求极限的方法总结
- 格式:doc
- 大小:254.50 KB
- 文档页数:5
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
求极限的常用方法1.直接代入法:对于初等函数f( )的极限, , 若f( )在0处的函数值f( 0)存在, 即。
直接代入法的本质就是只要将= 0代入函数表达式, 若有意义, 其极限就是该函数值(称为“能代则代”)。
例I: 求极限(1)(2)(3)解: (1)(2)(3)2.变型法(包括两个重要极限)通俗地说代入后无意义的极限称为不定式, (如0/0,∞/∞,∞-∞等)此时若极限存在往往要变形后才可看出。
例I: 求极限(1)(2)解: (1)(2)两个重要极限是和, 第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限。
例I: 求极限解:例II: 求极限【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1, 再凑, 最后凑指数部分。
解:3.利用连续性定义。
例I: 求解:y= 可看作由y= 与复合而成。
因为= , 而函数y= 在点u= 连续, 所以=例II: 求解: =例III: 求解:因为 利用定理3及极限的运算法则, 便有4.利用无穷小、无穷大的关系【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,21~cos 12-+- 例1: 求极限解 002ln(1)lim lim 211cos 2x x x x x x x x →→+⋅==- 例2: 求极限 解x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 例3因式代替规则x x x x 3sin tan lim 0-→x x x x 30)1cos 1(sin lim -=→212lim 330==→x x x 5.利用极限的性质法(如四则运算)利用极限的4则运算法则, , ,例1: 求解:先用 除分子和分母, 然后求极限, 得52123lim 232+---∞→x x x x x 020512123lim 332==+---=∞→x x x x x x 例2: 求解, 因为分母的极限 , 不能应用商的极限的运算法则, 但因 所以∞=+--→4532lim 21x x x x6.洛必达法则(求不定式极限)定理一 设(1) 当x 时, f(x)及F (x )都趋向于零;(2) 在点a 的某一去心领域内, f ’(x)及F ’(x)都存在且F ’(x)≠o ;(3) )(')('lim x F x f a x →存在(或为无穷大); 那么 )(')('lim )()(lim x F x f x F x f a x a x →→=定理二 设(1) 当x 时,∞→函数f(x)及F(x)都趋向于零;(2) 当;)都存在,且与时0('F )(')('x ≠>x x F x f N (3) 或为无穷大),存在()(')('lim x F x f x ∞→ 那么 )x F x f x F x f x (')('lim )()(lim x ∞→∞→= 例1: 求解: 原式=例2: 求 >0)解: 原式=例3: 求解: 原式=7.积分法积分求极限法:例一: 求 。
千里之行,始于足下。
求极限的计算方法总结极限是数学中重要的概念,它描述了函数在某一点无限接近于某个值的性质。
计算极限是数学分析中的基础内容,对于解决数学问题和理解函数的行为至关重要。
下面将总结一些计算极限的常见方法。
1.代入法:当极限的表达式中存在某个点的函数值不存在时,可以通过代入法来计算极限。
代入法即将极限的定义中与某些点不全都的部分进行代入,然后计算出相应的极限值。
2.分子分母有理化:当极限表达式中含有分数,且分母中有根式时,可以将分子分母有理化,即通过乘以分子分母的共轭形式,将根式消去。
3.利用无穷小量的性质:当极限表达式中存在无穷小量时,可以利用无穷小量的性质进行计算。
例如,常见的无穷小量的性质有:a.加减无穷小量仍旧是无穷小量;b.有界函数与无穷小量相乘仍旧是无穷小量;c.有限次幂无穷小量也是无穷小量等。
4.利用极限的四则运算法则:对于四则运算,极限也有相应的运算法则。
常见的极限运算法则有:a.加减法则:lim(f(x) ± g(x)) = lim f(x) ± lim g(x)b.乘法法则:lim(f(x) * g(x)) = lim f(x) * lim g(x)c.除法法则:lim(f(x) / g(x)) = lim f(x) / lim g(x),其中lim g(x) ≠ 0d.复合函数法则:lim(f(g(x))) = lim f(g(x)), when lim g(x) exists第1页/共2页锲而不舍,金石可镂。
5.利用夹逼定理:当极限表达式无法直接计算时,可以利用夹逼定理进行计算。
夹逼定理规定了假如存在两个函数h(x)和i(x),使得对于足够大的x,h(x) ≤ f(x) ≤i(x),且lim h(x) = lim i(x) = L,则lim f(x)也等于L。
6.利用洛必达法则:洛必达法则可用于计算形如lim(f(x)/g(x))的不定型极限,其中f(x)和g(x)在极限点四周连续可导。
求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。
