初中数学中考总复习:图形的变化--巩固练习题及答案(基础)
- 格式:doc
- 大小:387.50 KB
- 文档页数:8
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:⑴当t为何值时,△QAP为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?【思路点拨】⑴中应由△QAP 为等腰直角三角形这一结论,需补充条件AQ=AP ,由AQ=6-t ,AP=2t ,可求出t 的值;⑵中四边形QAPC 是一个不规则图形,其面积可由矩形面积减去△DQC 与△PBC 的面积求出; ⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.【答案与解析】【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC 的面积也可由△QAC 与△CAP 的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD 中,AD ∥BC ,AD=3,CD=5,BC=10,梯形的高为4,动点M 从点B 出发沿线段BC 以每秒2个单位长度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒(1)直接写出梯形ABCD 的中位线长;D AB C QP(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠D AE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得=8,进而得出CD=8﹣6=2,在Rt△DCE中,求得,最后根据△ADE是等腰直角三角形,即可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴=8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,∵△ADE是等腰直角三角形,==∴【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP 在∠ABC 的内部时(如图2),求∠BPD 的度数;(3)当BP 在∠ABC 的外部时,请你直接写出∠BPD 的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD .∵ 点D 在∠PBC 的平分线上,∴ ∠1=∠2.∵ △ABC 是等边三角形,∴ BA=BC=AC ,∠ACB= 60°.∵ BP=BA ,∴ BP=BC .∵ BD= BD ,∴ △PBD ≌△CBD .∴ ∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题【几何综合问题 例1 】4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE剪开,原纸片被剪成三块,其中最小一块的面积等于.【答案与解析】【总结升华】考查了折叠的性质、直角三角形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系,是一道典型的几何综合题.举一反三【变式】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,那么△AB′E与四边形AECD重叠部分的面积是 . 【答案】在Rt△ABE中,∵∠B=45°,AB=2,∴AE=BE=2 ,∴S △ABE =1.由翻折的性质可知:△AB ′E ≌△ABE ,∴EB ′=EB=2∴B ′C=BB ′-BC=22-2,∵四边形ABCD 是菱形,∴CF ∥BA .∴∠ B ′FC=∠B ′AB=90°, ∠B ′CF=∠B=45°∴CF='2B C ∴S B FC △' =221CF =3-22 ∴S 阴=S B E ′△A -S B FC′△=22-2.5.如图,在等腰梯形ABCD 中,AB∥DC,∠A=45°,AB=10 cm ,CD=4 cm ,等腰直角△PMN 的斜边MN=10 cm , A 点与N 点重合, MN 和AB 在一条直线上,设等腰梯形ABCD 不动,等腰直角△PMN 沿AB 所在直线以1 cm /s 的速度向右移动,直到点N 与点B 重合为止.(1)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN 移动x (s)时,等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积为y(cm 2),求y与x 之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN ,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x ≤6时,重叠部分的形状为等腰直角△EAN ,AN=x (cm ),过点E 作EH ⊥AB 于点H ,则EH 平分AN ,求出EH ,根据三角形的面积公式求出即可;②当6<x ≤10时,重叠部分的形状是等腰梯形ANED ,求出AN=x (cm ),CE=BN=10-x ,DE=x-6,过点D 作DF ⊥AB 于F ,过点C 作CG ⊥AB 于G ,求出DF ,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。
2020初中数学中考专题复习——图形变换旋转综合题专项训练6(附答案详解) 1.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD 绕点A 逆时针旋转30°至正方形AB ′C ′D ′的位置,B ′C ′与CD 相交于点M ,则M 的坐标为( )A .(1,33)B .(﹣1,33)C .(1,32)D .(﹣1,32) 2.如图,现有一张三角形纸片ABC ∆,8BC =,28ABC S ∆=,点D ,E 分别是AB ,AC 中点,点M 是DE 上一定点,点N 是BC 上一动点。
将纸片依次沿DE ,MN 剪开,得到Ⅰ、Ⅱ和Ⅲ三部分,将Ⅱ绕点D 顺时针旋转,DB 与DA 重合,将Ⅲ绕点E 逆时针旋转,使EC 与EA 重合,拼成了一个新的图形,则这个新图形周长的最小值是( )A .15B .20C .23D .303.如图,D 为等边三角形ABC 内的一点,DA =5,DB =4,DC =3,将线段AD 以点A 为旋转中心逆时针旋转60°得到线段AD′,下列结论:①点D 与点D′的距离为5;②∠ADC =150°;③△ACD′可以由△ABD 绕点A 逆时针旋转60°得到;④点D 到CD′的距离为3;⑤S 四边形ADCD′ =6+2532.其中正确的有( )A .2个B .3个C .4个D .5个4.如图,AOB 为等腰三角形,顶点 A 的坐标为 (5,底边 OB 在 x 轴上.将 AOB 绕点 B 按顺时针方向旋转一定角度后得 11A O B ,点 A 的对应点 1A 在 x 轴上,那么点 1O 的横坐标是( )A .163B .173C .193D .203 5.如图,边长为2的正方形ABCD 绕点A 逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC 交于点O ,则四边形AB′OD 的周长是( )A .42B .6C .22D .2+22 6.如图,在Rt △ABC 中,90C =∠,2AC BC ==;若将△ABC 绕点B 逆时针旋转60°到△''A BC 的位置,连接'C A ,则'C A 的长为( )A .622B 62-C .222-D .22-7.如图,在平面直角坐标系,ABC 上的顶点A 和C 分别在x 轴、y 轴的正半轴上,且//AB y 轴,点()1,3B ,将ABC 以点B 为旋转中心顺时针方向旋转90o 得到DBE ,恰好有一反比例函数k y x= 图象恰好过点D ,则k 的值为( )A.9B.9-C.6-D.68.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.29.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为()A.3 B.1.5 C.23D.310.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠BAC=25°,则∠ADE的度数为()A.35°B.30°C.25°D.20°11.如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y 与x的函数关系的图象大致是()A .B .C .D . 12.如图,在直角坐标系中,点()(0,4,3,0,)A B C -是线段AB 的中点,D 为x 轴上一个动点,以AD 为直角边作等腰直角ADE (点,,A D E 以顺时针方向排列),其中90DAE ∠=︒,则点E 的横坐标等于_____________,连结CE ,当CE 达到最小值时,DE 的长为___________________.13.如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚2次后点B 的对应点B 2的坐标是_____,翻滚100次后AB 中点M 经过的路径长为_____.14.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点A 逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.15.如图,四边形ABCD 的∠BAD =∠C =90°,AB =AD ,AE ⊥BC 于E ,△ABE 绕着点A 旋转后能与△ADF 重合,若AF =5cm ,则四边形ABCD 的面积为_____.16.如图,P 是等边三角形ABC 内一点,将线段BP 绕点B 逆时针旋转60°得到线段BQ ,连接AQ .若PA=4,PB=5,PC=3,则四边形APBQ 的面积为_______.17.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是_____.18.正方形ABCD 的边长为2cm ,O 点是正方形ABCD 的中心,将此正方形沿直线AB 滚动(无滑动),且每一次滚动的角度都等于90°.例如:B 点不动,滚动正方形ABCD ,当B 点上方相邻的点C 落在直线AB 上时为第1次滚动.如果将正方形ABCD 滚动2020次,那么O 点经过的路程等于__________.(结果不取近似值)19.如图,在ABC ∆中,90ACB ∠=︒,3sin 5B =,将ABC ∆绕顶点C 顺时针旋转,得到11A B C ∆,点A 、B 分别与点1A 、1B 对应,边11A B 分别交边AB 、BC 于点D 、E ,如果点E 是边11A B 的中点,那么1:A D DB =______.20.如图,正方形ABCD 边长为2,以直线AB 为轴,将正方形旋转一周,•所得圆柱的主视图(正视图)的周长是________.21.规定:有一角重合,且角的两边叠合在一起的两个相似四边形叫做“嵌套四边形”,如图,四边形ABCD 和AMPN 就是嵌套四边形.(1)问题联想如图①,嵌套四边形ABCD ,AMPN 都是正方形,现把正方形AMPN 以A 为中心顺时针旋转150°得到正方形AM'P'N',连接BM',DN'交于点O ,则BM'与DN'的数量关系为_____,位置关系为_____;(2)类比探究如图②,将(1)中的正方形换成菱形,∠BAD=∠MAN=60,其他条件不变,则(1)中的结论还成立吗? 若成立,请说明理由;若不成立,请给出正确的结论,并说明理由;(3)拓展延伸如图3,将(1)中的嵌套四边形ABCD 和AMPN 换成是长和宽之比为2:1的矩形,旋转角换成α(90°<α<180°),其他条件不变,请直接写出BM'与DN'的数量关系和位置关系.22.正方形ABCD 中,点E F ,分别在边BC ,CD 上,且45EAF CEF ∠=∠=. (1)将ADF ∆绕着点A 顺时针旋转90°,得到ABG ∆(如图①),求证:AEG AEF ∆≅∆;(2)若直线EF 与AB ,AD 的延长线分别交于点M N ,(如图②),求证:222EF ME NF =+;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系 .(不要求书写证明过程)23.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.24.在平面直角坐标系xOy 中,如图所示,已知Rt DOE △,90DOE ∠=,3OD =,点D 在y 轴上,点E 在x 轴上,在ABC 中,点A ,C 在x 轴上,5AC =.180ACB ODE ∠+∠=,ABC OED ∠=∠,BC DE =.按下列要求画图(保留作图痕迹):(1)将ODE 绕O 点按逆时针方向旋转90°得到OMN (其中点D 的对应点为点M ,点E 的对应点为点N ),画出OMN .(2)将ABC 沿x 轴向右平移得到A B C '''(其中点A ,B ,C 的对应点分别为点A ',B ',C '),使得边B C ''与(1)中的OMN 的边NM 重合. (3)求OE 的长.25.如图1,在△ABC 中,∠A =36°,AB =AC ,∠ABC 的平分线BE 交AC 于E .(1)求证:AE =BC ;(2)如图2,过点E 作EF ∥BC 交AB 于F ,将△AEF 绕点A 逆时针旋转角α(0°<α<144°)得到△AE ′F ′,连结CE ′、BF ′,求证:CE ′=BF ′.26.如图,点O 是等边三角形ABC 内一点,∠AOB=110°,∠BOC=β.将△BOC 绕点C 按顺时针方向旋转60°得到△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当β=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当β为多少度时,△AOD 是以OD 为底边的等腰三角形?27.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.28.已知:△ABC是等边三角形,点D是△ABC(包含边界)平面内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点P.(1)观察填空:当点D在图1所示的位置时,填空:①与△ACD全等的三角形是______.②∠APB的度数为______.(2)猜想证明:在图1中,猜想线段PD,PE,PC之间有什么数量关系?并证明你的猜想.(3)拓展应用:如图2,当△ABC边长为4,AD=2时,请直接写出线段CE的最大值.29.直线DE上有一点O,过点O在直线DE上方作射线OC,将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB 在直线DE上方.将直角三角板绕点O按每秒10°的速度逆时针旋转得到三角形A'OB',三角形AOB旋转一周后停止旋转,设旋转时间为t秒.若射线OC的位置保持不变,∠COD=40°.(1)如图1,在旋转过程中,当边A'B'与直线DE相交于点F时,请用含t的代数式分别表示∠A'OC和∠B'OF的度数,并求出∠A'OC-∠B'OF的值;(2)如图2,当t=7时,试说明直线A'B'//OC;(3)在旋转过程中,若t=7,是否还存在某一时刻,使得A'B'//OC;若存在,请求出符合条件的t值;若不存在,请说明理由.30.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE(1)求证:AD=ED(2)连接BE,猜想△BEC的形状,并说明理由参考答案1.B【解析】【分析】连接AM ,易得∠B′AD =60°,利用HL 判定Rt △ADM ≌Rt △AB′M ,进而得到∠DAM =30°,再根据DM =AD·tan ∠DAM 求出DM ,即可得到M 的坐标. 【详解】解:如图,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C′D′,∴AD =AB′=1,∠BAB′=30°,∴∠B′AD =60°,在Rt △ADM 和Rt △AB′M 中,AD AB AM AM'⎧=⎨=⎩ ∴Rt △ADM ≌Rt △AB′M (HL ),∴∠DAM =∠B′AM =12∠B′AD =30°, ∴DM =AD·tan ∠DAM =1×33 ∴点M 的坐标为(﹣13, 故选:B .【点睛】 本题主要考查旋转的性质、正方形的性质,全等三角形的判定与性质以及三角函数的应用,解题的关键是利用旋转角度和全等三角形求出∠DAM=30°. 2.C【解析】【分析】如图,作AJ⊥BC交DE于O,由题意旋转后的新图形是平行四边形GHPQ,周长=2DE+BC+2MN=16+2MN,当MN最小时,周长的值最小,根据垂线段最短求出MN的最小值即可解决问题.【详解】解:如图,作AJ⊥BC交DE于O,由题意旋转后的新图形是平行四边形GHPQ,周长=2DE+BC+2MN,∵AD=DB,AE=EC,∴DE∥BC,DE=12BC=4,∵S△ABC=12•BC•AJ=28,∴AJ=7,∵AD=DB,DE∥BC,∴AO=OJ=72,∴四边形GHPQ的周长=16+2MN,∴当MN最小时,周长的值最小,根据垂线段最短可知MN的最小值为12,∴四边形GHPQ的周长的最小值为16+7=23,故选:C.【点睛】本题考查利用旋转设计图案,三角形的中位线定理,垂线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3.B【解析】【分析】连结DD′,根据旋转的性质得AD=AD′,∠DAD′=60°,可判断△ADD′为等边三角形,则DD′=5,可对①进行判断;由△ABC为等边三角形得到AB=AC,∠BAC=60°,则把△ABD 逆时针旋转60°后,AB与AC重合,AD与AD′重合,于是可对③进行判断;再根据勾股定理的逆定理得到△DD′C为直角三角形,则可对②④进行判断;由于四边形ADCD′的面积=△ADD′的面积+△D′DC的面积,利用等边三角形的面积公式和直角三角形面积公式计算后可对⑤进行判断.【详解】解:连结DD′,如图,∵线段AD以点A为旋转中心逆时针旋转60°得到线段AD′,∴AD=AD′,∠DAD′=60°,∴△ADD′为等边三角形,∴DD′=5,所以①正确;∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,∴△ACD′可以由△ABD绕点A逆时针旋转60°得到,所以③正确;∴D′C=DB=4,∵DC=3,在△DD′C中,∵32+42=52,∴DC2+D′C2=DD′2,∴△DD′C为直角三角形,∴∠DCD′=90°,∵△ADD′为等边三角形,∴∠ADD′=60°,∴∠ADC≠150°,所以②错误;∵∠DCD′=90°,∴DC⊥CD′,∴点D到CD′的距离为3,所以④正确;∵S△ADD′+S△D′DC2153442=⨯+⨯⨯=6所以⑤错误.故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.4.D【解析】【分析】过点A作AC⊥OB于C,过点O1作O1D⊥A1B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO1=OB,∠A1BO1=∠ABO,然后解直角三角形求出O1D、BD,再求出OD,然后写出点O1的坐标即可.【详解】解:如图,过点A作AC⊥OB于C,过点O1作O1D⊥A1B于D,∵A(2,∴OC=BC=2,由勾股定理得,,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO1=OB=4,∠A1BO1=∠ABO,∴BD=BO1×cos∠ABC=4×23=83,∴OD=OB+BD=4+83=203,∴点O1的横坐标为20 3.故选:D.【点睛】本题考查了坐标与图形变化-旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.5.A【解析】【分析】连接B′C,由边长为2的正方形ABCD绕点A逆时针旋转45度后得到正方形A B′C′D′,先求B′C,再根据等腰直角三角形的性质,勾股定理可求B′O,OD,从而可求四边形AB′OD 的周长.【详解】解:连接B′C,∵旋转角∠BAB′=45°,∠BAC=45°,∴B′在对角线AC上,∵AB=AB′=2,在Rt△ABC中,AC22AB BC=22,∴B′C =﹣2,在等腰Rt △OB′C 中,OB′=B′C =﹣2,在直角三角形OB′C 中,OC(﹣2)=4﹣,∴OD =2﹣OC =﹣2,∴四边形AB′OD 的周长是:2AD+OB′+OD =﹣﹣2=.故选:A .【点睛】本题考查了正方形的性质,旋转的性质以及等腰直角三角形的性质.此题难度适中,注意连接B′C 构造等腰Rt △OB′C 是解题的关键,注意旋转中的对应关系.6.B【解析】【分析】连接AA′,延长AC′交A′B 于点D ,易证:∆A′BA 是等边三角形,得,易证:∆A′AC′≅∆BAC′,从而得∠A′AC′=∠BAC′,AD ⊥A′B ,A′D=BD=1'2A B,由勾股定理可得:AD ,C′D 的值,进而求出答案.【详解】将△ABC 绕点B 逆时针旋转60°到△''A BC 的位置,连接AA′,延长AC′交A′B 于点D.∵A′B=AB ,∠A′BA=60°,∴∆A′BA 是等边三角形,∵在Rt △ABC 中,90C =∠,2AC BC ==,∴,在∆A′AC′和∆BAC′中, ∵''''''AA AB AC AC A C BC =⎧⎪=⎨⎪=⎩,∴∆A′AC′≌∆BAC′(SSS),∴∠A′AC′=∠BAC′, ∴AD ⊥A′B ,A′D=BD=1'2A B =2, ∴2222(22)26AD AB BD =-=-=,2222''222C D C B BD =-=-=,∴C′A=AD -C′D=62-.故选B.【点睛】本题主要考查等腰直角三角形的性质和等边三角形的判定和性质,添加合适的辅助线,构造等边三角形是解题的关键.7.C【解析】【分析】首先根据旋转的性质得出DB=AB=3,进而得出点D 的坐标,然后将其代入反比例函数,即可得解.【详解】∵//AB y 轴,点()1,3B 以及旋转的性质∴DB=AB=3∴D (-2,3)将其代入反比例函数得32k =- 6k =-故答案为C.【点睛】本题主要考查了平面直角坐标系中利用三角形的旋转性质求坐标与反比例函数的综合应用,熟练掌握,即可解题.8.B【解析】【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.4.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.9.D【解析】【详解】解:∵旋转后AC的中点恰好与D点重合,即AD=12AC′=12AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD.