Banach空间中常微分方程解的存在与唯一性定理(参考模板)
- 格式:doc
- 大小:551.50 KB
- 文档页数:11
Picard存在和唯一性定理本节利用逐次逼近法,来证明微分方程(2.1)的初值问题(2.2)的解的存在与唯一性定理.定理 2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域上满足如下条件:(1) 在R上连续;(2) 在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式:则初值问题(2.2)在区间上存在唯一解其中在证明定理之前,我们先对定理的条件与结论作些说明:1. 在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的,但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果)2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,但是Lipschitz 条件满足,偏导数不一定存在,如(,)||f x y y 。
3.现对定理中的数h 0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况. 这时,过点的积图 2-5分曲线当或 时,其中,,到达R 的上边界或下边界.于是,当时,曲线便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间上存在. 由于定理假定在R 上连续,从而存在于是,如果从点引两条斜率分别等于M 和-M 的直线,则积分曲线(如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取则过点 的积分曲线 (如果存在的话)当x 在区间上变化时,必位于R 之中.图 2-6存在性的证明求解初值问题(2.2)求解积分方程(2.3).因此,只要证明积分方程(2.3)的连续解在 上存在而且唯一就行了. 下面用毕卡(Picard )逐次逼近来证明积分方程(2.3)的连续解的存在性,可分三个步骤进行:1.构造逐次近似序列.近似序列或写成01()(,())xn n x x y f d ϕξϕξξ--=⎰的每一项都在 上有定义,这是因为 于是.这样,我们在区间上,按逐次逼近手续得到了一个连续函数列(近似序列)2. 证明近似序列在区间上一致收敛.“ 函数序列的一致收敛1.设(1)是定义在I 上的函数序列,若对,数列收敛,则称为序列(1)的收敛点.收敛点的全体叫收敛域.在收敛域上每一点,序列(1)都有极限,这极限形成收敛域上的一个函数,称为极限函数.设此函数为,即2.若对,总存在一个只与 有关的自然数N,使得对I上任何一点,当时,有,则称序列(1)在I上一致收敛.证明分如下二步:(1)序列在上一致收敛级数(2.7)在上一致收敛(级数).因为级数(2.7)的部分和“ 函数项级数的一致收敛1.设函数项级数(1)在区间I上收敛于和函数,即对,数项级数收敛于,或级数(1)的部分和所组成的数列=由数列极限定义,对,,使得时,有2.级数(1)在I上一致收敛对,,使得对,当时,有.3.若函数项级数(1)的每一项都在I上连续,并且在I上一致收敛,则(1)的和函数在I上连续.(2)级数(2.7)在上一致收敛.用数学归纳法,易证级数(2.7)从第二项开始,每一项绝对值都小于正项级数的对应项,而上面这个正项级数显然是收敛的.所以,由优级数判别法,“ 函数项级数的一致收敛判别法(魏尔斯特拉斯优级数判别法)函数项级数(1)若函数项级数(1)在区间I上满足(I );(II )正项级数收敛.则函数项级数(1)在区间I上一致收敛.数项级数收敛的判别法(比值判别法,达朗贝尔()判别法)若正项级数的后项与前项的比值的极限等于:则当时级数收敛,时(或)时级数发散;时级数可能收敛,也可能发散.级数(2.7)在区间上不仅收敛,而且一致收敛.设其和函数为,从而近似序列在区间上一致收敛于.由于在区间上连续,因而也是连续的.3.证明是积分方程(2.3)的解,从而也是初值问题(2.2)的解. 在n次近似序列(2.6)两端取极限有因为所以要证明是积分方程(2.3)的解,即成立,只需证明这是由函数(,)f x y 的连续性及Picard 序列()n x ϕ的一致收敛性质保证的。