对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。
一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。
通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。
当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。
二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。
当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。
三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。
其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。
常用的等价无穷小有:指数、对数、三角函数等。
四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。
其基本思想是将函数的极限转化成求导数的极限。
通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。
五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。
泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。
通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。
六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。
常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。
七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。
求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。
二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。
()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。
limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。
求极限方法总结求极限方法总结第一篇1、等价无穷小的转化,〔只能在乘除时候使用,但是不是说肯定在加减时候不能用,前提是必需证明拆分后极限依旧存在,e的X次方-1或者〔1+x〕的a次方-1等价于Ax等等。
全部熟记〔x趋近无穷的时候还原成无穷小〕。
2、洛必达法则〔大题目有时候会有示意要你使用这个方法〕。
首先他的使用有严格的使用前提!必需是X趋近而不是N趋近!〔所以面对数列极限时候先要转化成求x趋近状况下的极限,当然n趋近是x趋近的一种状况而已,是必要条件〔还有一点数列极限的n当然是趋近于正无穷的,不行能是负无穷!〕必需是函数的导数要存在!〔假如告知你g〔x〕,没告知你是否可导,直接用,无疑于找死!!〕必需是0比0无穷大比无穷大!当然还要留意分母不能为0。
洛必达法则分为3种状况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷〔应为无穷大于无穷小成倒数的关系〕所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于〔指数幂数〕方程方法主要是取指数还取对数的方法,这样就能把幂上的'函数移下来了,就是写成0与无穷的形式了,〔这就是为什么只有3种形式的缘由,LNx 两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0〕。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变留意!〕E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决方法,取大头原则最大项除分子分母!!!看上去冗杂,处理很简洁!5、无穷小于有界函数的处理方法,面对冗杂函数时候,尤其是正余弦的冗杂函数与其他函数相乘的时候,肯定要留意这个方法。
面对特别冗杂的函数,可能只需要知道它的范围结果就出来了!6、夹逼定理〔主要对付的是数列极限!〕这个主要是观察极限中的函数是方程相除的形式,放缩和扩大。
求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。
2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。
3. 消去法:利用性质将某些项消去,使得表达式更容易计算。
4. 因式分解法:将极限表达式中的因式进行分解,简化计算。
5. 分数分解法:将极限表达式中的分数进行分解,简化计算。
6. 奇偶性性质:利用函数的奇偶性质,简化计算。
7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。