根据勾股定理得:222(3)(3)x x =-+,解得:x =2, ∴EC =2,则S △AEC =12EC •AD =3. 故选D .10.D【解析】解:∵Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,∴AC =CD ,∠CDE =∠BAC =25°,∴△ACD 是等腰直角三角形,∴∠CDA =45°,∴∠ADE =∠CDA ﹣∠EDC =45°﹣25°=20°.故选D .点睛:本题考查了旋转的性质,等腰直角三角形的判定与性质,熟记各性质并准确识图是解题的关键.11.A【解析】试题分析:作PH ⊥AB 于H ,如图,∵△PAB 为等腰直角三角形,∴∠A=∠B=45°,AH=BH=AB=1,∴△PAH 和△PBH 都是等腰直角三角形,∴PA=PB=AH=,∠HPB=45°,∵∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N而∠CPD=45°,∴1≤AN≤2,即1≤x≤2,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°,∴∠2=∠BPM ,而∠A=∠B ,∴△ANP ∽△BPM ,∴,即,∴y=,∴y 与x 的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.故选A .考点:动点问题的函数图象.12. 4- 210【解析】【分析】(1)过E 点作EF ⊥y 轴于点F ,求证AEF ∆≅()DAO AAS ∆,即可的到点E 的横坐标; (2)设点E 坐标,表示出2CE 的解析式,得到CE 的最小值进而得到点E 坐标,再由AEF DAO ∆≅∆得到点D 坐标,进而得到DE 的长.【详解】(1)如下图,过E 点作EF ⊥y 轴于点F∵EF ⊥y 轴,90DAE ∠=︒∴90AEF EAF ∠+∠=︒,90OAD EAF ∠+∠=︒∴AEF DAO ∠=∠∵ADE ∆为等腰直角三角形∴AE DA =在AEF ∆与DAO ∆中AFE DOA AEF DAO AE DA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ∆≅()DAO AAS ∆∴EF AO =∵()0,4A∴4EF AO ==∴点E 的横坐标等于4-;(2)根据(1)设(4,)E m -∵()0,4A ,(3,0)B -,C 是线段AB 的中点 ∴3(,2)2C -∴2222325(4)(2)(2)24CE m m =-++-=-+ ∴当2m =时,2CE 有最小值,即CE 有最小值∴(4,2)E -∵()0,4A∴2AF =∵AEF ∆≅DAO ∆∴2OD =∴(2,0)D∴DE ==故答案为:4-;【点睛】本题主要考查了三角形全等的判定,点坐标的表示,二次函数的最值问题,两点之间的距离公式等,熟练掌握综合题的解决技巧是解决本题的关键.13.(2,0)44)π+【解析】 【分析】 观察图象可知3三次一个循环,一个循环点M 的运动路径为1203180π+1201180π+1201180π=(2343+)π,由此即可解决问题 【详解】如图作B 3E ⊥x 轴于E ,易知OE=5,B 3E=3,∴B 3(5,3),观察图象可知3三次一个循环,一个循环点M 的运动路径为1203180π+1201180π+1201180π=(2343+)π, ∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672•(234+)π+23π=(13463+896)π.14.125°【解析】【分析】根据等腰直角三角形的性质得到∠CAB =45°,根据旋转的性质得到∠BAB′=80°,结合图形计算即可.【详解】解:∵△ABC 是等腰直角三角形,∴∠CAB =45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案为:125°.【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.15.25cm2【解析】【分析】根据垂直的定义可得∠AEB=∠AEC=90°,根据旋转变换只改变图形的位置不改变图形的形状与大小可得△ADF和△ABE全等,根据全等三角形对应角相等可得∠AEB=∠F,全等三角形对应边相等可得AE=AF,然后证明四边形是矩形,再根据邻边相等的矩形是正方形可得四边形AECF是正方形,然后根据正方形的面积公式列式计算即可得解.【详解】解:∵AE⊥BC,∴∠AEB=∠AEC=90°,∵AB=AD,△BEA旋转后能与△DFA重合,∴△ADF≌△ABE,∴∠AEB=∠F,AE=AF,∵∠C=90°,∴∠AEC=∠C=∠F=90°,∴四边形AECF是矩形,又∵AE=AF,∴矩形AECF是正方形,∵AF=5cm,∴四边形ABCD的面积=四边形AECF的面积=52=25cm2.故答案为:25cm2.【点睛】本题是对几何知识的综合考查,熟练掌握旋转几何知识是解决本题的关键.166【解析】【分析】由旋转的性质可得△BPQ 是等边三角形,由全等三角形的判定可得△ABQ ≌△CBP(SAS),由勾股定理的逆定理可得△APQ 是直角三角形,求四边形的面积转化为求两个特殊三角形的面积即可.【详解】解:连接PQ ,由旋转的性质可得,BP=BQ ,又∵∠PBQ=60°,∴△BPQ 是等边三角形,∴PQ=BP ,在等边三角形ABC 中,∠CBA=60°,AB=BC ,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ 与△CBP 中BQ BP ABQ CBP AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△CBP(SAS),∴AQ=PC ,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ 中,因为2229,16,25AQ AP PQ ===,25=16+9,∴由勾股定理的逆定理可知△APQ 是直角三角形,∴2315346424BPQ APQ APBQ S S S =+=+⨯⨯=+四边形, 故答案为:64+【点睛】本题主要考查了旋转的性质、全等三角形的判定、勾股定理的逆定理及特殊三角形的面积,解题的关键是作出辅助线,转化为特殊三角形进行求解.17.8﹣π【解析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴223213+=由旋转的性质结合已知条件易得:13,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF=22 9031190(13)325236022ππ⨯⨯+⨯⨯+⨯⨯=8π-.故答案为:8π-.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.18.10102cmπ【解析】【分析】根据题意,画出图形,求出每次滚动点O的运动路程乘滚动次数即可求出结论.【详解】解:如下图所示,∵正方形ABCD的边长为2cm∴AB=AD,BO=12 BD∴2222AB AD+=∴2cm∵每一次滚动的角度都等于90°∴每一次滚动,点O的运动轨迹为以90°2cm的弧长∴O点经过的路程为9022020180π⨯=2cmπ故答案为:cm .【点睛】此题考查的是求一个点在运动过程中经过的路程,掌握正方形的性质和弧长公式是解决此题的关键.19.512【解析】【分析】设AC =3x ,AB =5x ,可求BC =4x ,由旋转的性质可得CB 1=BC =4x ,A 1B 1=5x ,∠ACB=∠A 1CB 1,由题意可证△CEB 1∽△DEB ,可得11 1.53=2.55BD BE DE x B C B E CE x ===,即可表示出BD,DE ,再得到A 1D 的长,故可求解.【详解】∵∠ACB =90°,sin B =35AC AB =, ∴设AC =3x ,AB =5x ,∴BC4x ,∵将△ABC 绕顶点C 顺时针旋转,得到△A 1B 1C ,∴CB 1=BC =4x ,A 1B 1=5x ,∠ACB =∠A 1CB 1,∵点E 是A 1B 1的中点,∴CE =12A 1B 1=2.5x =B 1E=A 1E , ∴BE =BC−CE =1.5x ,∵∠B =∠B 1,∠CEB 1=∠BED∴△CEB 1∽△DEB ∴11 1.53=2.55BD BE DE x B C B E CE x === ∴BD=125x ,DE=1.5x, ∴A 1D= A 1E- DE=x, 则1:A D DB =x:125x =512故答案为:512. 【点睛】 本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证△CEB 1∽△DEB 是本题的关键.20.12【解析】主视图为长方形,主视图(正视图)的周长是(24)212+⨯= .21.(1)BM DN ''=,BM DN ''⊥;(2)BM DN ''=成立,BM DN ''⊥不成立,BM '与DN '相交,且夹角为60︒.理由见解析;(3)2BM DN ''=,BM DN ''⊥.【解析】【分析】(1)根据SAS 证明△ABM’≌△AND’,进而得到BM DN ''=,∠ABM’=∠ADN’,再利用三角形内角和可推出∠BOD=90°,即BM DN ''⊥;(2)根据旋转和菱形的性质证明ABM ADN ''∆∆≌,再推出60BOD BAD ∠=∠=︒,故可求解;(3)根据旋转和矩形的性质证明ABM ADN ''∆∆,得到2BM DN ''=,再推出90BOD BAD ∠=∠=︒即可求解.【详解】(1)如图设AB ,DN '交于点H ,,∵四边形ABCD ,AMPN 都是正方形,把正方形AMPN 以A 为中心顺时针旋转150°得到正方形AM'P'N',∴AB=AD,AM’=AD’, 150BAM DAN ''∠=∠=︒∴△ABM’≌△AND’,∴BM DN ''=,∠ABM’=∠ADN’,∵∠ADN’+∠DHA+∠DAH=180°,∠ABM’+∠BHO+∠BOD=180°,又∠DHA=∠BHO∴90BOD BAD ∠=∠=︒,即BM DN ''⊥故答案为:BM DN ''=,BM DN ''⊥;(2)BM DN ''=成立,BM DN ''⊥不成立,BM '与DN '相交,且夹角为60︒. 理由:设AB ,DN '交于点E ,由旋转的性质可得150BAM DAN ''∠=∠=︒.∵四边形ABCD ,AM P N '''都是菱形,∴AB AD =,AM AN ''=,∴ABM ADN ''∆∆≌,∴BM DN ''=,ABM ADN ''∠=∠.又∵BEO DEA ∠=∠,∴60BOD BAD ∠=∠=︒;故BM '与DN '相交,且夹角为60︒;(3)2BM DN ''=,BM DN ''⊥,理由如下:设AB ,DN '交于点E ,由旋转的性质可得BAM DAN α''∠=∠=.∵四边形ABCD 和AMPN 是长和宽之比为2:1的矩形∴2AB AD =,2AM AN ''=,∴'2'AB AM AD AN == ∴ABM ADN ''∆∆, ∴2BM DN ''=,ABM ADN ''∠=∠.又∵BEO DEA ∠=∠,∴90BOD BAD ∠=∠=︒∴2BM DN ''=,BM DN ''⊥.【点睛】此题主要考查正方形、矩形、菱形的性质,全等三角形、相似三角形的判定与性质,运用了类比的思想方法,体现了逻辑推理的核心素养.22.(1)证明见解析;(2)证明见解析;(3)()2222EF BE DF=+【解析】【分析】(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG ≌△AEF ;(2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG ≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,2DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)延长EF 交AB 延长线于M 点,交AD 延长线于N 点,将△ADF 绕着点A 顺时针旋转90°,得到△AGH ,连结HM ,HE .由(1)知△AEH ≌△AEF ,结合勾股定理以及相等线段可得(GH+BE )2+(BE-GH )2=EF 2,所以2(DF 2+BE 2)=EF 2.【详解】解:(1)证明:ADF∆绕着点A顺时针旋转90︒,得到ABG∆,AF AG∴=,90FAG∠=︒,45EAF∠=︒,45GAE∴∠=︒,在AGE∆与AFE∆中,AG AFGAE FAEAE AE=⎧⎪∠=∠⎨⎪=⎩,()AGE AFE SAS∴∆≅∆;(2)证明:设正方形ABCD的边长为a.将ADF∆绕着点A顺时针旋转90︒,得到ABG∆,连结GM.则ADF ABG∆≅∆,DF BG=.由(1)知AEG AEF∆≅∆,EG EF∴=.45CEF∠=︒,BME∴∆、DNF∆、CEF∆均为等腰直角三角形,CE CF∴=,BE BM=,2NF DF,a BE a DF∴-=-,BE DF∴=,BE BM DF BG∴===,45BMG∴∠=︒,454590GME∴∠=︒+︒=︒,222EG ME MG∴=+,EG EF=,22MG BM DF NF==,222EF ME NF ∴=+;(3)解:22222EF BE DF =+.如图所示,延长EF 交AB 延长线于M 点,交AD 延长线于N 点,将ADF ∆绕着点A 顺时针旋转90︒,得到AGH ∆,连结HM ,HE .由(1)知AEH AEF ∆≅∆,则由勾股定理有222()GH BE BG EH ++=,即222()()GH BE BM GM EH ++-=,又EF HE ∴=,DF GH GM ==,BE BM =,∴有222()()GH BE BE GH EF ++-=,∴()()222DF BE BE DF EF ++-=,即2222()DF BE EF +=.【点睛】本题是四边形综合题,其中涉及到正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,矩形的性质,勾股定理.准确作出辅助线利用数形结合及类比思想是解题的关键.23.(1)证明见解析(22-1【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以,于是利用BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴,∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24.(1)见解析;(2)见解析;(3)6【解析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点N,以OD为半径画弧,与x轴负半轴相交于点M,连接MN即可;(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A',B'与N重合,C'与M重合,然后顺次连接即可;(3)设OE=x,则ON=x,作MF⊥A'B'于点F,判断出B'C'平分∠A'B'O,再根据全等三角形的性质可得B'F=B'O=OE=x,FC'=OC'=OD=3,利用勾股定理列式求出A'F,然后表示出A'B'、A'O.在Rt△A'B'O中,利用勾股定理列出方程求解即可.【详解】(1)△OMN如图所示;(2)△A'B'C'如图所示;(3)设OE=x,则ON=x,作MF⊥A'B'于点F,由作图可知:B'C'平分∠A'B'O,且C'O⊥OB',∴∠B'FM=∠MON=90°,∠FB'M=∠OB'M.∵B'M=B'M,∴△FB'M≌△OB'M,∴B'F=B'O=OE=x,FC'=OC'=OD=3.∵A'C'=AC=5,∴A'F22=-=4,53∴A'B'=x+4,A'O=5+3=8,在Rt△A'B'O中,x2+82=(4+x)2,解得:x=6,即OE=6.本题考查了利用旋转变换作图,平移变换作图,勾股定理,熟练掌握旋转变换与平移变换的性质是解答本题的关键.25.(1)见解析;(2)见解析.【解析】【分析】(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC =∠F′AB ,AE′=AF′,根据全等三角形证明方法得出即可;【详解】(1)证明:∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,又∵BE 平分∠ABC ,∴∠ABE =∠CBE =36°,∴∠BEC =180°﹣∠C ﹣∠CBE =72°,∴∠ABE =∠A ,∠BEC =∠C ,∴AE =BE ,BE =BC ,∴AE =BC .(2)证明:∵AC =AB 且EF ∥BC ,∴AE =AF ;由旋转的性质可知:E AC F AB ''∠∠=,AE AF ''=,∵在△CAE ′和△BAF ′中AC AB E AC F AB AE AF ''=⎧⎪∠=''∠⎨⎪=⎩,∴△CAE ′≌△BAF ′(SAS ),∴CE ′=BF ′.【点睛】此题主要考查了旋转的性质以及等腰三角形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.26.(1)证明见解析;(2)△AOD是直角三角形,理由见解析;(3)125°.【解析】【分析】(1)根据图形旋转的性质,得OC=DC,∠OCD=60°,进而即可得到结论;(2)由等边三角形的性质得∠ODC=60°,结合∠ADC=∠BOC=β=150°,即可得到结论;(3)由题意得∠AOD=β-60°,结合周角的定义,列出关于β的方程,即可求解.【详解】(1)∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴ OC=DC,∠OCD=60°,∴△COD是等边三角形;(2)△AOD是直角三角形,理由如下:∵△COD是等边三角形,∴∠ODC=60°,∵∠ADC=∠BOC=β=150°,∴∠ADO=∠ADC-∠CDO=150°-60°=90°,∴△AOD是直角三角形;(3)∵△AOD是以OD为底边的等腰三角形,∴∠ADO=∠AOD=∠ADC-60°=β-60°,∵110°+β+(60°+∠AOD)=360°,∴110°+β+(60°+β-60°)=360°,∴β=125°,∴当β=125°时,△AOD 是以OD 为底边的等腰三角形.【点睛】本题主要考查旋转的性质,直角三角形的判定,等腰三角形的性质以及等边三角形的判定和性质,掌握等边三角形和等腰三角形的性质定理,是解题的关键.27.(1)是;(2)是,理由详见解析;(3)49【解析】【分析】(1)根据题意,利用等腰三角形和三角形中位线定理得出PM PN =,∠MPN=90°判定即可;(2)由旋转和三角形中位线的性质得出PM PN =,再由中位线定理进行等角转换,得出∠MPN=90°,即可判定;(3)由题意,得出BD 最大时,PM 与PN 的积最大,点D 在BA 的延长线上,再由(1)(2)结论,12PM PN BD ==得出PM 与PN 的积的最大值. 【详解】(1)是;∵AB AC =,AD AE =∴DB=EC ,∠ADE=∠AED=∠B=∠ACB∴DE ∥BC∴∠EDC=∠DCB∵点M 、P 、N 分别为DE 、DC 、BC 的中点∴PM ∥EC ,PN ∥BD ,11,22PM EC PN BD == ∴PM PN =,∠DPM=∠DCE ,∠PNC=∠DBC∵∠DPN=∠PNC+∠DCB∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°∴线段PM 与PN 是“等垂线段”;(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE =利用三角形的中位线得12PN BD =,12PM CE =, ∴PM PN =由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠ BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=∴90ACB ABC ∠+∠=∴90MPN ∠=∴PM 与PN 为“等垂线段”;(3)PM 与PN 的积的最大值为49;由(1)(2)知,12PM PN BD == ∴BD 最大时,PM 与PN 的积最大∴点D 在BA 的延长线上,如图所示:∴14BD AB AD =+=∴7PM =∴249PM PN PM •==.【点睛】。