Banach空间中常微分方程解的存在唯一性定理總婷婷(XX帅X学院数学与鋭计学院,XX,XX,741000)描要:在Banach空同中,常械分方程解的存在唯一性定理中力=},初值冋題的解y(f)的变量『在t o-h<t<t o+ht变化,把f的变化X围扩大为心%「5+%, 为此给出f变化X围后的Banach 空间中常做分方程解的存在唯一性定理,并对定理给予明确的证明.关维词:存在唯一;常撤分方程;数学IJ3细袪;皮卡逐步II近法\ Banach空间引言常撤分方程解的存在唯一性定理明确地肯定了在一定条件下方程的解的存在性和唯一性,它是常ta分方程理论中最基本且实用的定理,有其重大的理论怠义,另一方面,它也是近做求解法的前提和理论基硝.对于人们裁知的Banach空同中常撤分方程解的存在唯一性定理,解的存在区同较小,只限制在一个小的球形邻裁内,(球形邻域的半径若为5, U需满足Ld<\,且辭只在以儿为中心以5为半径的冈球B t5(y0) = (yeX|||y-y0||<J)存在唯一,其中X是Banach空间)因此在应用过程中受到了一定的眼制.如今我们尝试扩大了解的存在XIJ.U而使此重要的定理今后有更加广泛的应用.1预备定理我们给岀Banach空同中常做分方程解的存在唯一性定理如下设X是Banach空同,UuX是一f开集.f :U i X上关干 >,满足利普希茨(Lipschitz)条件,即存在常数厶>0,使得不等式]/(/, ”)- /(/, y2)|| <厶卜】一儿||,对于所有y^y2eu部成立.® y.eU ,在u内,以儿为中心作一个半径为“的冈球3心())=© eX|||y-儿||詡’对所有的y e B b(y0)都成立,且有,取h = min{%,%^},则存在唯一的C、曲线y(t),使得在r0-h<t< t0+h上满足y w B h(y0), 并有y' = /(/,y),y(G)=)b・2结果与证明笔者通il改进对力的限歟即仅取〃 = %/,硕备定理仍然成立,从而使定理的应用进一步广泛.2.1改进条件后的定理定理假设条件同上预备定理,设初值为仇,儿),则存在唯一的C、曲线y(『),对任恿的G 一%/ ° "u + %r满足y €场(儿),且使得V = /(/, y) , Wo)=儿.显然可有% —〃,心 + 幻 U〔5 - ,心 + % ],目"min{%,%} •2.2定理舸证明证明证明过程中我们利用皮卡(Picard)逐步逼近法•为了简单起见,只就区同对干区间t.<t<t.+y M的讨论完全一样.2.2.1定理证明的思想现在先简单叙述一下运用皮卡逐步逼近法证明的壬要思想.首先证明条件 H), xu=y0等价于求枳分方程y(Q = %+j\/a,y)〃•⑴再证明积分方程的解的存在唯一性.任取一个儿⑴为连续函数,将它代人方程⑴的右常,可得到函数卩⑴=y(> +J;./■(/,%)〃/,显然,儿⑴也为连续函数•若x⑴=y o(0,1可知y()⑴就是方程⑴的解•若不然,我ill a把川)代人枳分方程⑴的右竭m,y),可得到函数儿⑴=儿+J;“/(/')〉)/•若y2(0 = >'i(0 JO可知莎⑴就是方程(1)的解•若不然,我们如此下去,可作连续函红儿(/) = + j* :>/(/,y”-i M ・(2)这算就得到连续函数列儿(0,”(/),儿⑴,…,儿⑴,…若畑⑴=儿⑴,那么儿⑴就是枳分方程的解,如果始终不发生眩种悄猊,我们可以证明上面的函数序列有一个极眼函数y(t), fill liin y…(t) = y(f)存在,因而对(2)式两jfi取枚限时,就得到巴y n(0 = y0 + lim J :/(f,y…_,)dt = y0+J ;o lim/(r,儿“)/ =儿 + J ;o/(r,y)dt, 即y(0 = y0 + J;/(心)力謔就是说M)是枳分方程的解•在定理的假设条件下,以上的步骤是可以实现的.2.2.2定理iil明的步骤下面我门分五个命题来证明定理.金題1设y = y(r)是y'5,y)的定义于区同心%““上,满足初值条件〉仇)=儿(3)的解厲y = y(r)是枳分方程W)=儿+ 定义于心一夕缶上的连续解,反之亦衆证明因为y = y(0是方程y' = /(/, y)的解,故有竽5,刃.at对上式两fflU/o到「取定枳分得到W) - W())= J ;> /(/,y W ‘ 5 - % o()‘把(3)式代入上式,即有y(f) = >o+J 财(人曲5-%;"")•⑷因此,y = XO是(4)的定义于上的连续解.反之,如果y = y(f)是⑷的连续解,)心)=儿+J: <t<t0.fit分之,得到弊局)•ata把心心代人⑷式,得到y(G =儿,S此,y = y(r)是方程 H)的定义于区间且満足初值条件(3)的解.金题1込毕.现在取y。
Picard存在和唯一性定理本节利用逐次逼近法,来证明微分方程(2.1> 地初值问题(2.2> 地解地存在与唯一性定理.定理2.2 (存在与唯一性定理>如果方程(2.1>地右端函数在闭矩形域上满足如下条件:(1> 在R上连续。
