一般情况下,必须采用自动运行方式,这是对该系统的最起码也是必须达到的要求。
特殊情况下(如微机系统致命故障)可采用手动运行,以保证对机组的正常发电控制,避免因停机造成巨大经济损失。
所谓手动控制,就是将电液转换器退出工作,液压系统不接收来自微机调节器的控制输出,主液压缸与主配压阀之间构成机械闭环,系统处于纯机液伺服状态,通过手轮直接控制主液压缸的位移。
下面以导叶主液压缸开侧动作为例说明其工作原理。
自动状态下,手自动切换阀Vl处于左位,通过开限伺服电机或手轮将开度限制值整定于某一设定值(目的是保证水轮机纽的安全),改开限对应于水平调节杆与反馈连杆之间的间距(自动运行时该机械反馈连杆不参与构成控制规律的综合)。
当微机调节器输出开侧调节信号时,此信号经综放比较并放大,综放的输出信号驱动电液转换器,使之输出与控制量成比例的向上的位移,通过水平调节杆的作用,使主配压阀的引导阀下移,进而带动主阀芯下移,使得A口与压力油相通、B口与回油相通,主液压缸向开侧移动。
当主液压缸开至与电气控制量相一致的开度时,其位移的电信号经综放比较后,使得进入电液转换器的驱动电流为零,由于电液转换器弹簧的复位作用,使电液转换器恢复至中间位置,从而带动主配压阀也恢复至零位,于是主液压缸就稳定在与电气控制量相对应的位置上。
此时,由于机械位移反馈机构的作用,反馈连杆同时上升与主液压缸开度相对应的位移。
水轮机调速器系统水轮机调速器系统主要由调速器、液压传动系统和控制系统三部分组成。
调速器是水轮机调速器系统的核心部件,负责接收来自控制系统的指令,调节水轮机的进水阀门开度,从而实现水轮机的转速控制。
液压传动系统将调速器的指令转化为液压力,通过液压缸或液压马达来控制进水阀门的开度。
控制系统是整个调速器系统的控制中枢,根据水电站的发电负荷和运行条件,通过测量和分析水轮机的转速、进水流量、水头等参数,并根据先进的控制算法,向调速器发送调节指令。
水轮机调速器系统的功能主要包括:保护水轮机、稳定水轮机运行以及实现发电站的负荷调节。
具体来说,水轮机调速器系统通过控制水轮机的进水阀门开度,能够在发电站小电荷到满负荷之间进行快速调节;通过控制水轮机的转速,能够在一定的范围内保持水轮机的稳定运行,防止过速和欠速现象的发生;通过监测水轮机的运行状态,能够及时发现和处理水轮机的故障和异常情况,保护水轮机的安全运行。
水轮机调速器系统的设计和运行需要考虑多个因素。
首先是根据水轮机的特性和工况要求,选择合适的调速器类型。
常见的调速器类型包括机械式调速器、液压调速器和电子调速器等。
机械式调速器结构简单,但调速范围有限;液压调速器具有调速范围广、响应迅速的优点,但需要较为复杂的液压传动系统;电子调速器可以实现高精度的调速控制,但对电气系统的要求较高。
其次是根据水轮机的装机容量、水头、流量等参数,确定调速器和液压传动系统的尺寸和参数。
调速器的尺寸和参数应能满足水轮机各工况下的转速控制要求;液压传动系统的尺寸和参数应能满足调速器的控制要求,同时考虑到液压传动系统的可靠性和稳定性。
此外,水轮机调速器系统的控制算法也是设计的关键。
控制算法应根据水电站的负荷特性和运行条件,合理分配调速器的指令,实现快速、准确的调速控制。
常用的控制算法有比例控制、积分控制、微分控制和模糊控制等。
在水轮机调速器系统的运行过程中,需要进行定期的维护和监控。
定期维护包括对调速器和液压传动系统的检查和保养,包括液压油的更换、密封件的更换和调节等。