2020初中数学中考专题复习——图形变换旋转综合题解答题专项训练4(附答案详解) 1.在ABC ∆中,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当60α=︒时,BD CP 的值是______,直线BD 与直线CP 相交所成的较小角的度数是____________.(提示:求角度时可考虑延长CP 交BD 的延长线于E ) (2)类比探究如图2,当90α=︒时,请写出BD CP 的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α=︒时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时AD CP的值_______________. 2.如图,已知平行四边形ABCD ,∠ABC =120°,点E 为线段BC 上的动点,连接AE ,将线段AE 绕点A 逆时针旋转60°得到线段AF ,点E 的对应点是点F ,连接EF.(1)当点E 与点B 重合时,在图1中将图补充完整,并求出∠CEF 的度数; (2)如图2,求证:点F 在∠ABC 的平分线上.3.(1)如图①,在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,试探索线段BC ,DC ,EC 之间满足的等量关系,并证明你的结论.(2)如图②,在Rt △ABC 与Rt △ADE 中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论.4.如图,四边形ABCD 是正方形,连接AC ,将ABC ∆绕点A 逆时针旋转α得AEF ∆,连接CF ,O 为CF 的中点,连接OE ,OD .(1)如图1,当45α︒=时,求证:OE OD =;(2)如图2,当4590α︒︒<<时,(1)OE OD =还成立吗?请说明理由.5.在ABC ∆中,90ACB ∠=o ,2AC BC ==,以点B 为圆心、1为半径作圆,设点M 为⊙B 上一点,线段CM 绕着点C 顺时针旋转90o ,得到线段CN ,连接BM 、AN .(1)在图中,补全图形,并证明BM AN = .(2)连接MN ,若MN 与⊙B 相切,则BMC ∠的度数为 .(3)连接BN ,则BN 的最小值为 ;BN 的最大值为 . 6.如图,在等边△ABC 中,点D 是 AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE ∥BC .7.如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°,点P 为直线BD ,CE 的交点.(1)如图,将△ADE 绕点A 旋转,当D 在线段CE 上时,连接BE ,下列给出两个结论:①BD =CD +2AD ;②BE 2=2(AD 2+AB 2).其中正确的是 ,并给出证明.(2)若AB =4,AD =2,把△ADE 绕点A 旋转,①当∠EAC =90°时,求PB 的长;②旋转过程中线段PB 长的最大值是 .8.如图,在ABC V 中,90C ∠=︒,10AB =,8AC =,将线段AB 绕点A 按逆时针方向旋转90︒到线段AD .EFG V 由ABC V 沿CB 方向平移得到,且直线EF 过点D .(1)求1∠的大小;(2)求AE 的长.9.问题的提出:如果点P 是锐角△ABC 内一动点,如何确定一个位置,使点P 到△ABC 的三顶点的距离之和PA+PB+PC 的值为最小?问题的转化:(1)把ΔAPC 绕点A 逆时针旋转60度得到AP C V ,''连接PP ',这样就把确定PA+PB+PC 的最小值的问题转化成确定BP PP P C +'+''的最小值的问题了,请你利用如图证明: +PA PB PC BP PP P C +=+'+'';问题的解决:(2)当点P 到锐角△ABC 的三项点的距离之和PA+PB+PC 的值为最小时,请你用一定的数量关系刻画此时的点P 的位置:_____________________________;问题的延伸:(3)如图是有一个锐角为30°的直角三角形,如果斜边为2,点P 是这个三角形内一动点,请你利用以上方法,求点P 到这个三角形各顶点的距离之和的最小值.10.在矩形ABCD 中,点P 在AD 上,AB=2,AP=1.直角尺的直角顶点放在点P 处,直角尺的两边分别交AB 、BC 于点E 、F ,连接EF(如图1).(1)当点E 与点B 重合时,点F 恰好与点C 重合(如图2).①求证:△APB ∽△DCP ;②求PC 、BC 的长.(2)探究:将直角尺从图2中的位置开始,绕点P 顺时针旋转,当点E 和点A 重合时停止.在这个过程中(图1是该过程的某个时刻),观察、猜想并解答:① tan ∠PEF 的值是否发生变化?请说明理由.② 设AE=x ,当△PBF 是等腰三角形时,请直接写出x 的值.11.如图1所示,点O 为直线AB 上一点,过点O 作射线OC ,使60AOC ︒∠=,将一块透明的三角尺的直角顶点放在点O 处,边OM 在射线OB 上,边ON 在直线AB 的下方.(1)将图1中的三角尺绕点O 逆时针旋转至如图2所示的位置,使边OM 在BOC ∠的内部,且恰好平分BOC ∠,求CON ∠的度数.(2)将图1中的三角尺绕点O 按每秒10︒的速度逆时针旋转一周,在旋转过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,则t 的值为________(直接写出结果).(3)将图1中的三角尺绕点O 逆时针旋转至如图3所示的位置,使ON 在AOC ∠的内部,请探究AOM ∠与NOC ∠之间的关系,并说明理由.12.如图1,在平面直角坐标系,O 为坐标原点,点A (﹣2,0),点B (0,3.(1)直接写求∠BAO 的度数;(2)如图1,将△AOB 绕点O 顺时针得△A ′OB ′,当A ′恰好落在AB 边上时,设△AB ′O 的面积为S 1,△BA ′O 的面积为S 2,S 1与S 2有何关系?为什么?(3)若将△AOB 绕点O 顺时针旋转到如图2所示的位置,S 1与S 2的关系发生变化了吗?证明你的判断.13.已知平行四边形ABCD .(1)如图1,将▱ABCD 绕点D 逆时针旋转一定角度得到▱A 1B 1C 1D ,延长B 1C 1,分别与BC 、AD 的延长线交于点M 、N .①求证:∠BMB 1=∠ADA 1;②求证:B 1N =AN +C 1M ;(2)如图2,将线段AD 绕点D 逆时针旋转,使点A 的对应点A 1落在BC 上,将线段CD 绕点D 逆时针旋转到C 1D 的位置,AC 1与A 1D 交于点H .若H 为AC 1的中点,∠ADC 1+∠A 1DC =180°,A 1B =nA 1C ,试用含n 的式子表示1A H DH的值. 14.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆.(1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系:______;(2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由;(3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.15.在△ABC 中,AB =AC ,∠BAC =90°,D 为平面内的一点.(1)如图1,当点D 在边BC 上时,且∠BAD =30°,求证:AD 2BD .(2)如图2,当点D 在△ABC 的外部,且满足∠BDC ﹣∠ADC =45°,求证:BD 2AD . (3)如图3,若AB =4,当D 、E 分别为AB 、AC 的中点,把△DAE 绕A 点顺时针旋转,设旋转角为α(0<α≤180°),直线BD 与CE 的交点为P ,连接PA ,直接写出△PAC 面积的最大值.16.如图,△ABC 为等边三角形,点P 是线段AC 上一动点(点P 不与A ,C 重合),连接BP ,过点A 作直线BP 的垂线段,垂足为点D ,将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接DE ,CE .(1)求证:BD =CE ;(2)延长ED 交BC 于点F ,求证:F 为BC 的中点;(3)在(2)的条件下,若△ABC 的边长为1,直接写出EF 的最大值.17.如图,在平面直角坐标系中,Rt △ABC 的顶点分别是A (﹣3,1)B (0,4)C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1;(2)分别连接AB 1,BA 1后,求四边形AB 1A 1B 的面积.18.已知AOB 90∠=︒,COD 60∠=︒,按如图1所示摆放,将OA 、OC 边重合在直线MN 上,OB 、OD 边在直线MN 的两侧;(1)保持AOB ∠不动,将COD ∠绕点O 旋转至如图2所示的位置,则①AOC BOD ∠∠+= ;②BOC AOD ∠∠-= ;(2)若COD ∠按每分钟5︒的速度绕点O 逆时针方向旋转,AOB ∠按每分钟2︒的速度也绕点O 逆时针方向旋转,OC 旋转到射线ON 上时都停止运动,设旋转t 分钟,计算MOC AOD ∠∠-(用t 的代数式表示)。
2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(试题部分)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A .B .C .D .7.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D .10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A .B .C .D .13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .24.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x =>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠= .26.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为 .27.(2024·内蒙古呼伦贝尔·中考真题)如图,点()0,2A −,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是 .28.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为29.(2024·江苏苏州·中考真题)如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .三、解答题30.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 31.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm 的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)32.(2024·吉林长春·中考真题)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.33.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A −,()2,3B −,()5,2C −.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π) 34.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.35.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 36.(2024·北京·中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C '在O 上或其内部,且ACB α∠=,则称点C 是弦AB 的“α可及点”.(1)如图,点()0,1A ,()1,0B .①在点()12,0C ,()21,2C ,31,02C ⎛⎫ ⎪⎝⎭中,点___________是弦AB 的“α可及点”,其中α=____________︒;②若点D 是弦AB 的“90︒可及点”,则点D 的横坐标的最大值为__________;(2)已知P 是直线y =且存在O 的弦MN ,使得点P 是弦MN 的“60︒可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(答案详解)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】本题考查了中心对称图形与轴对称图形的概念,正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D.该标点符号不是轴对称图形,故此选项不符合题意.故选:A.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm【答案】A【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,∴阴影图形的周长是:480280220440cm⨯+⨯−⨯=,故选:A.6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A.B.C.D.【答案】A【分析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C. 不是轴对称图形,故此选项不符合题意;D. 不是轴对称图形,故此选项不符合题意;故选:A.7.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键. 根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形【答案】A【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D . 【答案】B【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的定义是解题的关键.【详解】解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形,也是中心对称图形,故符合题意;C、不是轴对称图形,也不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B.11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.图案不成轴对称,故不符合题意;B.图案成轴对称,故符合题意;C.图案不成轴对称,故不符合题意;D.图案不成轴对称,故不符合题意;故你:B.13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、是轴对称图形,不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D . 【答案】C【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−【答案】A【分析】本题考查了一次函数与坐标轴的交点坐标,点的对称,属于简单题,求交点坐标是解题关键.16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒ 由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;OH ,可得 GOD ∠=,即可判断;掌握轴对称的性质是解题的关键.A.OE OF ⊥,90︒,点的中点,OAB 与ODC 都是等腰三角形,由对称得OAB ODC ≌,F 分别是底边AB ,,结论正确,故不符合题意;O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒,GOD BOH ∴∠=∠,由对称得GOD COH ∴∠=∠,同理可证AOD ∠∴故选:B 17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q −,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98−+−,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标. 【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B , ∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .【答案】()1,4【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,画出图形,结合图形的对称性可直接得出()1,4D .【详解】解:∵点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,∴AD BC =,AC BD =,∴可画图形如下,由图可知点C 、D 关于线段AB 的垂直平分线2x =对称,则()1,4D .故答案为:()1,4.20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .【答案】3【分析】本题考查了折叠的性质和勾股定理,熟练掌握勾股定理是解题的关键. 设CE x =,则8AE BE x ==−,根据勾股定理求解即可.【详解】解:由折叠的性质,得AE BE =,设CE x =,则8AE BE x ==−,由勾股定理,得222BC CE BE +=,∴()22248x x +=−,解得3x =.故答案为:3.21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .出A EF A B C ''''∽,根据对应边上的中线比等于相似比,利用面积公式进行求解即可.【详解】解:∵等腰ABC 中,30ABC ∠=︒,AD 为中线,AD BC ⊥,BD CD =,∵将ABC 沿其底边中线,C BC B '∥∴A EF A B C ''''∽,EF A D B C A G'=''', 13AA AD '=,3223DA AD A G '='=2EF A D '22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .∵4AB =,30ABC ∠=︒,在ABCD Y ∴122AH AB ==,AD BC ∥,∴24AA AH '==,AA AD '⊥,∵5AD =,23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,。
中考冲刺:数形结合问题—巩固练习(提高)【巩固练习】一、选择题1.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通.现要向甲池中注水,若单位时间内的注水量不变,那么,从注水开始,水池乙水面上升的高度h与注水时间t之间的函数关系的图象可能是()2.若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序.①小车从光滑的斜面上滑下(小车的速度与时间的关系)②一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系)③运动员推出去的铅球(铅球的高度与时间的关系)④小杨从A到B后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( )A.③④②① B.①②③④ C.②③①④ D.④①③②二填空题3. 如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P有个.4.如下图所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上:先让原点与圆周上数字0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4……所对应的点分别与圆周上1,2,0,1,……所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上的数字a与数轴上的数5对应,则a= ;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是(用含n的代数式表示).5.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的_________点.三、解答题6.将如图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图所示.在这三种情况下,水槽内的水深h (cm )与注水时间 t ( s )的函数关系如上图1-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;(2)水槽的高h= cm ;石块的长a= cm ;宽b= cm ;高c= cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .7.在数学活动中,小明为了求23411111+++++22222n …的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求23411111+++++22222n …的值为_______; (2)请你利用图2,再设计一个能求23411111+++++22222n …的值的几何图形.8.探索研究:如图,在直角坐标系xOy 中,点P 为函数y =14x 2在第一象限内的图象上的任一点,点A 的坐标为12 122 123124 … (图1)(图2)(0,1),直线l 过B (0,-1)且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C ,Q ,连结AQ 交x 轴于H ,直线PH 交y 轴于R . (1)求证:H 点为线段AQ 的中点;(2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形; (3)除P 点外,直线PH 与抛物线y =14x 2有无其它公共点?并说明理由.9.阅读材料,解答问题.利用图象法解一元二次不等式:x 2﹣2x ﹣3>0.解:设y=x 2﹣2x ﹣3,则y 是x 的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3.∴由此得抛物线y=x 2﹣2x ﹣3的大致图象如图所示. 观察函数图象可知:当x <﹣1或x >3时,y >0.∴x 2﹣2x ﹣3>0的解集是:x <﹣1或x >3.(1)观察图象,直接写出一元二次不等式:x 2﹣2x ﹣3<0的解集是 _________ ;(2)仿照上例,用图象法解一元二次不等式:x 2﹣1>0(画出草图).10.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米. ①如图1,若小明在相距10米的两路灯AB 、CD 之间行走(不含两端),他前后的两个影子长分别为 FM=x 米,FN=y 米,试求y 与x 之间的函数关系式,并指出自变量x 的取值范围?x lQC PA OB HRy②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图(实线表示乌龟,虚线表示兔子).【答案与解析】一、选择题1.【答案】C;2.【答案】A;二、填空题3.【答案】5.【解析】如图,分别以一顶点为定点,连接其与另一顶点的连线,在此图形中根据平行线分线段成比例定理可知,CD∥BE∥AF,ED∥FC∥AB,EF∥AD∥BC,EC∥FB,AE∥BD,AC∥FD,根据垂直平分线的性质及正六边形的性质可知,相互平行的一组线段的垂直平分线相等,在这五组平行线段中,AE、BD与AB垂直,其中垂直平分线必与AB平行,故无交点.故直线AB上会发出警报的点P有:CD、ED、EF、EC、AC的垂直平分线与直线AB的交点,共五个.4.【答案】(1)2 (2)3n+1;【解析】(1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上数字a与数轴上的数5对应时a=2;(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上了数字0、1、2与正半轴上的整数每3个一组0、1、2,3、4、5,6、7、8,…分别对应,∴数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.故答案为:a=2;3n+1.5.【答案】点Q.三、解答题6.【答案与解析】(1)(1)图1与图4相对应,图2与图6相对应,图3与图5相对应;(2)10; a=10; b=9; c=6.