(2> 在R上关于变量y满足李普希兹(Lipschitz>条件,即存在常数N,使对于R上任何一对点和有不等式:b5E2RGbCAP则初值问题(2.2>在区间上存在唯一解其中在证明定理之前,我们先对定理地条件与结论作些说明:1. 在实际应用时,李普希兹条件地检验是比较费事地.然而,我们能够用一个较强地,但却易于验证地条件来代替它.即如果函数在闭矩形域R上关于y地偏导数存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.<这也是当年Cauchy证明地结果)p1EanqFDPw2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,但是Lipschitz条件满足,偏导数不一定存在,如.DXDiTa9E3d3.现对定理中地数h0做些解释.从几何直观上,初值问题(2.2>可能呈现如图2-5所示地情况. 这时,过点地积图2-5分曲线当或时,其中,,到达R地上边界或下边界.于是,当时,曲线便可能没有定义.由此可见,初值问题(2.2>地解未必在整个区间上存在. 由于定理假定在R上连续,从而存在于是,如果从点引两条斜率分别等于M和-M地直线,则积分曲线(如果存在地话>必被限制在图2-6地带阴影地两个区域内,因此,只要我们取则过点地积分曲线(如果存在地话>当x在区间上变化时,必位于R之中.RTCrpUDGiT图 2-6存在性地证明求解初值问题<2.2)求解积分方程<2.3).因此,只要证明积分方程(2.3>地连续解在上存在而且唯一就行了. 下面用毕卡(Picard>逐次逼近来证明积分方程(2.3>地连续解地存在性,可分三个步骤进行:1.构造逐次近似序列.5PCzVD7HxA近似序列或写成地每一项都在上有定义,这是因为于是.这样,我们在区间上,按逐次逼近手续得到了一个连续函数列(近似序列>jLBHrnAILg2. 证明近似序列在区间上一致收敛.“函数序列地一致收敛1.设<1)是定义在I上地函数序列,若对,数列收敛,则称为序列<1)地收敛点.收敛点地全体叫收敛域.在收敛域上每一点,序列<1)都有极限,这极限形成收敛域上地一个函数,称为极限函数.设此函数为,即2.若对,总存在一个只与有关地自然数N,使得对I上任何一点,当时,有,则称序列<1)在I上一致收敛.xHAQX74J0X证明分如下二步:<1)序列在上一致收敛级数<2.7)在上一致收敛<级数).因为级数<2.7)地部分和LDAYtRyKfE“函数项级数地一致收敛1.设函数项级数<1)在区间I上收敛于和函数,即对,数项级数收敛于,或级数<1)地部分和所组成地数列=由数列极限定义,对,,使得时,有2.级数<1)在I上一致收敛对,,使得对,当时,有.3.若函数项级数<1)地每一项都在I上连续,并且在I上一致收敛,则<1)地和函数在I上连续.Zzz6ZB2Ltk<2)级数<2.7)在上一致收敛.用数学归纳法,易证级数<2.7)从第二项开始,每一项绝对值都小于正项级数地对应项,而上面这个正项级数显然是收敛地.所以,由优级数判别法,dvzfvkwMI1“函数项级数地一致收敛判别法<魏尔斯特拉斯优级数判别法)函数项级数<1)若函数项级数<1)在区间I上满足< I );< II )正项级数收敛.则函数项级数<1)在区间I上一致收敛.数项级数收敛地判别法<比值判别法,达朗贝尔<)判别法)若正项级数地后项与前项地比值地极限等于:则当时级数收敛,时<或)时级数发散;时级数可能收敛,也可能发散.rqyn14ZNXI级数(2.7>在区间上不仅收敛,而且一致收敛.设其和函数为,从而近似序列在区间上一致收敛于.由于在区间上连续,因而也是连续地.3.证明是积分方程(2.3>地解,从而也是初值问题(2.2>地解. 在n次近似序列<2.6)两端取极限有因为EmxvxOtOco所以要证明是积分方程<2.3)地解,即成立,只需证明这是由函数地连续性及Picard序列地一致收敛性质保证地.SixE2yXPq5下面用“ε-N语言”证明上面地极限成立.我们先利用李普希兹条件,作下面地估计:由于序列在区间上一致收敛,因此,对任给ε>0,存在自然数,当时,对区间上所有x恒有从而由此推得换句话说,我们得到现在对恒等式(2.6>两端取极限,就得到此即表明函数是(2.3>地解.至此定理地存在性部分证毕.6ewMyirQFL2.2.3 唯一性地证明,区别于北大版课本地另一种证明方法:下面来证明解地唯一性.为此我们先介绍一个在微分方程中很有用地不等式,即贝尔曼(Bellman>不等式.贝尔曼引理设y(x>为区间上非负地连续函数,.若存在使得y(x>满足不等式(2.9>则有证明先证明地情形.令,于是从(2,9>式立即有上式两端同乘以因子,则有kavU42VRUs上式两端从x0到x积分,则有即由(2.9>知,,从而由上式得到地情形类似可证,引理证毕. y6v3ALoS89积分方程(2.3>解地唯一性证明,采用反证法.假设积分方程(2.3>除了解之外,还另外有解,我们下面要证明:在上,必有.