8. 幂函数性质:利用幂函数的性质,简化计算。
9. 对数函数性质:利用对数函数的性质,简化计算。
10. 指数函数性质:利用指数函数的性质,简化计算。
11. 三角函数性质:利用三角函数的性质,简化计算。
12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。
13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。
14. 夹逼定理:利用夹逼定理确定极限的值。
15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。
16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。
17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。
18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。
19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。
20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。
21. 几何法:利用几何图形的性质计算极限的值。
千里之行,始于足下。
求极限的方法总结求极限是微积分中重要的概念之一,常见于求导、定积分以及微分方程等内容中。
求解极限可以通过以下几种方法进行总结:1. 代入法:当函数在极限点处存在时,可以直接将极限点代入函数中计算。
这种方法简单直接,适合于函数在某一点处的极限。
2. 分解因式法:当函数存在不定形式时,可以尝试将函数进行分解因式,从而简化计算。
比如,对于分式函数,可以尝试分解分子和分母,消去公因式,然后再进行计算。
3. 幂指函数法:当函数的极限含有幂指函数时,可以尝试使用幂指函数的性质进行计算。
常用的方法包括使用指数函数的性质、对数函数的性质以及对数和指数函数的换底公式等。
4. 无穷小量法:当函数的极限存在无穷小量时,可以利用无穷小量与极限的定义进行计算。
常用的方法包括使用洛必达法则、夹逼定理、泰勒级数展开等。
其中洛必达法则适用于计算$\\frac{0}{0}$、$\\frac{\\infty}{\\infty}$、$0\\cdot \\infty$型的极限,夹逼定理适用于无穷小量和无穷大量的极限,泰勒级数展开适用于函数可展开成无穷级数的情况。
5. 变量替换法:当函数的极限存在特定变量时,可以进行变量替换,通过对新变量极限进行求解来简化计算。
常用的方法包括使用三角函数的三角恒等式、指数和对数函数的换底公式、幂函数的性质等。
第1页/共2页锲而不舍,金石可镂。
6. 递推法:当函数的极限存在递推关系时,可以通过递推关系逐步求解极限。
常用的方法包括使用数列极限的性质以及函数关系的性质。
总的来说,求解极限需要根据具体的函数形式和性质进行判断和选择合适的方法。
在实际计算中,也常常需要综合运用多种方法进行求解。
因此,对于学习者来说,熟练掌握不同的求极限方法,灵活运用,可以更加高效地解决复杂的极限计算问题。
求数列极限的方法总结摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。
关键词 数列极限、定义、泰勒公式、无穷小量极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。
求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。
夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。
泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。
还有一些比较常用的方法,在本文中都一一列举了。
1.定义法利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞→lim .例1: 按定义证明0!1lim=∞→n n .解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε1即可,存在N=[ε1],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成立,所以0!1lim=∞→n n .2.利用极限四则运算法则对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求nn n bb b a a a ++++++++∞→ 2211lim,其中1,1<<b a .解: 分子分母均为无穷多项的和,应分别求和,再用四则运算法则求极限bbbb b aaaa a n nn n--=++++--=++++++111,1111212,原式=ab babbaan n n n --=--=----+∞→+∞→11111111lim11lim11,3. 利用夹逼性定理求极限若存在正整数N,当n>N 时,有Xn ≤Yn ≤Zn,且a Zn Xn n n ==∞→∞→lim lim ,则有aYn n =∞→lim .例3:求{21nn +}的极限.解: 对任意正整数n,显然有 nnn nn n 221122=≤+<,而01→n,02→n,由夹逼性定理得 01lim2=+∞→nn n .4.换元法通过换元将复杂的极限化为简单. 例4.求极限21lim +-∞→n nn a a ,此时解:若有,令则5.单调有界原理 例5.证明数列有极限,并求其极限。