(3)由题意可知C点的坐标为(45,9),D点的坐标为(53,10),设直线CD的函数关系式为h=kt+b,∴945, 1053k bk b =+⎧⎨=+⎩解得1,8.278 kb⎧=⎪⎪⎨⎪=⎪⎩∴直线CD的函数关系式为h=127 88t+;(4)石块的体积为abc=540cm3,根据图4和图6可得:10540(106)535321s s--=-. 解得S=160(cm ).7.【答案与解析】(1)设总面积为:1,最后余下的面积为:12n , 故几何图形的值为:23411111+++++22222n …的值为112n -.故答案为:112n -.8.【答案与解析】(1)证明:∵A(0,1),B (0,﹣1),∴OA=OB. 又BQ∥x 轴, ∴HA=HQ;(2)证明:①由(1)可知AH=QH ,∠AHR=∠QHP,∵AR∥PQ,∴∠RAH=∠PQH, ∴△RAH≌△PQH. ∴AR=PQ, 又AR∥PQ,∴四边形APQR 为平行四边形; ②设P (m ,m 2),∵PQ∥y 轴,则Q (m ,﹣1),则PQ=1+m 2. 过P 作PG⊥y 轴,垂足为G .在Rt△APG中,AP=+1=PQ,∴平行四边形APQR为菱形;(3)解:设直线PR为y=kx+b,由OH=CH,得H(,0),P(m,m2).代入得:,∴,∴直线PR为.设直线PR与抛物线的公共点为(x,x2),代入直线PR关系式得:x2﹣x+m2=0,(x﹣m)2=0,解得x=m.得公共点为(m,m2).所以直线PH与抛物线y=x2只有一个公共点P.9.【答案与解析】解:(1)-1<x<3;(2)设y=x2-1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-1=0,解得x1=-1,x2=1.∴由此得抛物线y=x2-1的大致图象如图所示.观察函数图象可知:当x<-1或x>1时,y>0.∴x2-1>0的解集是:x<-1或x>1.10.【答案与解析】解:(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①===.∴=,MB=3x BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<,②如图2所示,设运动时间为t秒,则EE′=FF′=0.8t, ∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴∴∵EE′∥RR′,∴∠PEE'=∠PRR',∠PE′E=∠PR′R,∴△PEE′∽△PRR′,∴∴∴RR'=1.2t∴1.2t= 1.2(Vt=影子米/秒)1.2t= 1.2(Vt=影子米/秒).(2)如图3所示.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考总复习:图形的变换--巩固练习(提高)【巩固练习】一、选择题1.有下列四个说法,其中正确说法的个数是( ) ①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度; ③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化. A. 1个 B.2个 C. 3个 D.4个2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.(2017•大连模拟)如图,折叠直角三角形ABC 纸片,使两锐角顶点A 、C 重合,设折痕为DE.若AB=4,BC=3,则BD 的值是( )A .78 B .1 C .98 D .234.如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为( ).A 、30°B 、60°C 、120°D 、180°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ).A.20B.22C.24D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .10二、填空题7.(2017·郑州一模)如图,在Rt △A BC 中,∠A CB =90°,AB=5,AC=3,点D 是BC 上一动点,连结AD ,将△ADC 沿AD 折叠,点C 落在点C ',连结C ’D 交AB 于点E ,连结BC ’.当△BC ’D 是直角三角形时,DE 的长为 .8.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第7题 第8题9.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,连结AM (如图所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 .10.如图,在∆ABC 中,MN//AC ,直线MN 将∆ABC 分割成面积相等的两部分,将∆BMN 沿直线MN 翻折,点B 恰好落在点E 处,联结AE ,若AE//CN ,则AE:NC= .第9题 第10题11.(2016•闸北区一模)如图,将一张矩形纸片ABCD 沿着过点A 的折痕翻折,使点B 落在AD 边上的点F ,折痕交BC 于点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于点G ,则CG :GD 的值为 .12.如图,在计算机屏幕上有一个矩形画刷ABCD ,它的边AB =l ,.把ABCD 以点B 为中心按顺时针方向旋转60°,则被这个画刷着色的面积为________.三、解答题13. 如图(1)所示,一张三角形纸片ABC ,6,8,90==︒=∠BC AC ACB .沿斜边AB 的中线CD 把这线纸片剪成11D AC ∆和22D BC ∆两个三角形如图(2)所示.将纸片11D AC ∆沿直线B D 2(AB )方向平移(点B D D A ,,,21始终在同一条直线上),当点1D 与点B 重合时,停止平移,在平移的过程中,11D C 与2BC 交于点E ,1AC 与222,BC D C 分别交于点F ,P.(1)当11D AC ∆平移到如图(3)所示的位置时,猜想图中E D 1与F D 2的数量关系,并证明你的猜想. (2)设平移距离12,D D 为x ,11D AC ∆与22D BC ∆重叠部分的面积为y ,请写出y 与x 的函数关系式,以及自变量x 的取值范围;(3)对于(2)中的结论是否存在这样的x ,使得重叠部分面积等于原ABC ∆纸片面积的41?若存在,请求出x 的值;若不存在,请说明理由.14.(2015•河南)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,= ;②当α=180°时,= .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.15.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.16.已知抛物线经过点 A(0,4)、B(1,4)、C(3,2),与x轴正半轴交于点D.(1)求此抛物线的解析式及点D的坐标;(2)在x轴上求一点E,使得△BCE是以BC为底边的等腰三角形;(3)在(2)的条件下,过线段ED上动点P作直线PF//BC,与BE、CE分别交于点F、G,将△EFG沿FG 翻折得到△E′FG.设P(x,0),△E′FG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x 的取值范围.【答案与解析】 一.选择题 1.【答案】C . 2.【答案】A. 3.【答案】A .【解析】连接DC ,AD=DC ,设DB=x ,则AD=DC=4-x ,由勾股定理可得()22234x x +=-,解得78x =. 4.【答案】B.【解析】正六边形被平分成六部分,因而每部分被分成的圆心角是60°,因而旋转60度的整数倍,就可以与自身重合.则α最小值为60度.故选B . 5.【答案】C.【解析】Rt △PHF 中,有FH=10,则矩形ABCD 的边BC 长为PF+FH+HC=8+10+6=24,故选C . 6.【答案】B. 二.填空题 7.【答案】32或34. 【解析】当点E 与点C ’重合时,BC=4,由翻折性质:AE=AC=3,DC=DE ,则EB=2. 设CD=ED=x ,则BD=4-x ,()22224x x +=-,解得32x =,则32DE =; 当∠EDB=90°,由翻折性质:AC=AC ’, ∠C=∠C ’=90°=∠CDC ’,∴四边形ACDC ’是正方形, ∴CD=AC=3,DB=1,由AC ∥DE ,△BDE ∽△BCA ,∴14DE DB AC CB ==,解得DE=34, 点D 在CB 上运动,∠DBC ’<90°,故∠DBC ’不可能为直角.8.【答案】30°. 9.【答案】2. 10.【答案】2:1.【解析】利用翻折变换的性质得出BE ⊥MN ,BE ⊥AC ,进而利用相似三角形的判定与性质得出对应边之间的比值与高之间关系,即可得出答案. 11.【答案】.【解析】如图所示:连接GE ,∵四边形ABCD 是矩形,∴∠BAD=∠C=ADC=∠B=90°,AB=CD ,AD=BC ,由折叠的性质得:∠DAE=∠BAE=45°,∠DAG=∠EAG=22.5°,AG ⊥DE , ∴GD=GE ,∴∠GDE=∠GED=∠DAG=22.5°, ∴∠CGE=∠GDE+∠GED=45°, ∴△CEG 是等腰直角三角形, ∴GD=GE=CG ,∴CG :GD=. 故答案为:.12.【答案】23+3π.【解析】首先理解题干条件可知这个画刷所着色的面积=2S△ABD+S扇形,扇形的圆心角为60°,半径为2,求出扇形面积和三角形的面积即可.三.综合题13.【解析】(1)D1E=D2F.∵C1D1∥C2D2,∴∠C1=∠AFD2.又∵∠ACB=90°,CD是斜边上的中线,∴DC=DA=DB,即C1D1=C2D2=BD2=AD1∴∠C1=∠A,∴∠AFD2=∠A∴AD2=D2F.同理:BD1=D1E.又∵AD1=BD2,∴AD2=BD1.∴D1E=D2F.(2)∵在Rt△ABC中,AC=8,BC=6,∴由勾股定理,得AB=10.即AD1=BD2=C1D1=C2D2=5又∵D2D1=x,∴D1E=BD1=D2F=AD2=5-x.∴C2F=C1E=x在△BC2D2中,C2到BD2的距离就是△ABC的AB边上的高,为245.设△BED1的BD1边上的高为h,由探究,得△BC2D2∽△BED1,∴52455h x-=.∴h=24(5)25x-.S△BED1=12×BD1×h=1225(5-x)2又∵∠C1+∠C2=90°,∴∠FPC2=90°.又∵∠C2=∠B,sinB=45,cosB=35.∴PC2=35x,PF=45x,S△FC2P=12PC2×PF=625x2而y=S△BC2D2-S△BED1-S△FC2P=12S△ABC-1225(5-x)2-625x2∴y=-1825x2+245x(0≤x≤5).(3)存在.当y=14S△ABC时,即-1825x2+245x=6,整理得3x2-20x+25=0.解得,x1=53,x2=5.即当x=53或x=5时,重叠部分的面积等于原△ABC面积的14.14.【解析】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴=.故答案为:.(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD﹣DE=8﹣2=6,由(2),可得,∴BD==.综上所述,BD的长为4或.15.【解析】(1)∵四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),∴B(3,1),若直线经过点A(3,0)时,则b=32,若直线经过点B(3,1)时,则b=52,若直线经过点C(0,1)时,则b=1,①若直线与折线OAB的交点在OA上时,即1<b≤32,如图1,此时E(2b,0)∴S=12OE•CO=12×2b×1=b;②若直线与折线OAB的交点在BA上时,即32<b<52,如图2此时E(3,b-32),D(2b-2,1),∴S=S矩-(S△OCD+S△OAE+S△DBE)=3-[12(2b-2)×1+12×(5-2b)•(52-b)+12×3(b-32)]=52b-b2;(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形根据轴对称知,∠MED=∠NED又∵∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题意知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHN中,由勾股定理知:a2=(2-a)2+12,∴a=54,∴S四边形DNEM=NE•DH=54.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.16.【解析】(1)抛物线的解析式为,点D(4,0).(2)点E(,0).(3)可求得直线BC的解析式为.从而直线BC与x轴的交点为H(5,0).如图1,根据轴对称性可知S△E ′FG=S△EFG,当点E′在BC上时,点F是BE的中点.∵ FG//BC,∴△EFP∽△EBH.可证 EP=PH.∵ E(-1,0), H(5,0),∴ P(2,0).(i) 如图2,分别过点B、C作BK⊥ED于K,CJ⊥ED于J,则.当-1<x≤2时,∵ PF//BC,∴△EGP∽△ECH,△EFG∽△EBC.∴,∵ P(x,0), E(-1,0), H(5,0),∴ EP=x+1,EH=6.∴.图2 图3 (ii) 如图3,当2<x ≤4时,在x轴上截取一点Q,使得PQ=HP,过点Q作QM//FG,分别交EB、EC于M、N.可证S=S四边形MNGF,△ENQ∽△ECH,△EMN∽△EBC.∴,.∵ P(x,0),E(-1,0),H(5,0),∴ EH=6,PQ=PH=5-x,EP=x+1,EQ=6-2(5-x)=2x-4.∴.同(i)可得,∴.综上,中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:数与式综合复习—知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c =a+(b+c); 乘法交换律 ab =ba ;乘法结合律 (ab)c =a(bc); 分 配 律 a(b+c)=ab+ac .(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减. 算式里如果有括号,先进行括号内的运算. 如果只有同一级运算,从左到右依次运算. 7.平方根如果x 2=a ,那么x 就叫做a 的平方根(也叫做二次方根). 要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根. 8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零. 要点诠释:从算术平方根的概念可以知道,算术平方根是非负数. 9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字. 10.科学记数法把一个数记成±a ×10n的形式(其中n 是整数,a 是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质 1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式:(1(2)a a +-互为有理化因式;一般地a a +-(3. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a aa b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m mm ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1pp a a-=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(33256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数, 故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题. 举一反三:【课程名称:数与式综合复习 402392 :例1—2】【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭;【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭21.50.4 1.4 1.5 1.42.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2, ∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义? (1)32x -; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围.【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0,∴ 当12x ≤,且x ≠-5时,125x x -+有意义.【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【课程名称:数与式综合复习 402392 :例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7… 黑白两种瓷砖的总块数 15 25… (2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7 10… 黑白两种瓷砖的总块数 15 25 35 …(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,精品文档 用心整理资料来源于网络 仅供免费交流使用 解得:n=503答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=22(35)7113++=(cm). 113。
初中数学 图形变化一.填空题(共20小题)1.如图,分别以ABC ∆的边AB ,AC 所在直线为对称轴作ABC ∆的对称图形ABD ∆和ACE ∆,150BAC ∠=︒,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA .有如下结论:①90EAD ∠=︒;②60BOE ∠=︒;③OA 平分BOC ∠;④2EA ED =;⑤BP EQ =.其中正确的结论个数为 .2.常见的汉字中,列举三个是轴对称图形的字: .3.小刚从镜子中看到的电子表的读数是[15:01],则电子表的实际度数是 . 4.在平面直角坐标系中点(2,3)P -关于x 轴的对称点在第 象限. 5.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为 .6.如图,将周长为18cm 的ABC ∆沿BC 平移1cm 得到DBF ∆.则AD = cm .7.线段AB 平移后得到线段CD ,已知(2,3)A 的对应点为(1,4)C -,则(3,2)B 的对应点D 的坐标为 .8.类比学习:如图1,我们将数轴水平放置称为x 轴,将数轴竖直放置称为y 轴,x 轴与y 轴的交点称为原点O ,由x 轴、y 轴及原点O 就组成了一个平面一动点沿着x 轴方向向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3(2)1+-=.若平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移回个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移固b 个单位), 则把有序数对{a ,}b 叫做这一平移的“平移量”:“平移量” {a ,}b 与“平移量” {c ,}d 的加法运算法则为:{a ,}{b c +,}{d a c =+,}b d +解决问题:(1)计算:{3,1}{1+,2}= ,{1,2}{3+,1}= .(2)①动点P 从坐标原点O 出发,先按照“平移量” {3,1}平移到A (如图),再按照“平移量” {1,2}平移到B :若先把动点P 按照“平移量” {1,2}平移到C ,再按照“平移量” {3,1}平移,最后的位置还是点B 吗? (填写“是”或“不是”)②在图1中画出四边形OABC .(3)如图2,一艘船从码头O 出发,先航行到潮心岛码头(2,3)P ,再从码头P 航行到码头(5,5)Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行过程: .9.如图,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到△A B C '',M 是BC 的中点,P 是A B ''的中点,连接PM ,若2BC =,30BAC ∠=︒,则线段PM的最大值是 .10.如图,将此图案绕其中心旋转,当第一次与自身重合时,其旋转角的大小为 度.11.王明、杨磊两家所在位置关于学校成中心对称.如果王明距学校500米,那么他们两家相距 米.12.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为 .13.已知52a b b +=,则ab= . 14.已知三条线段的长分别为1cm ,2cm 2cm ,如果另外一条线段与它们是成比例线段,那么另外一条线段的长为 .15.已知点C 是线段AB 的黄金分割点,20AB =厘米,则较长线段AC 的长是 厘米.(结果可以保留根号)16.D 、E 是ABC ∆的AB 、AC 边上的点,//DE BC ,2AD =,3DB =, 5.5AC =,则AE = .17.在Rt ABC ∆中,90C ∠=︒,6BC =,8AC =,则cos B 的值是 . 18.已知7sin cos 5αα+=,则sin cos αα= .19.锐角α和锐角β互余,记sin sin f αβ=+,则f 的取值范围为 . 20.已知tan 1A ∠=,则锐角A = 度.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.解答题(共30小题)21.在等边三角形ABC,点D在BC上,点E在AG的延长线上,DE DA=(如图1).(1)求证:BAD EDC∠=∠;(2)若点E关于直线BC的对称点为M,连DM,AM,请判断ADM∆的形状,并说明理由.22.下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充,使得图1成为轴对称图形,使得图2成为至少有4条对称轴且阴影部分面积等于3的图形,使得图3成为至少有2条对称轴且面积不超过6的图形.23.