事实上,因为及将这两个恒等式作差,并利用李普希兹条件来估值,有令,从而由贝尔曼引理可知,在上有,即.至此,初值问题(2.2>解地存在性与唯一性全部证完.M2ub6vSTnP由定理 2.2知李普希兹条件是保证初值问题解唯一地充分条件,那么这个条件是否是必要地呢?下面地例子回答了这个问题. 0YujCfmUCw例 1 试证方程经过xoy平面上任一点地解都是唯一地. 证明右端函数除x轴外地上、下平面都满足定理2.2地条件,因此对于x轴外任何点,该方程满足地解都存在且唯一. 于是,只有对于x轴上地点,还需要讨论其过这样点地解地唯一性.我们注意到y = 0为方程地解. 当y ≠0时,因为故可得通解为为上半平面地通解, 为下半平面地通解.eUts8ZQVRd这些解不可能y = 0相交. 因此,对于轴上地点,只有y = 0通过,从而保证了初值解地唯一性.但是,因为故不可能存在使得sQsAEJkW5T 从而方程右端函数在y = 0地任何邻域上并不满足李普希兹条件,这个例子说明李普希兹条件不是保证初值解唯一地必要条件. GMsIasNXkA 为了保证方程(2.1>地初值解地唯一性,有着比李普希兹条件更弱地条件<Osgood条件).直到现在,唯一性问题仍是一个值得研究地课题.下面地例子表明:如果仅有方程(2.1>地右端函数f(x, y>在R上连续,不能保证任何初值问题(2.2>地解是唯一地. 但是由 Piano 存在定理知解是存在地.TIrRGchYzg例 2 讨论方程解地唯一性.解方程地右端函数,在全平面连续,当时,用分离变量法可求得通解,C为任意常数.又y = 0也是方程地一个特解,积分曲线如图2-7.7EqZcWLZNX个人收集整理资料,仅供交流学习,勿作商业用途图2-7 从图上可以看出,上半平面和下半平面上地解都是唯一地,只有通过x轴上任一点地积分曲线不是唯一地,记过该点地解为, 它可表为:对任意满足地a和b.lzq7IGf02E。
课程论文课程现代分析基础学生姓名学号院系专业指导教师二O一五年十二月四日目录1 绪论 (1)2 Banach空间基本概念 (1)2.1拟范数定义及例子 (1)2.2 Banach空间 (2)2.3 Banach空间中线性变换及其性质 (3)3 一致有界定理及其推论 (4)3.1问题 (4)3.2基本概念 (4)3.3一致有界定理及其推论 (5)3.4一致有界性定理及其推论的应用 (6)4 Hahn-Banach定理与凸集分离定理 (7)4.1实线性空间上的Hahn-Banach定理 (7)4.2复线性空间上的Hahn-Banach定理 (8)4.3赋范线性空间上的Hahn-Banach定理 (8)4.4有关Hahn-Banach定理的一些推论 (9)4.5 Hahn-Banach定理的几何形式:凸集分离定理 (9)5 Banach空间中开映射、闭图像定理以及逆算子定理 (9)5.1开映射定理 (10)5.2逆算子定理 (11)5.3闭图像定理 (12)6 总结 (14)参考文献 (16)Banach空间及其相关定理南京理工大学自动化学院,江苏南京摘要:本文的主要是介绍了Banach空间以及其相关定理。
首先,本文讲了Banach空间产生的背景以及应用领域。
然后本文介绍了Banach空间的基本概念及其相关性质。
最后本文开始从一致有界定理开始,将Banach空间中Hahn-Banach定理、开映射、闭图像以及逆算子定理这几个重要定理逐一做出介绍并给出相应定理的证明。
关键词:Banach空间;一致有界定理;Hahn-Banach定理;开映射、闭图像、逆算子定理1 绪论巴拿赫空间(Banach space)是一种赋有“长度”的线性空间,泛函分析研究的基本对象之一。
数学分析各个分支的发展为巴拿赫空间理论的诞生提供了许多丰富而生动的素材。
从魏尔斯特拉斯,K.(T.W.)以来,人们久已十分关心闭区间[a,b]上的连续函数以及它们的一致收敛性。
常微分方程解的存在唯一性定理一阶微分方程⑴其中. 是在矩形域丄」’叭」上的连续函数。
定义1如果存在常数二11,使得不等式”(础)-/(砒)冏肝川对于所有--■■-1--- 都成立,贝U函数/、•称为在二上关于:'满足Lipschitz 条件。
定理1如果「二,在二上连续且关于「满足Lipschitz 条件,则方程(1)存在唯一的解y=叭心,定义于区间M ■阳卜月上,连续且满足初始条件W八-卄 A = r—)M = max' ■-.,这里」f,•心「。
Picard逐步逼近法来证明这个定理的主要思想首先证明求微分方程的初值冋题的解等价于求积分方程的连续解。
然后去证明积分方程的解的存在唯一性。
任取一个连续函数代入上面积分方程右端的,就得到函数俅沪)Vp(Z()⑴)必,显然J 也是连续函数,如果,那末l:-'就是积分方程的解。
否则,我们又把J二代入积分方程右端的「,得到汀0恥)皿,如果氛沪仍⑴,那末仇⑴就是积分方程的解。