证: 令,易知{}递增,且我们用归纳法证明 ≤2. 显然。
若≤2 则。
故由单调有界原理{}收敛,设→ ,则在 中两边取极限得 即解之得 =2 或 =-1 明显不合要求,舍去,从而6.先用数学归纳法,再求极限. 例6:求极限nn n 2642)12(531lim⋅⋅⋅⋅-⋅⋅⋅⋅∞→解:1212126543210+<-⋅⋅⋅⋅<n nnS=nn 212654321-⋅⋅⋅⋅设*S =1225432+⋅⋅⋅n n则有S<*SS 2=S*S<S**S =121+n而1210+<<n S ,0121lim =+∞→n n 再由夹逼性定理,得nn n 2642)12(531lim ⋅⋅⋅⋅-⋅⋅⋅⋅∞→ =07.利用两个重要极限1sin lim 0=→xx x ,exxx =++∞→)11(lim .例7:求xx x)21(lim ++∞→解: 原式=222)11()21(lim e e e xxxxx =⋅=+⋅++∞→8.利用等价无穷小来求极限将数列化成自己熟悉的等价无穷小的形式然后求极限. 例8:求11sin 1lim 2--++→xx ex x解:当0→x 的时候,0sin →x x ,2sin ~1sin 1x x x x -+.而此时,2~12x e x -,所以原式=212sin lim2=→xx x x9.用洛必达法则求极限.适用于型和∞∞0例9:求2cos 1limxx x -→解: 是待定型.20cos 1limxxx -→=212sin lim=→xx x10.积分的定义及性质 例10:求)0(321lim1>++++++∞→p n np ppppn解: )0(321lim1>++++++∞→p nn p p p ppn =∑=+∞→ni p n ni n1)(1lim设p x x f =)(,则)(x f 在[0,1]内连续, ],1[,1nin i n i n x i i -∈==∆ξ取 所以, p i ni f )()(=ξ所以原式=111+=⎰p dx x p11.级数收敛的必要条件.设,,11是收敛的再证等于所求极限的表达式∑∑∞=∞=n nn n uu 据必要条件知所求表达式的极限为0. 例11:求nn nn!lim+∞→解:设nn n nn u !1=∑∞=,则11)11(1limlim1<=+=+∞→++∞→en u u nn nn n所以该级数收敛,所以nn nn!lim+∞→=012.对表达式进行展开、合并、约分和因式分解以及分子分母有理化,三角函数的恒等变形。
例12. 求0sin 5sin 3lim sin 2x x xx→-解:法一:原式=0sin 525sin 32353lim 15sin 223sin 2222x x xx xxx xx →⎡⎤⋅⋅-⋅⋅=-=⎢⎥⎣⎦ 法二:原式=053532cossin2cos 4sin 2cos 422limlimlim1sin 22sin cos 2cos x x x x xx x x x x xx xx→→→+-===13.奇数列和偶数列的极限相同,则数列的极限就是这个极限。
例13:求(1)lim2xxx →∞-的值解:奇数列为1lim 2xx →∞-=0 偶数列为1lim 2xx →∞=0所以(1)lim2xxx →∞-=014.利于泰勒展开式求极限。
例14.求)lim(545545x x xx --+解:原式=⎥⎦⎤⎢⎣⎡--++∞→5151)11()11(lim x x x x (令t=x1)=⎥⎦⎤⎢⎣⎡--++→51510)1()1(1lim t t tt =tt o t t o t ⎥⎦⎤⎢⎣⎡+--++)(511)(511=5215.利于无穷小量的性质和无穷小量和无穷大量之间的关系求极限。
利用无穷小量与有界变量的乘积仍为无穷小量,无穷小量与无穷大量互为倒数的关系,以及有限个无穷小的和仍是无穷小等等。
例15:求21limsin x x x→∞的值 解:因为21lim x x→∞是无穷小量,而lim sin x x →∞是有界变量,所以21lim sin x x x →∞还是无穷小量,即 21limsin x x x→∞=016.利用数列的几何、算术平均值求极限。
数列{n a }有极限,则它的几何平均值和算术平均值的极限与与原极限相同。
例16:求limn →∞解:limn →∞limn →∞=limlimn n →∞→∞设n b =1n n a a -,因为知limn →∞所以,所求原式的极限就等于{n b }的极限 即原式=lim n n b →∞=1limn n n a a →∞-17.绝对值中的极限 若)(∞→→n a a n ,则)(∞→→n a a n 例17:求31lim x x→∞的值解:31limx x→∞=31lim x x→∞=018.利用黎曼引理 例18:求2cos lim1ap pxdx x→∞+⎰(a>0) 解:原式=0001cos 2111cos 21lim lim limln(1)2(1)21212a a a p p p px px dx dx dx a x xx→∞→∞→∞+=+=++++⎰⎰⎰数列极限的方法还有很多,以上给与大致列举。
本文在写作过程中得到了****老师多次精心指导,在此表示感谢。