在平面直角坐标系中,将坐标是(0,4)D的点用线段依C,(4,4)B,(3,0)A,(1,0)次连接起来形成一个图案.(1)在如图所示的平面直角坐标系中画出这个图案;(2)若将上述各点的横坐标保持不变,纵坐标分别乘以1-,再将所得的各个点用线段依次连接起来,画出所得的图案;所得的图案与原图案有怎样的位置关系?24.如图,在平面直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)若ABC ∆内有一点(,)P a b 随着ABC ∆平移后到了点(4,1)P a b '+-,直接写出A 点平移后对应点A '的坐标.(2)直接作出ABC ∆关于y 轴对称的△A B C '''(其中A '、B '、C '分别是A 、B 、C 的对应点)(3)求四边形ABC C '的面积.25.如图,由4个全等的正方形组成L 形图案,请你在图案中改变1个正方形的位置,使它变成轴对称图案.(只需画出3个)26.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.(1)请利用平移的知识求出种花草的面积.(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?(3)如图,一块边长为a 米的正方形土地,在上面修了3条道路,宽都是b 米,空白的部分种上各种花草,则求出种花草的面积.27.(1)如图1,已知//MN PQ ,B 在MN 上,D 在PQ 上,点E 在两平行线之间,求证:BED PDE M BE ∠=∠+∠;(2)如图2,已知//MN PQ ,B 在MN 上,C 在PQ 上,A 在B 的左侧,D 在C 的右侧,DE 平分ADC ∠,BE 平分ABC ∠,直线DE 、BE 交于点E ,100CBN ∠=︒. ①若130ADQ ∠=︒,求BED ∠的度数;②将线段AD 沿DC 方向平移,使得点D 在点C 的左侧,其他条件不变,如图3所示.若ADQ n ∠=︒,则BED ∠的度数是 度(用关于n 的代数式表示). 28.如图,在平面直角坐标系xOy 中,已知(1,2)P . (1)在平面直角坐标系中描出点P (保留画图痕迹);(2)如果将点P 向左平移3个单位长度,再向上平移1个单位长度得到点P ',则点P '的坐标为 .(3)点A 在坐标轴上,若2OAP S ∆=,直接写出满足条件的点A 的坐标.29.如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由三角形③能得到三角形④吗?(3)根据对称性由三角形③可得三角形①,②,它们的顶点坐标各是什么?30.已知在平面直角坐标系中有三点(2,1)A-、(3,1)B、(2,3)C,请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.31.如图,四边形ABCD是正方形,ADF∆旋转一定角度后得到ABE∆,且点E在线段AD上,若4AF=,60F∠=︒.(1)指出旋转中心和旋转角度;(2)求DE的长度和EBD∠的度数.32.某数学兴趣小组根据学习函数的经验,对分段函数223(1)1(1)ax bx xyx x⎧+-=⎨-<⎩…的图象与性质进了探究,请补充完整以下的探索过程.x⋯ 2-1-0 1 2 3 4 ⋯ y⋯31-13-⋯(1)填空:a = .b = .(2)①提上述表格补全函数图象;②该函数图象是关于 对称的 (横线上填轴对称或中心对称)图形.(3)若直线12y x t =+与该函数图象有三个交点,直接写出t 的取值范围. 33.已知点2(2,4)P x y +与2(1Q x +,4)y -关于原点对称,求x y +的值. 34.如图所示,ABC ∆的顶点分别为(2,3)A -,(4,1)B -,(1,2)C -.(1)ABC ∆关于直线2x =(平行于y 轴且该直线上的点的横坐标均为2)对称的图形为△111A B C ,则1A ,1B ,1C 的坐标分别为1(A ),1(B ),1(C ); (2)求△111A B C 的面积.35.如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为(5,1)A -,(2,2)B -,(1,4)C -,请按下列要求画图:(1)将ABC ∆先向右平移4个单位长度、再向下平移1个单位长度,得到△111A B C ,画出△111A B C ;(2)画出与ABC ∆关于原点O 成中心对称的△222A B C ,并直接写出点2A 的坐标.36.已知234x y z==,且2318x y z +-=,求43x y z +-的值. 37.(1)已知a ,b ,c ,d 是成比例线段,其中2a cm =,3b cm =,6d cm =,求线段c 的长; (2)已知234a b c==,且515a b c +-=,求c 的值. 38.若等腰三角形的顶角为36︒,则这个三角形称为黄金三角形.如图,在ABC ∆中,BA BC =,D 在边CB 上,且DB DA AC ==.(1)如图1,写出图中所有的黄金三角形,并证明;(2)若M 为线段BC 上的点,过M 作直线MH AD ⊥于H ,分别交直线AB ,AC 于点N ,E ,如图2,试写出线段BN 、CE 、CD 之间的数量关系,并加以证明.39.如图,在ABC ∆中,D ,E 分别是AB 和AC 上的点,且//DE BC . (1)若5AD =,6DB =,12EC =,求AE 的长; (2)若10AB =,4AD =,6AE =,求EC 的长.40.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点: 观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知ABC ∆,6AC =,8BC =,10AB =,将ABC ∆按图3的方式向外扩张,得到DEF ∆,它们对应的边间距都为m ,15DE =,求DEF ∆的面积.41.如图,半径为4的O e 内一点A ,23OA =.点P 在B e 上,当OPA ∠最大时,求PA 的长.42.如图,在Rt ABC ∆中,90?C ∠=,3tan 4A =,6BC =,求AC 的长和sin A 的值.43.计算:22cos 30sin 45tan60tan30︒+︒-︒︒g44.如图,Rt ABC ∆中,90A ∠=︒,AD 、AE 分别是BC 边的中线和高,若3cos 5B =,10BC =.(1)求AB 的长; (2)求AE 的长;(3)求sin ADB∠的值.45.如表是小菲填写的实践活动报告的部分内容.题目测量铁塔顶端到地面的高度测量目标示意图相关数据25CE=米,10CD=米,44FDG∠=︒求铁塔的高度FE.(结果精确到1米)【参考数据:sin440.69︒=,cos440.72︒=,tan440.97︒=】46.画出如图图形的三视图.47.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.48.一个几何体的三视图如图所示,(1)请判断该几何体的形状;(2)求该几何体的体积.49.(1)计算:1022(21)sin 453tan30π-+--︒-︒ (2)一个几何体的三视图如图所示,主、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体为 ,求它的侧面展开图的面积是多少?50.画出如图由7个小立方块搭成的几何体的三视图.参考答案与试题解析一.填空题(共20小题)1.如图,分别以ABC ∆的边AB ,AC 所在直线为对称轴作ABC ∆的对称图形ABD ∆和ACE ∆,150BAC ∠=︒,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA .有如下结论:①90EAD ∠=︒;②60BOE ∠=︒;③OA 平分BOC ∠;④2EA ED =;⑤BP EQ =.其中正确的结论个数为 3 .【解答】解:ABD ∆Q 和ACE ∆是ABC ∆的轴对称图形,BAD CAE BAC ∴∠=∠=∠,AB AE =,AC AD =,3360315036090EAD BAC ∴∠=∠-︒=⨯︒-︒=︒,故①正确;1(36090150)602ABE CAD ∴∠=∠=︒-︒-︒=︒, 由翻折的性质得,AEC ABD ABC ∠=∠=∠,又EPO BPA ∠=∠Q ,60BOE BAE ∴∠=∠=︒,故②正确;ACE ADB ∆≅∆Q ,ACE ADB S S ∆∆∴=,BD CE =,BD ∴边上的高与CE 边上的高相等,即点A 到BOC ∠两边的距离相等,OA ∴平分BOC ∠,故③正确;只有当3AC AB =时,30ADE ∠=︒,才有12EA ED =,故④错误; 在ABP ∆和AEQ ∆中,ABD AEC ∠=∠,AB AE =,60BAE ∠=︒,90EAQ ∠=︒, BP EQ ∴<,故⑤错误;综上所述,结论正确的是①②③.故答案为3. 2.常见的汉字中,列举三个是轴对称图形的字: 日、中、工等 .【解答】解:列举三个是轴对称图形的字:日、中、工等.故答案为:日、中、工等.3.小刚从镜子中看到的电子表的读数是[15:01],则电子表的实际度数是 10:21 .【解答】解:如图:电子表的实际时刻是10:21.故答案为10:21.4.在平面直角坐标系中点(2,3)P -关于x 轴的对称点在第 三 象限.【解答】解:点(2,3)P -满足点在第二象限的条件.关于x 轴的对称点的横坐标与P 点的横坐标相同,是2-;纵坐标互为相反数,是3-,则P 关于x 轴的对称点是(2,3)--,在第三象限.故答案是:三5.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为 42 .【解答】解:多边形周长为:(516)221242+⨯=⨯=,故答案为:42.6.如图,将周长为18cm 的ABC ∆沿BC 平移1cm 得到DBF ∆.则AD = 1 cm .【解答】解:ABC ∆Q 沿BC 平移1cm 得到DBF ∆.1AD cm ∴=.故答案为1.7.线段AB 平移后得到线段CD ,已知(2,3)A 的对应点为(1,4)C -,则(3,2)B 的对应点D 的坐标为 (0,3) . 【解答】解:由题意:点(2,3)A 向左平移3个单位,再向上平移1个单位得到点(1,4)C -, ∴点(3,2)B 向左平移3个单位,再向上平移1个单位得到点D ,(0,3)D ∴,故答案为(0,3).8.类比学习:如图1,我们将数轴水平放置称为x 轴,将数轴竖直放置称为y 轴,x 轴与y 轴的交点称为原点O ,由x 轴、y 轴及原点O 就组成了一个平面一动点沿着x 轴方向向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3(2)1+-=.若平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移回个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移固b 个单位), 则把有序数对{a ,}b 叫做这一平移的“平移量”:“平移量” {a ,}b 与“平移量” {c ,}d 的加法运算法则为:{a ,}{b c +,}{d a c =+,}b d +解决问题:(1)计算:{3,1}{1+,2}= {4,3} ,{1,2}{3+,1}= .(2)①动点P 从坐标原点O 出发,先按照“平移量” {3,1}平移到A (如图),再按照“平移量” {1,2}平移到B :若先把动点P 按照“平移量” {1,2}平移到C ,再按照“平移量” {3,1}平移,最后的位置还是点B 吗? (填写“是”或“不是” )②在图1中画出四边形OABC .(3)如图2,一艘船从码头O 出发,先航行到潮心岛码头(2,3)P ,再从码头P 航行到码头(5,5)Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行过程: .【解答】解:(1){3,1}{1+,2}{4=,3}{+.{1,2}{3+,1}{4=,3}.故答案为{4,3},{4,3}.(2)①由(1)计算可知最后的位置是点B .故答案为是.②四边形OABC 如图所示.(3)过程是:{0,0}{2+,3}{3+,2}{5+-,5}{0-=,0}.9.如图,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到△A B C '',M 是BC 的中点,P 是A B ''的中点,连接PM ,若2BC =,30BAC ∠=︒,则线段PM 的最大值是 3 .【解答】解:如图连接PC .在Rt ABC ∆中,30A ∠=︒Q ,2BC =,4AB ∴=,根据旋转不变性可知,4A B AB ''==,A P PB ∴'=',122PC A B ∴=''=, 1CM BM ==Q ,又PM PC CM +Q „,即3PM „,PM ∴的最大值为3(此时P 、C 、M 共线).故答案为:3.10.如图,将此图案绕其中心旋转,当第一次与自身重合时,其旋转角的大小为120度.【解答】解:该图形被平分成三部分,旋转120︒的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为120︒.故答案为:120.11.王明、杨磊两家所在位置关于学校成中心对称.如果王明距学校500米,那么他们两家相距1000米.【解答】解:Q王明、杨磊两家所在位置关于学校成中心对称,∴王明、杨磊两家到学校距离相等,Q王明家距学校500米,∴他们两家相距1000米.故答案为:1000.12.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为①②.【解答】解:如图1:设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,则2(2)=++,l a b c根据图示,可得a b d b c d =+⎧⎨=+⎩①②, ①-②,可得:a b b c -=-,2b a c ∴=+,2(2)22()4()l a b c a c a c ∴=++=⨯+=+,或2(2)248l a b c b b =++=⨯=, 2()2l a c ∴+=,42l b =, Q 图形①的周长是2()a c +,图形②的周长是4b ,12的值一定, ∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道. ∴分割后不用测量就能知道周长的图形的标号为①②.故答案为:①②.13.已知52a b b +=,则a b= 32a b = . 【解答】解:由分比性质,得522a b b b +--=, 即32a b =, 故答案为:32a b =. 14.已知三条线段的长分别为1cm ,2cm ,2cm ,如果另外一条线段与它们是成比例线段,那么另外一条线段的长为 22cm 或2cm 或2cm . 【解答】解:设另外一条线段的长为a , 由题意,得122a =或12a =或12a =, 解得22a cm =或2cm 或2cm . 故答案为:22cm 或2cm 或2cm . 15.已知点C 是线段AB 的黄金分割点,20AB =厘米,则较长线段AC 的长是 10(51)- 厘米.(结果可以保留根号)【解答】解:如图:根据黄金分割定义可知:AB AC AC BC =, 设AC x =,则20BC x =-,∴2020x x x=-, 整理,得2204000x x +-=.解得11)x =,21)x =-(不符合题意,舍去)经检验:11)x =是原方程的根.所以AC 的长为1)厘米.故答案为1).16.D 、E 是ABC ∆的AB 、AC 边上的点,//DE BC ,2AD =,3DB =, 5.5AC =,则AE = 2.2 .【解答】解://DE BC Q ,::AD DB AE EC ∴=,即2:3:(5.5)AE AE =-,2.2AE ∴=.故答案为2.2.17.在Rt ABC ∆中,90C ∠=︒,6BC =,8AC =,则cos B 的值是35. 【解答】解:在Rt ABC ∆中,90C ∠=︒Q ,6BC =,8AC =,AB ∴=10==.63cos 105BC B AB ∴===. 故答案为:3518.已知7sin cos 5αα+=,则sin cos αα= 1225. 【解答】解:把7sin cos 5αα+=,两边平方得:249(sin cos )12sin cos 25αααα+=+=,即242sin cos 25αα=, 则12sin cos 25αα=, 故答案是:1225.19.锐角α和锐角β互余,记sin sin f αβ=+,则f 的取值范围为 1f <…【解答】解:90αβ+=︒Q ,sin sin(90)cos βαα∴=︒-=, sin cos 2sin(45)f ααα∴=+=+︒ αQ 是锐角,∴2sin(45)1α<+︒„, 12f ∴<„, 故答案为:12f <„20.已知tan 1A ∠=,则锐角A = 45 度.【解答】解:tan 1A ∠=Q , ∴锐角45A =︒.故答案为:45.二.解答题(共30小题)21.在等边三角形ABC ,点D 在BC 上,点E 在AG 的延长线上,DE DA =(如图1).(1)求证:BAD EDC ∠=∠;(2)若点E 关于直线BC 的对称点为M ,连DM ,AM ,请判断ADM ∆的形状,并说明理由.【解答】(1)证明:ABC ∆Q 是等边三角形 60BAC ACB B ∴∠=∠=∠=︒ 又BAC BAD DAC ∠=∠+∠Q ACB E EDC ∠=∠+∠又DE DA =QBAD EDC ∴∠=∠;(2)解:ADM ∆是等边三角形, 理由:Q 点E 、M 关于直线BC 对称 DE DM ∴=,DEC MDC ∠=∠ 又DE DA =Q∴=DM DA∴∆是等腰三角形ADM又BAD EDCQ∠=∠∴∠=∠BAD MDC又ADM MDC B BADQ∠+∠=∠+∠∴∠=∠=︒60ADM B∴∆是等边三角形.ADM22.下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充,使得图1成为轴对称图形,使得图2成为至少有4条对称轴且阴影部分面积等于3的图形,使得图3成为至少有2条对称轴且面积不超过6的图形.【解答】解:如图所示:23.在平面直角坐标系中,将坐标是(0,4)D的点用线段依C,(4,4)B,(3,0)A,(1,0)次连接起来形成一个图案.(1)在如图所示的平面直角坐标系中画出这个图案;(2)若将上述各点的横坐标保持不变,纵坐标分别乘以1-,再将所得的各个点用线段依次连接起来,画出所得的图案;所得的图案与原图案有怎样的位置关系?【解答】解:(1)如图所示:(2)由图可知,前后两个图形关于x 轴对称.24.如图,在平面直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)若ABC ∆内有一点(,)P a b 随着ABC ∆平移后到了点(4,1)P a b '+-,直接写出A 点平移后对应点A '的坐标.(2)直接作出ABC ∆关于y 轴对称的△A B C '''(其中A '、B '、C '分别是A 、B 、C 的对应点)(3)求四边形ABC C '的面积.【解答】解:(1)ABC ∆Q 内有一点(,)P a b 随着ABC ∆平移后到了点(4,1)P a b '+-,点(2,3)A -,∴点(2,2)A ';(2)如图所示:(3)四边形ABC C '的面积11154213543 5.5222=⨯-⨯⨯-⨯⨯-⨯⨯=.25.如图,由4个全等的正方形组成L 形图案,请你在图案中改变1个正方形的位置,使它变成轴对称图案.(只需画出3个)【解答】解:如图所示:.26.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.(1)请利用平移的知识求出种花草的面积.(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元? (3)如图,一块边长为a 米的正方形土地,在上面修了3条道路,宽都是b 米,空白的部分种上各种花草,则求出种花草的面积.【解答】解:(1)(82)(81)-⨯- 6742=⨯= (米2);答:种花草的面积为42米2. (2)462042110÷=(元),答:每平方米种植花草的费用是110元; (3)(2)()a b a b -⨯- 2222a ab ab b =--+22(32)a ab b =-+(米2).答:种花草的面积为22(32)a ab b -+米2.27.(1)如图1,已知//MN PQ ,B 在MN 上,D 在PQ 上,点E 在两平行线之间,求证:BED PDE M BE ∠=∠+∠;(2)如图2,已知//MN PQ ,B 在MN 上,C 在PQ 上,A 在B 的左侧,D 在C 的右侧,DE 平分ADC ∠,BE 平分ABC ∠,直线DE 、BE 交于点E ,100CBN ∠=︒. ①若130ADQ ∠=︒,求BED ∠的度数;②将线段AD 沿DC 方向平移,使得点D 在点C 的左侧,其他条件不变,如图3所示.若ADQ n ∠=︒,则BED ∠的度数是 12202n ︒-︒ 度(用关于n 的代数式表示). 【解答】解:(1)如图1中,作//EH PQ .//EH PQ Q ,//PQ MN , //EH MN ∴,PDE DEH ∴∠=∠,MBE BEH ∠=∠, DEB DEH BEH PDE MBE ∴∠=∠+∠=∠+∠.(2)①如图2中,100CBN ∠=︒Q , 80MBC ∴∠=︒,BE Q 平分MBC ∠,1402MBE MBC ∴∠=∠=︒,130ADQ ∠=︒Q , 50PDA ∴∠=︒,ED Q 平分PDA ∠,1252PDE PDA ∴∠=∠=︒,254065BED PDE MBE ∴∠=∠+∠=︒+︒=︒.②如图3中,ADQ n ∠=︒Q ,ED 平分ADC ∠, 1122CDE ADQ n ∴∠=∠=︒,11802PDE n ∴∠=︒-︒,40ABE ∠=︒Q ,111804022022BED PDE ABE n n ∴∠=∠+∠=︒-︒+︒=︒-︒.故答案为12202n ︒-︒.28.如图,在平面直角坐标系xOy 中,已知(1,2)P . (1)在平面直角坐标系中描出点P (保留画图痕迹);(2)如果将点P 向左平移3个单位长度,再向上平移1个单位长度得到点P ',则点P '的坐标为 (2,3)- .(3)点A 在坐标轴上,若2OAP S ∆=,直接写出满足条件的点A 的坐标.【解答】解:(1)点P 的位置如图所示,(2)将点P 向左平移3个单位长度,再向上平移1个单位长度得到点P ',则点P '的坐标为(2,3)-, 故填:(2,3)-;(3)点A 在坐标轴上,2OAP S ∆=,则点A 的坐标为(0,4)或(0,4)-或(2,0)或(2,0)-. 29.如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由三角形③能得到三角形④吗?(3)根据对称性由三角形③可得三角形①,②,它们的顶点坐标各是什么?