否则我们继续这个步骤。
一般地作函数惦(3.1.1.4)这样就得到连续函数序列,...,〔「」,…如果二, 那末就是积分方程的解。
如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数厂:;;1,即'厂…I存在,因而对©Ji/)取极限时,就得到f「打「X FJr=y0+l=y0+祕幼必Jf祕x)=y n+/(X 矶兀))必/ 、即•血,这就是说机x)是积分方程的解。
这种一步一步地求出方程的解的方法就称为逐步逼近法。
函数''■■■■■'称为初值问题的第:次近似解。
命题1设—是方程(1)的定义于区间V —'■'‘上,满足初始条件Jf瞅)=刃的解,则厂曲)是积分方程y=y°+y (2曲碳心砒的定义于V ——'■上的连续解。
反之亦然。
现在取,构造皮卡逐步逼近函数序列如下: 京(X)=丹;保(方=丹+ f于(乙矶_1©)時从“英肿hJ*D(聊=12…)1命题2对于所有的卜,函数在J■:上有定义、连续且满足不等式命题3 函数序列"I「在J ------------ '."上是一致收敛的。
banach空间常微分方程解的存在定理及其解与纯量方
程解的关系
Banach空间常微分方程解的存在定理及其解与纯量方程解的关系:
1.Banach空间的含义:
Banach空间是一类模式空间,它被引入到几何空间的代数结构中,用于处理泛函分析、函数拓扑以及更复杂的物理理论。
它们是线性的、具有正定的距离函数的完备的空间,通常被广泛应用于几何分析、物理学和工程学中。
2. Banach空间常微分方程的存在定理:
Banach空间常微分方程存在定理指的是关于存在解的结果,它确定在Banach空间中存在一个微分方程的具有内在满足性的解集。
首先,定义称Banach空间X上的具有Lipschitz连续梯度的局部Lipschitz函数f 称为C-Lipschitz函数,用f表示,C-Lipschitz函数f(t,u)满足条件:它存在bounded set K 这标量K,只要u ,v∈ K,都有:|f(t,u)-f(t,v)|
≤CL|u-v|,其中C是定数。
3.Banach空间常微分方程解与纯量方程解的关系:
Banach空间常微分方程解与纯量方程解之间存在着相关性。
纯量方程是一种特殊的微分方程,它只含有某一变量的函数表达式,这变量满足所给的微分方程。
而Banach空间常微分方程作为普通的微分方程,
它的解需要满足常微分方程的某种形式的局部Lipschitz函数;纯量方程的解仅仅可以从一个内在参数出发,它通过一个连续的基本表达式满足局部Lipschitz不变条件,从而在Banach空间上获得解集,而这个表达式只是纯量变量的函数表达式。
因此,纯量方程解和Banach空间常微分方程解之间存在着相关性。
常微分方程的解的存在唯一性定理常微分方程是研究变量之间关系的数学工具。
在许多科学和工程领域,我们经常需要求解常微分方程来描述和预测系统的行为。
而常微分方程的解的存在唯一性定理则为我们提供了一种保证求解过程的准确性和可靠性的方法。
1. 引言常微分方程是研究变量之间关系的数学工具,广泛应用于物理、生物、经济等领域。
解常微分方程是求解系统行为和预测未来发展的重要方法,但如何确保解的唯一性和存在性一直是研究的焦点。
2. 定理的表述常微分方程的解的存在唯一性定理指出,如果一个常微分方程满足一定条件,则该方程存在且只存在一个解。
具体表述如下:定理:设F(t, y)在区域D上连续且关于y满足Lipschitz条件,即存在常数L>0,使得对于任意的(t, y1)和(t, y2)∈D,有|F(t, y1) - F(t, y2)| ≤ L|y1 - y2|。
那么对于初值问题y' = F(t, y),y(t0) = y0,存在唯一的解y(t)。
3. 论证和证明为了证明上述定理,我们可以使用柯西-利普希茨定理。
柯西-利普希茨定理指出,如果一个函数满足Lipschitz条件,那么它的微分方程必然存在唯一解。
4. 柯西-利普希茨定理的推导柯西-利普希茨定理的推导主要包括以下几个步骤:(1)定义导数:我们首先定义导数,即一个函数在某一点的斜率。
(2)利用导数定义微分方程:我们将导数的定义应用到微分方程中,得到一个关于导数的等式。
(3)引入Lipschitz条件:我们引入Lipschitz条件来限制导数的变化范围,确保解的唯一性。
(4)证明柯西-利普希茨定理:通过数学分析和推导,我们最终证明了柯西-利普希茨定理。
5. 应用实例常微分方程的解的存在唯一性定理在实际应用中具有重要意义。
以下是几个应用实例:(1)物理学中的运动方程:物体在运动中往往涉及到速度的变化,可以使用常微分方程来描述物体的运动轨迹。
解的存在唯一性定理保证了我们能够准确地求解出物体的运动轨迹。
常微分方程的解的存在唯一性定理常微分方程是数学中一个重要的研究对象,它描述了自变量是连续变化的函数与自变量的导数之间的关系。
研究常微分方程的解的存在唯一性定理是常微分方程理论的基石之一,对于解的存在性和唯一性的判断具有重要的意义。
定理一:皮卡尔(Picard)存在定理假设函数f(x, y)在矩形区域D={(x, y):a≤x≤b,α≤y≤β}上连续,且满足利普希茨条件:存在正数L,使得在D上任意点(x, y1)和(x, y2),有|f(x, y1) - f(x, y2)|≤L|y1-y2|。
则初值问题y' = f(x, y),y(x0) = y0在区间[a, b]上存在唯一的解。
证明:(略)定理二:格朗沃尔(Gronwall)不等式假设函数y(x)满足不等式y(x)≤K+∫[a,x]f(t,y(t))dt,其中K为常数且f(x, y)为非负函数。
则有0≤y(x)≤Kexp(∫[a,x]f(t,y(t))dt)。
证明:(略)根据皮卡尔存在定理和格朗沃尔不等式,我们可以推导出常微分方程解的存在唯一性定理。
定理三:常微分方程解的存在唯一性定理假设函数f(x, y)在区域D上连续,且满足利普希茨条件:存在正数L,使得在D上任意点(x, y1)和(x, y2),有|f(x, y1) - f(x, y2)|≤L|y1-y2|。
则对于初值问题y' = f(x, y),y(x0) = y0,在定义区间上存在唯一的解。
证明:(略)常微分方程解的存在唯一性定理的推导过程相对较为复杂,涉及到一些数学理论和定理的运用。
但是这个定理为我们研究和求解常微分方程提供了重要的理论支持,确保了我们在解决实际问题中得到的解是存在且唯一的。
除了皮卡尔存在定理和格朗沃尔不等式外,我们还可以利用其他方法来证明常微分方程解的存在唯一性,比如利用分离变量法、变换方法、级数法等。
在实际应用中,根据具体问题的特点选择适合的方法进行求解。
Banach空间常微分方程的几个定理
朱传喜
【期刊名称】《南昌大学学报:工科版》
【年(卷),期】1996(018)002
【摘要】研究了Banach空间常微分方程的几个问题,得到了若干新的结果。
【总页数】4页(P109-112)
【作者】朱传喜
【作者单位】无
【正文语种】中文
【中图分类】O175.15
【相关文献】
1.Banach空间隐式常微分方程的解的存在性定理 [J], 林艺
2.Banach空间二阶常微分方程两点边值问题解的存在唯一性定理 [J], 栾世霞;孙
钦福;高兰芳
3.Banach空间常微分方程整体解的存在定理 [J], 林艺
4.Banach空间中常微分方程解的存在唯一性定理的注 [J], 邓海荣;马兆丰
5.Banach空间常微分方程初值问题弱解的一个逼近定理 [J], 陈清明
因版权原因,仅展示原文概要,查看原文内容请购买。
Banach 空间中常微分方程解的存在唯一性定理魏婷婷(天水师范学院 数学与统计学院,甘肃,天水,741000)摘要: 在Banach 空间中, 常微分方程解的存在唯一性定理中},1min{M b L h =,初值问题的解)(t y 的变量t 在h t t h t +≤≤-00上变化,把t 的变化范围扩大为Mbt t Mbt +≤≤-00,为此给出t 变化范围后的Banach 空间中常微分方程解的存在唯一性定理,并对定理给予明确的证明.关键词: 存在唯一;常微分方程;数学归纳法;皮卡逐步逼近法;Banach 空间引言常微分方程解的存在唯一性定理明确地肯定了在一定条件下方程的解的存在性和唯一性,它是常微分方程理论中最基本且实用的定理,有其重大的理论意义,另一方面,它也是近似求解法的前提和理论基础.对于人们熟知的Banach 空间中常微分方程解的存在唯一性定理,解的存在区间较小, 只限制在一个小的球形邻域内,(球形邻域的半径若为δ,还需满足1<δL ,且解只在以0y 为中心以δ为半径的闭球δδ≤-∈=00)(y y X y y B 存在唯一,其中X 是Banach 空间)因此在应用过程中受到了一定的限制.如今我们尝试扩大了解的存在范围,从而使此重要的定理今后有更加广泛的应用.1 预备定理我们给出Banach 空间中常微分方程解的存在唯一性定理如下设X 是Banach 空间, X U ⊂是一个开集. X U f →:上关于y 满足利普希茨)(Lipschitz 条件,即存在常数0>L ,使得不等式2121),(),(y y L y t f y t f -≤-,对于所有U y y ∈21,都成立.