【解答】解:(1)(1,1)--.--,(4,4)--,(3,5)(2)不能.(3)三角形②的顶点坐标分别为(1,1)-,(4,4)-,(3,5)-(三角形②与三角形③关于x 轴对称);三角形①的顶点坐标分别为(1,1),(4,4),(3,5)(由三角形③与三角形①关于原点对称可得三角形①的顶点坐标).30.已知在平面直角坐标系中有三点(2,1)A-、(3,1)C,请回答如下问题:B、(2,3)(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为(7,3)或(3,3)--.(直接写出答案)-或(2,1)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(7,3)或(3,3)--.-或(2,1)故答案为(7,3)或(3,3)-或(2,1)--. (3)线段BC在平移的过程中扫过的面积11122(33131223)7222OBC S ∆==⨯⨯-⨯⨯-⨯⨯-⨯⨯=.31.如图,四边形ABCD 是正方形,ADF ∆旋转一定角度后得到ABE ∆,且点E 在线段AD 上,若4AF =,60F ∠=︒.(1)指出旋转中心和旋转角度; (2)求DE 的长度和EBD ∠的度数.【解答】解:(1)若ADF ∆顺时针旋转一定角度后得到ABE ∆, 则旋转中心为点A ,旋转角为90︒;若ADF ∆逆时针旋转一定角度后得到ABE ∆, 则旋转中心为点A ,旋转角为270︒;(2)ADF ∆Q 以点A 为旋转轴心,顺时针旋转90︒后得到ABE ∆,4AE AF ∴==,60AEB F ∠=∠=︒,906030ABE ∴∠=︒-︒=︒, 28BE AE ∴==,2243AB BE AE ∴=-= Q 四边形ABCD 为正方形, 43AD AB ∴==45ABD ∠=︒, 434DE ∴=,15EBD ABD ABE ∠=∠-∠=︒.32.某数学兴趣小组根据学习函数的经验,对分段函数223(1)1(1)ax bx x y x x ⎧+-=⎨-<⎩…的图象与性质进了探究,请补充完整以下的探索过程.x⋯ 2-1-0 1 2 3 4 ⋯ y⋯31-13-⋯(1)填空:a = 1- .b = .(2)①提上述表格补全函数图象;②该函数图象是关于 对称的 (横线上填轴对称或中心对称)图形.(3)若直线12y x t =+与该函数图象有三个交点,直接写出t 的取值范围. 【解答】解:(1)把(1,0),(2,1)代入23y ax bx =+-得到304231a b a b +-=⎧⎨+-=⎩,解得14a b =-⎧⎨=⎩,故答案为1-,4.(2)函数图象如图所示,该函数关于点(1,0)成中心对称,是中心对称图形.故答案为(1,0),中心对称.(3)由2121y x ty x ⎧=+⎪⎨⎪=-⎩,消去y 得到22220x x t ---=, 当△0=时,116160t ++=,1716t =-, 由21243y x t y x x ⎧=+⎪⎨⎪=-+-⎩消去y 得到227260x x t -++=, 当△0=时,4916480t --=,116t =, 观察图象可知:当1711616t -<<时,直线12y x t =+与该函数图象有三个交点. 33.已知点2(2,4)P x y +与2(1Q x +,4)y -关于原点对称,求x y +的值. 【解答】解:Q 点2(2,4)P x y +与2(1Q x +,4)y -关于原点对称, 2120x x ∴++=,2440y y +-=,2(1)0x ∴+=,2(2)0y -=, 解得:1x =-,2y =, 1x y ∴+=.34.如图所示,ABC ∆的顶点分别为(2,3)A -,(4,1)B -,(1,2)C -.(1)ABC ∆关于直线2x =(平行于y 轴且该直线上的点的横坐标均为2)对称的图形为△111A B C ,则1A ,1B ,1C 的坐标分别为1(A 6,3 ),1(B ),1(C ); (2)求△111A B C 的面积.【解答】解:(1)如图所示,△111A B C 即为所求; 则1A ,1B ,1C 的坐标分别为1(6,3)A ,1(8,1)B ,1(5,2)C ; 故答案为:6,3;8,1;5,2;(2)△111A B C 的面积111321322112222=⨯-⨯⨯-⨯⨯-⨯⨯=.35.如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为(5,1)A -,(2,2)B -,(1,4)C -,请按下列要求画图:(1)将ABC ∆先向右平移4个单位长度、再向下平移1个单位长度,得到△111A B C ,画出△111A B C ;(2)画出与ABC ∆关于原点O 成中心对称的△222A B C ,并直接写出点2A 的坐标.【解答】解:(1)如图所示,△111A B C 即为所求.(2)如图所示,△222A B C 即为所求,点2A 的坐标为(5,1)-. 36.已知234x y z==,且2318x y z +-=,求43x y z +-的值. 【解答】解:设234x y zk ===, 可得:2x k =,3y k =,4z k =,把2x k =,3y k =,4z k =代入2318x y z +-=中, 可得:49418k k k +-=, 解得:2k =,所以4x =,6y =,8z =,把4x =,6y =,8z =代入43166242x y z +-=+-=-.37.(1)已知a ,b ,c ,d 是成比例线段,其中2a cm =,3b cm =,6d cm =,求线段c 的长; (2)已知234a b c==,且515a b c +-=,求c 的值. 【解答】解:(1)a Q ,b ,c ,d 是成比例线段∴a cb d =, 即236c =, 4c ∴=;(2)设234a b ck ===,则2a k =,3b k =,4c k =, 515a b c +-=Q 232015k k k ∴+-=解得:1k =-4c ∴=-.38.若等腰三角形的顶角为36︒,则这个三角形称为黄金三角形.如图,在ABC ∆中,BA BC =,D 在边CB 上,且DB DA AC ==.(1)如图1,写出图中所有的黄金三角形,并证明;(2)若M 为线段BC 上的点,过M 作直线MH AD ⊥于H ,分别交直线AB ,AC 于点N ,E ,如图2,试写出线段BN 、CE 、CD 之间的数量关系,并加以证明.【解答】解:(1)ABC ∆和ADC ∆都是黄金三角形,理由如下: BA BC =Q , BAC BCA ∴∠=∠,DB DA =Q , BAD B ∴∠=∠,DA AC ==Q ,2ADC C BAC B ∴∠=∠=∠=∠,又180B BAC C ∠+∠+∠=︒Q , 22180B B B ∴∠+∠+∠=︒, 36B DAC ∴∠=∠=︒,ABC ∴∆和ADC ∆都是黄金三角形;(2)CD BN CE =+,理由如下;由(1)知,36BAD B ∠=∠=︒,36CAD BAD ∠=︒=∠,AD ∴是BAC ∠的平分线,在ANH ∆和AEH ∆中BAD CADAHN AHE AH AH ∠=∠⎧⎪∠=∠⎨⎪=⎩()ANH AEH ASA ∴∆≅∆, AN AE ∴=,即AB BN AC CE -=+,又BA BC BD DC ==+Q ,AC AD BD ==, BC BN AD CE ∴-=+BD CD BN AD CE ∴+-=+,又AD BD =Q , CD BN CE ∴-=,即CD BN CE =+.39.如图,在ABC ∆中,D ,E 分别是AB 和AC 上的点,且//DE BC . (1)若5AD =,6DB =,12EC =,求AE 的长; (2)若10AB =,4AD =,6AE =,求EC 的长.【解答】解:(1)//DE BC Q ,∴AD AE DB EC =,即5612AE=, 解得,10AE =; (2)//DE BC ,∴AD AEAB AC=,即4610AC =, 解得,15AC =, 9EC AC AE ∴=-=.40.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点: 观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知ABC∆,6AC=,8BC=,10AB=,将ABC∆按图3的方式向外扩张,得到DEF∆,它们对应的边间距都为m,15DE=,求DEF∆的面积.【解答】解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,ABC∆Q和DEF∆对应的边的距离都为1,//AB DE∴,//AC DF,FDO CAO∴∠=∠,ODE OAB∠=∠,FDO ODE CAO OAB∴∠+∠=∠+∠,即FDE CAB∠=∠,同理DEF ABC∠=∠,ABC DEF∴∆∆∽,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,Q 6342=,10584=,∴610 48≠,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,A Q 到DE 、DF 的距离都为1, DA ∴是FDE ∠的角平分线,同理,EB 是DEF ∠的角平分线,∴点O 是ABC ∆的内心,6AC =Q ,8BC =,10AB =, ABC ∴∆是直角三角形,设ABC ∆的内切圆的半径为r , 则6810r r -+-=, 解得2r =,过点O 作OH DE ⊥于点H ,交AB 于G , //AB DE Q , OG AB ∴⊥, 2OG r ∴==,∴23AB OG DE OH ==, 同理23AC BC AB DF EF DE ===, 9DF ∴=,12EF =,DEF ∴∆的面积为:1912542⨯⨯=.41.如图,半径为4的O e 内一点A ,23OA =.点P 在B e 上,当OPA ∠最大时,求PA 的长.【解答】解:如图,作OE PA ⊥于E ,sin OEOPA OP∠=Q , OE ∴的值取最大值时,sin OPA ∠的值最大,此时OPA ∠的值最大,OE OA Q …,∴当OE 与OA 重合时,即PA OA ⊥时,OPA ∠的值最大.如图,Q 在直角OPA ∆中,23OA =,4OP =,222PA OP OA ∴=-=.42.如图,在Rt ABC ∆中,90?C ∠=,3tan 4A =,6BC =,求AC 的长和sin A 的值.【解答】解:ABC ∆Q 中,3tan 4A =,6BC =, ∴34BC AC =, 8AC ∴=,22226810AB AC BC ∴=++, 3sin 5BC A AB ∴== 43.计算:22cos 30sin 45tan60tan30︒+︒-︒︒g 【解答】解:原式22323((3=+g 31142=+-14=. 44.如图,Rt ABC ∆中,90A ∠=︒,AD 、AE 分别是BC 边的中线和高,若3cos 5B =,10BC =.(1)求AB 的长; (2)求AE 的长; (3)求sin ADB ∠的值.【解答】解:(1)在Rt ABC ∆中,90A ∠=︒,cos ABB BC=,10BC =, 3cos 1065AB BC B ∴==⨯=g .(2)在Rt ABC ∆中,90A ∠=︒,10BC =,6AB =,22221068AC BC AB ∴=-=-=.AE Q 是BC 边的高,∴1122AC AB BC AE =g g ,即11861022AE ⨯⨯=⨯, 245AE ∴=. (3)Rt ABC ∆中,AD 是BC 边的中线,10BC =, 152AD BC ∴==. 在Rt AED ∆中,90AED ∠=︒,5AD =,245AE =, 24245sin 525AE ADB AD ∴∠===.45.如表是小菲填写的实践活动报告的部分内容.题目测量铁塔顶端到地面的高度测量目标示意图相关数据25CE=米,10CD=米,44FDG∠=︒求铁塔的高度FE.(结果精确到1米)【参考数据:sin440.69︒=,cos440.72︒=,tan440.97︒=】【解答】解:在Rt DGF∆中,tanFG DG FDG=⨯∠Q,tanCE FDG=⨯∠25tan44=⨯︒24.25=,FE FG GE∴=+FG CD=+,24.2510=+34≈(米)答:铁塔FE的高度约为34米.46.画出如图图形的三视图.【解答】解:如图所示:47.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.【解答】解:根据题意,构成几何体所需正方体最多情况如图(1)所示,构成几何体所需正方体最少情况如图(2)所示:所以最多需要11个,最少需要9个小正方体. 48.一个几何体的三视图如图所示, (1)请判断该几何体的形状; (2)求该几何体的体积.【解答】解:(1)由三视图可知该几何体是一个内半径是2,外半径是4,高为15的空心圆柱体;(2)该几何体的体积为:22(42)15180πππ-⨯=g g . 49.(1)计算:1022(21)sin 453tan30π-+--︒-︒ (2)一个几何体的三视图如图所示,主、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体为 圆锥 ,求它的侧面展开图的面积是多少?。
中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】一、选择题1. 下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A、55B、42C、41D、292.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D 重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.503二、填空题4. 如图所示,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式分割后,小正方形的个数可以是____ ____.5. 一园林设计师要使用长度为4L 的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O 为圆心的两个同心圆弧和延长后通过O 点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△;在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△.…按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.三、解答题7.如图所示,∠ABM 为直角,C 为线段BA 的中点,D 是射线BM 上的一个动点(不与点B 重合),连接AD ,作BE ⊥AD ,垂足为E ,连接CE ,过点E 作EF ⊥CE ,交BD 于F .(1)求证:BF =FD ;(2)∠A 在什么范围内变化时,四边形ACFE 是梯形?并说明理由;(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件14DG DA?并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P 不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.【答案与解析】一、选择题1.【答案】C;【解析】找出规律:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.2.【答案】A;【解析】由题意得,AD=12BC=52,AD1=AD﹣DD1=158,AD2=25532⨯,AD3=37532⨯,AD n=21532nn+⨯,故AP1=54,AP2=1516,AP3=26532⨯…APn=12532nn-⨯,故可得AP6=512532⨯.故选A.3.【答案】A ;【解析】根据题意,当第1位数字是3时,按操作要求得到的数字是3624862486248…,从第2位数字起每隔四位数重复一次6248,因为(100-1)被4整除得24余3,所以这个多位数前100位的所有数字之间和是3+(6+2+4)+(6+2+4+8)×24=495,答案选A . 二、填空题4.【答案】4或7或9或12或15;【解析】 一个5×3的矩形可以有下面几种分割方式,如图所示.5.【答案】(1)R -r 的值为4L ,以及此时花圃面积为24L ; (2)θ值为240π.【解析】要使花圃面积最大,则必定要求扇环面积最大.设扇环的圆心角为θ,面积为S ,根据题意得:2()180180R rL R r θπθπ=++- ()2()180R r R r πθ+=+-g ,∴180[2()]()L R r R r θπ--=+∴2222()360360360R r S R r θπθππθ=-=-22180[2()]()360()L R r R r R r ππ--=-+gg1[2()]()2L R r R r =---g 21()()2R r L R r =--+-22()416L L R r ⎡⎤=---+⎢⎥⎣⎦.∵02L R r <-<, ∴S 在4LR r -=时取最大值为216L .∴花圃面积最大时R -r 的值为4L,最大面积为224164L L ⨯=.(2)∵当4LR r -=时,S 取大值, ∴1604044L R r -===(m),40401050R r =+=+=(m),∴180[2()]180(160240)240()60L R r R r θπππ---⨯===+.6.【答案】1927. 【解析】1111111-3=224A B C S =⨯⨯△222A B C 2111-3=333S =⨯⨯△3331-3=4416A B C S =⨯⨯△…8888157191-3==998127A B C S =⨯⨯△2131-3=111(1)AnBnCn n nS n n n =⨯⨯-+++△三、解答题 7.【答案与解析】解:(1)Rt △AEB 中,∵AC =BC ,∴CE =12AB . ∴CB =CE .∴∠CEB =∠CBE .∵∠CEF =∠CBF =90°,∴∠BEF=∠EBF.∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°.∴∠FED=∠EDF.∴EF=FD.∴BF=FD.(2)由(1)得BF=FD,而BC=CA,∴CF∥AD,即AE∥CF.若AC∥EF,则AC=EF,∴BC=BF.∴BA=BD,∠A=45°.∴当0°<∠A<45°或45°<∠A<90°时,四边形ACFE为梯形.(3)作GH⊥BD,垂足为H,则GH∥AB.∵DG=14DA,∴DH=14DB.又F为BD的中点,∴H为DF的中点.∴GH为DF的中垂线.∴∠GDF=∠GFD.∵点G在ED上,∴∠EFD≥∠GFD.∵∠EFD+∠FDE+∠DEF=180°,∴∠GFD+∠FDE+∠DEF≤180°.∴3∠EDF≤180°.∴∠EDF≤60°.又∠A+∠EDF=90°,∴30°≤∠A<90°.∴30°≤∠A<90°时,DE上存在点G,满足条件DG=14 DA,8.【答案与解析】(1)证法一:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.∴△ADC≌△ABE.证法二:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴△ADC可由△ABE绕着点A按顺时针方向旋转60°得到.∴△ABE ≌△ADC .②120°,90°,72°. (2)①360n°. ②证法一:依题意,知∠BAD 和∠CAE 都是正n 边形的内角,AB =AD ,AE =AC , ∴∠BAD =∠CAE =(2)180n n-°.∴∠BAD -∠DAE =∠CAE -∠DAE , 即∠BAE =∠DAC . ∴△ABE ≌△ADC . ∴∠ABE =∠ADC .∵∠ADC+∠ODA =180°, ∴∠ABO+∠ODA =180°.∴∠ABO+∠ODA+∠DAB+∠BOC =360°. ∴∠BOC+∠DAB =180°. ∴∠BOC =180°-∠DAB =(2)180360180n n n--=°°°. 证法二:延长BA 交CO 于F ,证∠BOC =∠DAF =180°-∠BAD .证法三:连接CE .证∠BOC =180°-∠CAE .9.【答案与解析】解:(1)作DF ⊥BC ,F 为垂足.当CP =3时,四边形ADFB 是矩形,则CF =3. ∴点P 与点F 重合.又∵BF ⊥FD ,∴此时点E 与点B 重合.(2)(i)当点P 在BF 上(不与B ,F 重合)时,(见图(a))∵∠EPB+∠DPF =90°,∠EPB+∠PEB =90°, ∴∠DPF =∠PEB .∴Rt △PEB ∽△ARt △DPF .∴BE FPBP FD=. ① 又∵ BE =y ,BP =12-x ,FP =x-3,FD =a ,代入①式,得312y x x a-=- ∴1(12)(3)y x x a =--,整理, 得21(1536)(312)y x x x a=-+<< ②(ii)当点P 在CF 上(不与C ,F 重合)时,(见上图(b))同理可求得BE FPBP FD=. 由FP =3-x 得21(1536)(03)y x x x a=-+<<.∴ 221(1536)(03)1(1536)(312).x x x ay x x a⎧--+<<⎪⎪=⎨⎪--+<<⎪⎩(3)解法一:当点E 与A 重合时,y =EB =a ,此时点P 在线段BF 上. 由②式得21(1536)a x x a=--+. 整理得2215360x x a -++=. ③∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴方程③有两个不相等的正实根.∴△=(-15)2-4×(36+a 2)>0. 解得2814a <. 又∵a >0, ∴902a <<. 解法二:当点E 与A 重合时,∵∠APD =90°,∴点P 在以AD 为直径的圆上.设圆心为M ,则M 为AD 的中点. ∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴线段BC 与⊙M 相交.即圆心M 到BC 的距离d 满足02ADd <<. ④ 又∵AD ∥BC , ∴d =a . ∴由④式得902a <<. 10.【答案与解析】解:(1)EF =EB .证明:如图(d),以E 为圆心,EA 为半径画弧交直线m 于点M ,连接EM .∴EM =EA ,∴∠EMA =∠EAM . ∵BC =k ·AB ,k =1, ∴BC =AB .∴∠CAB =∠ACB .∵m ∥n ,∴∠MAC =∠ACB ,∠FAB =∠ABC .∴∠MAC=∠CAB.∴∠CAB=∠EMA.∵∠BEF=∠ABC,∴∠BEF=∠FAB.∵∠AHF=∠EHB,∴∠AFE=∠ABE.∴△AEB≌△MEF.∴EF=EB.探索思路:如上图(a),∵BC=k·AB,k=1,∴BC=AB.∴∠CAB=∠ACB.∵m∥n,∴∠MAC=∠ACB.添加条件:∠ABC=90°.证明:如图(e),在直线m上截取AM=AB,连接ME.∵ BC=k·AB,k=1,∴ BC=AB.∵∠ABC=90°,∴∠CAB=∠ACB=45°.∵ m∥n,∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.∵ AE=AE,∴△MAE∽△BAE.∴ EM=EB,∠AME=∠ABE.∵∠BEF=∠ABC=90°,∴∠FAB+∠BEF=180°.又∵∠ABE+∠EFA=180°,∴∠EMF=∠EFA.∴ EM=EF.∴ EF=EB.(2)EF=1k EB.说明:如图(f),过点E作EM⊥m,EN⊥AB,垂足为M,N.∴∠EMF=∠ENA=∠ENB=90°.∵ m∥n,∠ABC=90°,∴∠MAB=90°.∴四边形MENA为矩形.∴ ME=NA,∠MEN=90°.∵∠BEF=∠ABC=90°.∴∠MEF=∠NEB.∴△MEF∽△NEB.∴ME EF EN EB=,∴AN EF EN EB=在Rt△ANE和Rt△ABC中,tanEN BCBAC kAN AB∠===,∴1EF EBk=.。