取U y ∈0,在U 内,以0y 为中心作一个半径为b 的闭球b y y X y y B b ≤-∈=00)(,对所有的)(0y B y b ∈都成立,且有M y f ≤)(,取},1min{Mb L h =,则存在唯一的1C 曲线)(t y ,使得在h t t h t +≤≤-00上满足)(0y B y b ∈,并有),(y t f y =',00)(y t y =.2 结果与证明笔者通过改进对h 的限制,即仅取Mb h =,预备定理仍然成立,从而使定理的应用进一步广泛.2.1改进条件后的定理定理 假设条件同上预备定理,设初值为),(00y t ,则存在唯一的1C 曲线)(t y ,对任意的Mbt t Mbt +≤≤-00,满足)(0y B y b ∈,且使得),(y t f y =',00)(y t y =.显然可有],[],[0000Mbt M bt h t h t +-⊂+-,且},1min{MbL h =.2.2定理的证明证明 证明过程中我们利用皮卡)(Picard 逐步逼近法.为了简单起见,只就区间00t t Mbt ≤≤-进行讨论,对于区间Mbt t t +≤≤00的讨论完全一样.2.2.1定理证明的思想现在先简单叙述一下运用皮卡逐步逼近法证明的主要思想. 首先证明条件),(y t f y =',00)(y t y =等价于求积分方程dt y t f y t y t t ),()(00⎰+=.(1)再证明积分方程的解的存在唯一性.任取一个)(0t y 为连续函数,将它代入方程(1)的右端),(y t f ,可得到函数dt y t f y t y t t ),()(0010⎰+=,显然,)(1t y 也为连续函数.若)()(01t y t y =,则可知)(0t y 就是方程(1)的解.若不然,我们又把)(1t y 代入积分方程(1)的右端),(y t f ,可得到函数dt y t f y t y t t ),()(1020⎰+=.若)()(12t y t y =,则可知)(1t y 就是方程(1)的解.若不然,我们如此下去,可作连续函数,dt y t f y t y n t t n ),()(100-⎰+=. (2)这样就得到连续函数列),(,),(),(),(210t y t y t y t y n若)()(1t y t y n n =+,那么)(t y n 就是积分方程的解,如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数)(t y ,即)()(lim t y t y n n =∞→存在,因而对(2)式两边取极限时,就得到dt y t f y dt y t f y dt y t f y t y t t n n t t n t t n n n ⎰⎰⎰+=+=+=-∞→-∞→∞→),(),(lim ),(lim )(lim 00001010,即dt y t f y t y t t ),()(00⎰+=,这就是说,)(t y 是积分方程的解.在定理的假设条件下,以上的步骤是可以实现的. 2.2.2定理证明的步骤下面我们分五个命题来证明定理.命题1 设)(t y y =是),(y t f y ='的定义于区间00t t Mbt ≤≤-上,满足初值条件00)(y t y = (3) 的解,则)(t y y =是积分方程dt y t f y t y t t ),()(00⎰+=定义于00t t M b t ≤≤-上的连续解,反之亦然.证明 因为)(t y y =是方程),(y t f y ='的解,故有),()(y t f dtt dy =. 对上式两边从0t 到t 取定积分得到dt y t f t y t y t t ⎰=-),()()(00,00t t M b t ≤≤-,把(3)式代入上式,即有dt y t f y t y t t ⎰+=),()(00,00t t M b t ≤≤-. (4)因此, )(t y y =是(4)的定义于00t t Mbt ≤≤-上的连续解.反之,如果)(t y y =是(4)的连续解, dt y t f y t y t t ⎰+=),()(00,00t t M b t ≤≤-.微分之,得到),()(y t f dtt dy =. 又把0t t =代入(4)式,得到00)(y t y =,因此, )(t y y =是方程),(y t f y ='的定义于区间00t t Mbt ≤≤-,且满足初值条件(3)的解.命题1证毕.现在取00)(y t y =,构造皮卡逐步逼近函数序列如下⎪⎩⎪⎨⎧=≤≤-+==⎰-),2,1(,),()()(0010000 n t t M b t dt y t f y t y y t y n t t n(5) 命题2 对于所有的n ,(5)中函数)(t y n 在00t t Mb t ≤≤-上有定义,连续且满足不等式b y t y n ≤-0)(.证明 用数学归纳法可以证明,如下)()(0y B t y b n ∈,对于任意N n ∈,00t t Mbt ≤≤-,当1=n 时, ξξd y f y t y t t ),()(0010⎰+=,显然)(1t y 在00t t Mb t ≤≤-上有定义,连续且有b t t M d y f d y f y t y t t t t ≤-≤≤=-⎰⎰)(),(),()(0000100ξξξξ.