初中数学总复习基础巩固60题(含答案)1.如果x 的倒数是1 3,则的相反数是 2.绝对值小于12的整数是 33.已知|x|=5,|y|=2,|x-y|=y-x,则x+y= 24.若x<-2,那么x2=5.若样本9,7,8,10,6的方差是2,则另一样本49,47,48,50,46的标准差是6.当x<0时,化简3ax=7.将一组数据分成5组,制成频率分布直方图,其中第一组的频率是0.1,第四 8.组与第五组的频率之和为0.3,那么第二组与第三组的频率之和为 9.已知一组数据x 1,x 2,x 3,⋯,x n 的方差s2=5则另一组数据2x 1,2x 2,2x 3,⋯,2x n的方差是a 10.计算a22a4 = 211.如果分式2 2x 3的值不小于零,那么的取值范围 2 xx612.当x=时,分式的值为零|x|2x13.若代数式1的值不小于22x 的值,那么x 的最大整数值是314.某车间要加工4200个零件,原计划要x 天完成,现在要求提前2天完成,则 每天要比原计划多加工个零件。
15.计算(12654)(3) 16.若1(x2)有意义,则化简后得 2x17.方程(x+1)2=x+1的解为 18.若方程组 ax bx y 3y2x的解为2y4 2,则a=,b= 19.若方程kx2-2x+1=0有两个实数根,则k的取值范围是12x20.方程3x420的两根为x1,x2则x12+ x22=21.某校预备班的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得77分,那么他答对了题。
2kx 22.方程2x30的一根为12,那么另一根为2kxk223.关于x的方程x(1)0的两个实数根互为相反数,则k的值是2xk24.若方程x60的一根是另一根的平方,那么k的值为25.一件皮衣,按成本加五成作为售价,后因季节原因,按售价八折降价出售,降价后的新售价为每件150元,若设这批皮衣每件成本价为x元,则可以列出方程式26.某年全国足球甲A联赛,规定每个球队都要在主场与各场进行一场比赛,到联赛结束共进行了182场比赛,那么参加比赛共有支甲A球队。
2020初中数学中考一轮复习基基础达标训练题:平移、旋转、对称(附答案)1.如图,将纸片△ABC沿着DE折叠,若∠1+∠2=60°,则∠A的大小为()A.20B.25C.30D.35 2.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是().A.2B.8C.10D.2 3.一个平面图形经过平移后,下列说法中正确的是().①对应线段平行或在同一条直线上;②对应线段相等;③图形的形状大小都没有发生变化;④对应点的连线段都平行.A.①②③B.②③④C.①②④D.①③④4.下列图形中,中心对称图形有()A.1个B.2个C.3 D.4个5.在生活中,我们要把安全时时刻刻记在心间,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.6.在平面直角坐标系中,将点A (﹣1,﹣2)向右平移4个单位长度得到点B ,则点B 关于x 轴的对称点B′的坐标为( )A .(﹣5,2)B .(3,2)C .(﹣3,2)D .(3,﹣2)7.如图图形中,是轴对称图形的是( )A .B .C .D .8.下列四个图形中,不能通过基本图形平移得到的是( )A .B .C .D .9.下面图案中,哪一幅可以通过右图平移得到A .B .C .D . 10.已知点关于x 轴的对称点和点关于y 轴的对称点相同,则点关于x 轴对称的点的坐标为( )A .B .C .D .11.在平面直角坐标系中,已知点 (2,3)A --,点 ()1,3B .对 A 点作下列变换:①先 把点 A 向右平移 3个单位,再向上平移 6个单位;②先把点 A 向上平移 6个单位,再向右平移 3个单位;③先作点 A 以 y 轴为对称轴的轴对称变换,再向左平移 1个单位;④先作点 A 以 x 轴为对称轴的轴对称变换,再向右平移 3个单位,其中能由点 A 得到点 B 的变换 是_________。
(易错题精选)初中数学图形的平移,对称与旋转的基础测试题含答案(1)一、选择题1.下列图案中既是轴对称又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、不是轴对称图形,也不是中心对称图形,故本选项错误;C 、是轴对称图形,是中心对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误;故选C .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(403523,32D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环, Q 20193673÷=, ∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.3.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题.4.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c|++7b-=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.5.如图,在平面直角坐标系中,AOB∆的顶点B在第一象限,点A在y轴的正半轴上,2AO AB==,120OAB∠=o,将AOB∠绕点O逆时针旋转90o,点B的对应点'B的坐标是()A.3(23)-B.33(22--C.3(3,22--D .(3,3)- 【答案】D 【解析】 【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.8.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.9.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.10.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.11.对于图形的全等,下列叙述不正确的是( )A .一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【答案】C【解析】【分析】 先利用平移的性质求出AD 、CF ,进而完成解答.【详解】解:将△ABC 沿BC 方向平移1个单位得到△DEF ,∴AD=CF=1,AC=DF ,又∵△ABC 的周长等于9,∴四边形ABFD 的周长等于9+1+1=11.故答案为C .【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.13.如图,在R t △ABC 中,∠ACB=90°,∠B=60°,BC=2,∠A ′B ′C ′可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为( )A .3B .6C .3D .3【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B ′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质14.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°,∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-,解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.15.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.16.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .25C .6D .26【答案】D【解析】【分析】 利用旋转的性质得出四边形 AECF 的面积等于正方形 ABCD 的面积,进而可求 出正方形的边长,再利用勾股定理得出答案.【详解】ADE ∆Q 绕点A 顺时针旋转90︒到ABF ∆的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,25AD DC ∴==,2DE =Q ,Rt ADE ∴∆中,2226AE AD DE =+=故选:D .【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应 边关系是解题关键.17.下列几何图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故本选项错误;B 、是中心对称图形,不是轴对称图形,故本选项错误;C 、是中心对称图形,也是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误;故选:C .【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形 B.角 C.等边三角形 D.锐角三角形【答案】C【解析】A.等腰三角形只有一条对称轴;B.角也只有一条对称轴,是角平分线所在的直线;C.等边三角形有三条对称轴;D.锐角三角形的对称轴数量不确定.故选:C19.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5 B.4 C.6 D.7【答案】D【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.故选:D.20.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.。
中考冲刺:阅读理解型问题—巩固练习(提高)【巩固练习】一、选择题1. 已知坐标平面上的机器人接受指令“[a ,A]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向其面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A .(-1,)B .(-1.-1) D .(-1)2.任何一个正整数n 都可以进行这样的分解:n =s ×t(s 、t 是正整数,且s ≤t),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()pF n q=.例如18可以分解成1×18,2×9,3×6这三种,这时就有31(18)62F ==. 给出下列关于F(n)的说法:(1)1(2)2F =;(2)3(24)8F =;(3)F(27)=3;(4)若n 是一个完全平方数,则F(n)=1.其中正确说法的个数是( ).A .1B .2C .3D .4二、填空题3.阅读下列题目的解题过程:已知a 、b 、c 为△ABC 的三边长,且满足222244a cbc a b -=-,试判断△ABC 的形状. 解:∵222244a cbc a b -=-, (A)∴2222222()()()c a b a b a b -=+-, (B) ∴222c a b =+, (C)∴△ABC 是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误? 请写出该错误步骤的代号:________________. (2)错误的原因为:________________________. (3)本题的正确结论为:____________________.4.先阅读下列材料,然后解答问题:从A ,B ,C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)(1)321nm m m m n C n n --+=-⨯⨯⨯ggg ggg .例:从7个元素中选5个元素,共有577654354321C ⨯⨯⨯⨯=⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有______________种.三、解答题5. 已知p 2-p -1=0,1-q -q 2=0,且pq ≠1,求1pq q+的值.解:由p 2-p -1=0及1-q -q 2=0,可知p ≠0,q ≠0 又∵pq ≠1,∴1p q ≠ ∴1-q-q 2=0可变形为21110q q ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭的特征所以p 与1q 是方程x 2- x -1=0的两个不相等的实数根则111,1pq p qq++=∴=根据阅读材料所提供的方法,完成下面的解答.已知:2m 2-5m -1=0,21520n n +-=,且m ≠n ,求:11m n+的值.6. 阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m 种不同的方法,在第二类方案中有n 种不同的方法,那么完成这件事共有N =m+n 种不同的方法,这是分类加法计数原理,完成一件事需要两个步骤,做第一步有m 种不同的方法,做第二步有n 种不同的方法.那么完成这件事共有N =m ×n 种不同的方法,这就是分步乘法的计数原理.”如完成沿图①所示的街道从A 点出发向B 点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A 点出发到某些交叉点的走法数已在图②填出.(1)根据以上原理和图②的提示,算出从A 出发到达其余交叉点的走法数,将数字填入图②的空圆中,并回答从A 点出发到B 点的走法共有多少种?(2)运用适当的原理和方法算出从A 点出发到达B 点,并禁止通过交叉点C 的走法有多少种?(3)现由于交叉点C 道路施工,禁止通行,求如任选一种走法,从A 点出发能顺利开车到达B 点(无返回)的概率是多少?7.阅读:我们知道,在数轴上,x =1表示一个点,而在平面直角坐标系中,x =1表示一条直线;我们还知道,以二元一次方程2x -y +1=0的所有解为坐标的点组成的图形就是一次函数y =2x +1的图象,它也是一条直线,如图①.观察图①可以得出:直线x =1与直线y =2x +1的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩在直角坐标系中,x ≤1表示一个平面区域,即直线x =1以及它左侧的部分,如图②;y ≤2x +1也表示一个平面区域,即直线y =2x +1以及它下方的部分,如图③.① ② ③ 回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组222x y x =-⎧⎨=-+⎩的解;(2)用阴影表示2y 2x 2y 0x ⎧⎪⎨⎪⎩≥-≤-+≥,所围成的区域.8. 我们学习过二次函数图象的平移,如:将二次函数23y x =的图象向左平移2个单位长度,再向下平移4个单位长度,所得图象的函数表达式是23(2)4y x =+-.类比二次函数图象的平移,我们对反比例函数的图象作类似的变换: (1)将1y x=的图象向右平移1个单位长度,所得图象的函数表达式为________,再向上平移1个单位长度,所得图象的函数表达式为________. (2)函数1x y x +=的图象可由1y x =的图象向________平移________个单位长度得到;12x y x -=-的图象可由哪个反比例函数的图象经过怎样的变换得到?(3)一般地,函数x by x a+=+(ab ≠0,且a ≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?9. “三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1=的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB . (3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).10. 阅读下列材料:问题:如图1所示,在菱形ABCD 和菱形BEFG 中,点A ,B ,E 在同一条直线上,P 是线段DF 的中点,连接PG ,PC .若∠ABC =∠BEF =60°,探究PG 与PC 的位置关系PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG,与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中∠ABC =∠BEF =2α(0°<α<90°),将菱形BEFG 绕点B 顺旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).【答案与解析】 一、选择题 1.【答案】D ; 2.【答案】B ;二、填空题 3.【答案】 (1)C ;(2)错误的原因是由(B)到(C)时,等式两边同时约去了因式22()a b -,而22a b -可能等于0;(3)△ABC 是等腰三角形或直角三角形. 4.【答案】120.三、解答题 5.【答案与解析】解:由2m 2-5m -1=0知m ≠0,∵m ≠n ,∴11m n≠得21520mm+-=根据2215152020m m n n +-=+-=与的特征∴11mn与是方程x 2+5 x -2=0的两个不相等的实数根 ∴115m n+=- .6. 【答案与解析】(1)∵完成从A 点到B 点必须向北走,或向东走,∴到达A 点以外的任意交叉点的走法数只能是与其相邻的南边的交叉点和西边交叉点的数字之和,故使用分类加法原理,由此算出从A 点到达其余各交叉点的走法数,填表如图所示.故从A 点到B 点的走法共35种.(2)方法1:可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去它,即得从A 点到B 点。
最新初中数学图形的平移,对称与旋转的知识点总复习有答案(2)一、选择题1.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.2.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.3.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误, 故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.4.如图,在边长为1522的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=55的点P的个数是()A.0 B.4 C.8 D.16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD 1522,∴15222=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴222210555EC CM+=+=∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.5.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60︒得到线段AQ,连接BQ.若6PB=,10PC=,则四边形APBQ的面积为()PA=,8A.2493+D.48183++C.243+B.483【答案】A【解析】【分析】连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.【详解】解:如图,连结PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ∴△APC≌△AQB,∴PC=QB=10,在△BPQ中, PB2=82=64,PQ2=62=36,BQ2=102=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∴∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12×6×8+34×62=24+93故答案为A..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.6.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!7.如图,周长为16的菱形ABCD中,点E,F分别在边AB,AD上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )A.3 B.4 C.5 D.6【答案】B【解析】试题分析:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG 的长就是EP+FP的最小值,据此即可求解.解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.8.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A.30°B.60°C.72°D.90°【答案】C【解析】【分析】紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C.【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.10.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.11.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.故选:D.12.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【答案】C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.13.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.14.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.15.如图所示的网格中各有不同的图案,不能通过平移得到的是()A.B.C.D.【答案】C【解析】【分析】根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.【详解】A、可以通过平移得到,不符合题意;B、可以通过平移得到,不符合题意;C、不可以通过平移得到,符合题意;D、可以通过平移得到,不符合题意.故选C.【点睛】本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.16.如图,在R t△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A .43B .6C .33D .3 【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质17.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-,解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.18.已知互不平行的两条线段AB ,CD 关于直线l 对称,AB ,CD 所在直线交于点P ,下列结论中:①AB =CD ;②点P 在直线l 上; ③若A 、C 是对称点,则l 垂直平分线段AC ; ④若B 、D 是对称点,则PB =PD .其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.19.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是 ( )A .21:10B .10:21C .10:51D .12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.20.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B(2,32)-.将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为()A32﹣1)B231)C33)D33﹣1)【答案】D【解析】【分析】作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=12BC=2,BC=22AB,得出AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'22'AB OA-1=12AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=3,求出OD=AO﹣AD3﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B232),∴AE=12BC2,BC=22AB,∴AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'=22'ABOA-=1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO=3,∴OD=AO﹣AD=3﹣1,∴点C′的坐标为(﹣3,3﹣1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.。
中考总复习:图形的变换--巩固练习(基础)【巩固练习】一、选择题1. 以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有().A.4个 B.5个 C.6个 D.3个2.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是().A.①③ B.①② C.②③ D.②④3.在图形的平移中,下列说法中错误的是().A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等4.如图,O是正六边形ABCDEF的中心,下列图形可由△OBC平移得到的是().A.△OCDB.△OABC.△OAFD.△OEF5.如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是( ).A.2 B.12C.1 D.14第4题第5题第6题6.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是().A.l<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19二、填空题7. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△A GE,那么△A GE与四边形AECD重叠部分的面积是.第7题第8题8. 如图,AB ⊥BC ,AB=BC=2cm ,弧OA 与弧OC 关于点O 中心对称,则AB 、BC 、弧CO 、弧OA 所围成的面积是__________cm 2.9. 如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB 边和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,他的判定方法是________.第9题 第10题10. 如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与 AC 上的点B 1重合,则AC = cm .11.(2012上海)如图,在Rt△ABC 中,∠C=90°,∠A=30°,BC=1,点D 在AC 上,将△ADB 沿直线BD翻折后,将点A 落在点E 处,如果AD⊥ED,那么线段DE 的长为 .第11题 第12题12.如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角板使两直角边始终与AB BC ,相交,交点分别为N M ,.如果y ON x OM AD AB ====,,6,4,则y 与x 的关系式为 .三、解答题13. 如图1,往6×6的方格纸中,给出如下三种变换:P 变换,Q 变换,R 变换. 将图形F 沿x 轴向右平移1格得图形,称为作1次P 变换;将图形F 沿y 轴翻折得图形,称为作1次Q 变换;将图形F 绕坐标原点顺时针旋转90°得图形,称为作1次R 变换.规定:PQ 变换表示先作1次Q 变换,再作1次P 变换;QP 变换表示先作1次P 变换,再作1次Q 变换;变换表示作n 次R 变换. 解答下列问题:(1)作变换相当于至少作________次Q变换;(2)请在图2中画出图形F作变换后得到的图形;(3)PQ变换与QP变换是否是相同的变换?请在图3中画出PQ变换后得到的图形,在图4中画出QP变换后得到的图形.14.把两个全等的等腰直角三角板ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的516?若存在,求出此时x的值;若不存在,说明理由.15.如图,将矩形纸片ABCD按如下顺序进行折叠: 对折、展平, 得折痕EF(如图①); 沿GC折叠, 使点B落在EF上的点B′处(如图②);展平, 得折痕GC(如图③); 沿GH折叠, 使点C落在DH上的点C′处(如图④); 沿GC′折叠(如图⑤);展平, 得折痕GC′、GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′ 是正三角形吗?请说明理由.图⑤A C D GHA'C'图⑥A BCD G H C'图④A BCD GH C'图③A C DEG 图②A CD E F GB'ABCDEF 图①16.已知矩形纸片ABCD ,1,2==AD AB .将纸片折叠,使顶点A 与边CD 上的点E 重合. (1)如果折痕FG 分别与AD ,AB 交于点F ,G (如图(1)),,32=AF 求DE 的长. (2)如果折痕FG 分别与CD ,AB 交于点F ,G (如图(2)),AED ∆的外接圆与直线BC 相切,求折痕FG 的长.【答案与解析】一.选择题 1.【答案】A . 2.【答案】D .【解析】①温度计中液柱的上升或下降改变图形的大小,不属于平移; ②打气筒打气时,活塞的运动属于平移; ③钟摆的摆动是旋转,不属于平移;④传送带上瓶装饮料的移动符合平移的性质,属于平移. 3.【答案】C. 4.【答案】C. 5.【答案】B.【解析】平移后,正方形A′B′C′D′对角线是正方形ABCD 对角线的一半,因为相似形面积比是线段比的平方,所以正方形A′B′C′D′面积是正方形ABCD 面积的14,而正方形ABCD 面积是2,所以正方形A′B′C′D′面积是12. 6.【答案】D.【解析】∵△ADB绕点D旋转180°,得到△EDC,∴AB=EC,AD=DE,而AD=7,∴AE=14,在△ACE中,AC=5,∴AE-AC<EC<AC+AE,即14 -5<EC<14+5,∴9<AD<19.二.填空题7.【答案】22-2.【解析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,故AE=2,由折叠易得△ABG为等腰直角三角形,∴S△ABG=12BA•AG=2,S△ABE=1,∴CG=2BE-BC=22-2,∴CO=OG=2-2,∴S△COG=3-22,∴重叠部分的面积为2-1-(3-22)=22-2.8.【答案】2.【解析】连结AC,如图,∵AB⊥BC,AB=BC=2cm,∴△ABC为等腰直角三角形,又∵弧OA与弧OC关于点O中心对称,∴OA=OC,弧OA=弧OC,∴弓形OA的面积=弓形OC的面积,∴AB、BC、弧CO、弧OA所围成的图形的面积=三角形ABC的面积=12×2×2=2(cm2).9.【答案】对角线平分内角的矩形是正方形.10.【答案】4cm.【解析】∵AB=2cm,AB=AB1∴AB1=2cm,∵四边形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE,∴AB1=B1C,∴AC=4cm.11.【答案】3-1.【解析】∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴BCAC=13,即AC=3,∵将△ADB沿直线BD翻折后,将点A落在点E处,∴∠ADB=∠EDB,DE=AD,∵AD⊥ED,∴∠CDE=∠ADE=90°,∴∠EDB=∠ADB=135°,∴∠CDB=∠EDB-∠CDE=135°-90°=45°,∵∠C=90°,∴∠CBD=∠CDB=45°,∴CD=BC=1,∴DE=AD=AC-CD=3-1.12.【答案】32 y x=.三.综合题13.【解析】(1).2;(2).正确画出图形;(3).变换PQ与变换QP不是相同的变换.正确画出图形,.14.【解析】(1).在上述旋转过程中,BH=CK,四边形CHGK的面积不变.证明:连接CG,KH,∵△ABC为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,在△BGH与△CGK中,B KCGCG BGBGH CGK∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGH≌△CGK(ASA),∴BH=CK,S△BGH=S△CGK.∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=12S△ABC=12×12×4×4=4,即:S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化;(2)∵AC=BC=4,BH=x , ∴CH=4-x ,CK=x .由S △GHK =S 四边形CHGK -S △CHK , 得y=4 -12x (4-x ), ∴y=12x 2-2x+4. 由0°<α<90°,得到BH 最大=BC=4, ∴0<x <4; (3)存在. 根据题意,得12x 2-2x+4=516×8, 解这个方程,得x 1=1,x 2=3,即:当x=1或x=3时,△GHK 的面积均等于△ABC 的面积的516. 15.【解析】(1)由折叠的性质知:B ′C=BC , 在Rt △B ′FC 中, ∵cos ∠B ′CF=FC B C '=FC BC =12, ∴∠B ′CF=60°,即∠BCB ′=60°;(2)根据题意得:GC 平分∠BCC ′, ∴∠GCB=∠GCC ′=12∠BCB ′=30°, ∴∠GCC ′=∠BCD-∠BCG=60°,由折叠的性质知:GH 是线段CC ′的对称轴, ∴GC ′=GC ,∴△GCC ′是正三角形.16.【解析】在矩形ABCD 中,AB=2,AD=1,,32=AF ,∠D=90°. 根据轴对称的性质,得EF=AF=23. ∴DF=AD-AF=13.在Rt △DEF 中,DE=22213-=333⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.。
中考总复习:图形的变换--巩固练习(基础)【巩固练习】一、选择题1. 以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有().A.4个 B.5个 C.6个 D.3个2.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是().A.①③ B.①② C.②③ D.②④3.在图形的平移中,下列说法中错误的是().A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等4.如图,O是正六边形ABCDEF的中心,下列图形可由△OBC平移得到的是().A.△OCDB.△OABC.△OAFD.△OEF5.如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是( ).A.2 B.12C.1 D.14第4题第5题第6题6.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是().A.l<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19二、填空题7. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△A GE,那么△A GE与四边形AECD重叠部分的面积是.第7题第8题8. 如图,AB ⊥BC ,AB=BC=2cm ,弧OA 与弧OC 关于点O 中心对称,则AB 、BC 、弧CO 、弧OA 所围成的面积是__________cm 2.9. 如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB 边和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,他的判定方法是________.第9题 第10题10. 如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与 AC 上的点B 1重合,则AC = cm .11.(2012上海)如图,在Rt△ABC 中,∠C=90°,∠A=30°,BC=1,点D 在AC 上,将△ADB 沿直线BD翻折后,将点A 落在点E 处,如果AD⊥ED,那么线段DE 的长为 .第11题 第12题12.如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角板使两直角边始终与AB BC ,相交,交点分别为N M ,.如果y ON x OM AD AB ====,,6,4,则y 与x 的关系式为 .三、解答题13. 如图1,往6×6的方格纸中,给出如下三种变换:P 变换,Q 变换,R 变换. 将图形F 沿x 轴向右平移1格得图形,称为作1次P 变换;将图形F 沿y 轴翻折得图形,称为作1次Q 变换;将图形F 绕坐标原点顺时针旋转90°得图形,称为作1次R 变换.规定:PQ 变换表示先作1次Q 变换,再作1次P 变换;QP 变换表示先作1次P 变换,再作1次Q 变换;变换表示作n 次R 变换. 解答下列问题:(1)作变换相当于至少作________次Q变换;(2)请在图2中画出图形F作变换后得到的图形;(3)PQ变换与QP变换是否是相同的变换?请在图3中画出PQ变换后得到的图形,在图4中画出QP变换后得到的图形.14.把两个全等的等腰直角三角板ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的516?若存在,求出此时x的值;若不存在,说明理由.15.如图,将矩形纸片ABCD按如下顺序进行折叠: 对折、展平, 得折痕EF(如图①); 沿GC折叠, 使点B落在EF上的点B′处(如图②);展平, 得折痕GC(如图③); 沿GH折叠, 使点C落在DH上的点C′处(如图④); 沿GC′折叠(如图⑤);展平, 得折痕GC′、GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′ 是正三角形吗?请说明理由.图⑤A C D GHA'C'图⑥A BCD G H C'图④A BCD GH C'图③A C DEG 图②A CD E F GB'ABCDEF 图①16.已知矩形纸片ABCD ,1,2==AD AB .将纸片折叠,使顶点A 与边CD 上的点E 重合. (1)如果折痕FG 分别与AD ,AB 交于点F ,G (如图(1)),,32=AF 求DE 的长. (2)如果折痕FG 分别与CD ,AB 交于点F ,G (如图(2)),AED ∆的外接圆与直线BC 相切,求折痕FG 的长.【答案与解析】一.选择题 1.【答案】A . 2.【答案】D .【解析】①温度计中液柱的上升或下降改变图形的大小,不属于平移; ②打气筒打气时,活塞的运动属于平移; ③钟摆的摆动是旋转,不属于平移;④传送带上瓶装饮料的移动符合平移的性质,属于平移. 3.【答案】C. 4.【答案】C. 5.【答案】B.【解析】平移后,正方形A′B′C′D′对角线是正方形ABCD 对角线的一半,因为相似形面积比是线段比的平方,所以正方形A′B′C′D′面积是正方形ABCD 面积的14,而正方形ABCD 面积是2,所以正方形A′B′C′D′面积是12. 6.【答案】D.【解析】∵△ADB绕点D旋转180°,得到△EDC,∴AB=EC,AD=DE,而AD=7,∴AE=14,在△ACE中,AC=5,∴AE-AC<EC<AC+AE,即14 -5<EC<14+5,∴9<AD<19.二.填空题7.【答案】22-2.【解析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,故AE=2,由折叠易得△ABG为等腰直角三角形,∴S△ABG=12BA•AG=2,S△ABE=1,∴CG=2BE-BC=22-2,∴CO=OG=2-2,∴S△COG=3-22,∴重叠部分的面积为2-1-(3-22)=22-2.8.【答案】2.【解析】连结AC,如图,∵AB⊥BC,AB=BC=2cm,∴△ABC为等腰直角三角形,又∵弧OA与弧OC关于点O中心对称,∴OA=OC,弧OA=弧OC,∴弓形OA的面积=弓形OC的面积,∴AB、BC、弧CO、弧OA所围成的图形的面积=三角形ABC的面积=12×2×2=2(cm2).9.【答案】对角线平分内角的矩形是正方形.10.【答案】4cm.【解析】∵AB=2cm,AB=AB1∴AB1=2cm,∵四边形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE,∴AB1=B1C,∴AC=4cm.11.【答案】3-1.【解析】∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴BCAC=13,即AC=3,∵将△ADB沿直线BD翻折后,将点A落在点E处,∴∠ADB=∠EDB,DE=AD,∵AD⊥ED,∴∠CDE=∠ADE=90°,∴∠EDB=∠ADB=135°,∴∠CDB=∠EDB-∠CDE=135°-90°=45°,∵∠C=90°,∴∠CBD=∠CDB=45°,∴CD=BC=1,∴DE=AD=AC-CD=3-1.12.【答案】32 y x=.三.综合题13.【解析】(1).2;(2).正确画出图形;(3).变换PQ与变换QP不是相同的变换.正确画出图形,.14.【解析】(1).在上述旋转过程中,BH=CK,四边形CHGK的面积不变.证明:连接CG,KH,∵△ABC为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,在△BGH与△CGK中,B KCGCG BGBGH CGK∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGH≌△CGK(ASA),∴BH=CK,S△BGH=S△CGK.∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=12S△ABC=12×12×4×4=4,即:S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化;(2)∵AC=BC=4,BH=x , ∴CH=4-x ,CK=x .由S △GHK =S 四边形CHGK -S △CHK , 得y=4 -12x (4-x ), ∴y=12x 2-2x+4. 由0°<α<90°,得到BH 最大=BC=4, ∴0<x <4; (3)存在. 根据题意,得12x 2-2x+4=516×8, 解这个方程,得x 1=1,x 2=3,即:当x=1或x=3时,△GHK 的面积均等于△ABC 的面积的516. 15.【解析】(1)由折叠的性质知:B ′C=BC , 在Rt △B ′FC 中, ∵cos ∠B ′CF=FC B C '=FC BC =12, ∴∠B ′CF=60°,即∠BCB ′=60°;(2)根据题意得:GC 平分∠BCC ′, ∴∠GCB=∠GCC ′=12∠BCB ′=30°, ∴∠GCC ′=∠BCD-∠BCG=60°,由折叠的性质知:GH 是线段CC ′的对称轴, ∴GC ′=GC ,∴△GCC ′是正三角形.16.【解析】在矩形ABCD 中,AB=2,AD=1,,32=AF ,∠D=90°. 根据轴对称的性质,得EF=AF=23. ∴DF=AD-AF=13.在Rt △DEF 中,DE=22213-=333⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.。