设当k n =时有)()(0y B t y b k ∈,也即)(t y k 在00t t Mbt ≤≤-上有定义,连续且满足不等式b y t y k ≤-0)(,这时ξξd y f y t y k t t k ),()(001⎰+=+.由假设,命题2当k n =时成立,则可知)(1t y k +在00t t Mb t ≤≤-上有定义,连续且有当1+=k n 时b t t M d y f d y f y t y k t t k t t k ≤-≤≤=-⎰⎰+)(),(),()(00100ξξξξ,即命题2当1+=k n 时也成立,从而得知命题2对于所有的n 均成立.命题2证毕.命题3 函数序列)}({t y n 在00t t Mb t ≤≤-上是一致收敛的.证明 我们考虑级数∑∞=--+110)]()([)(k k k t y t y t y ,00t t Mbt ≤≤-,(6)(6)式级数的部分和为)()]()([)(110t y t y t y t y n nk k k =-+∑=-,因此,要证明函数序列)}({t y n 在00t t Mbt ≤≤-上一致收敛,我们仅证明级数(6)在00t t Mbt ≤≤-上一致收敛.因此,我们可进行如下计算,由)(),(),()(0000100t t M d y f d y f y t y t t t t -≤≤=-⎰⎰ξξξξ, (7)及ξξξd y f y f t y t y t t ⎰-≤-),(),()()(01120,利用利普希茨)(Lipschitz 条件及(7)式可知对于任意的n 为正整数,不等式n n n n t t n ML t y t y )(!)()(011-≤---成立. 则由利普希茨条件,当00t t Mbt ≤≤-时,有为此,由数学归纳法可知,对于所有的正整数k ,可有如下的式子成立,k k k k t t k ML t y t y )(!)()(011-≤---,00t t M b t ≤≤-.因此可有,当k k kk k k M b k ML t t k ML t y t y )(!)(!)()(1011---≤-≤-, (8) (8)式右端为收敛的正项级数∑∞=-11)(!k k k M bk ML 的一般项. 由魏尔斯特拉斯)(s Weierstras 判别法,级数(6)在00t t Mb t ≤≤-上是一致收敛的,因此序列)}({t y n 也在00t t Mbt ≤≤-上一致收敛,命题3证毕.现设)()(lim t y t y n n =∞→,为此)(t y 也在00t t Mbt ≤≤-上连续,且由命题2又可知b y t y ≤-0)(,命题4 )(t y 是积分方程dt y t f y t y t t ),()(00⎰+=的定义在区间00t t M b t ≤≤-上的连续解.证明 由利普希茨条件)()(),(),(t y t y L y t f y t f n n -≤-以及)}({t y n 在2000112)(!2)()()()()(0t t ML d t M L d y y L t y t y t t t t -=-≤-≤-⎰⎰ξξξξξ100111)()!1()(!)()(),(),()()(000+--+-+=-≤-≤-≤-⎰⎰⎰n nnt t n n n t t n n t t n n t t n ML d t n ML d y y L d y f y f t y t y ξξξξξξξξ00t t Mbt ≤≤-上一致收敛于)(t y ,且函数列)}({t y n 逐项连续,即知序列))}(({t y f n 在00t t Mbt ≤≤-上一致收敛于))((t y f .因而对(5)式两边取极限,得到ξξξξd y f y d y f y t y n n t t n t t n n n ),(lim ),(lim )(lim 101000-∞→-∞→∞→⎰⎰+=+=即ξξd y f y t y t t ),()(00⎰+=,这就是说, )(t y 是积分方程dt y t f y t y t t ),()(00⎰+=的定义于00t t Mbt ≤≤-上的连续解.命题4证毕.命题5 (证明解的唯一性)设)(t x 是积分方程dt y t f y t y t t ),()(00⎰+=定义于00t t Mbt ≤≤-上的另一个连续解,则)()(t x t y =,00t t Mbt ≤≤-.证明 现在我们证明)(t x 也是序列)}({t y n 的一致收敛极限函数.为此,从00)(y t y =,.),()(100ξξd y f y t y n t t n ⎰-+= )1(≥n ,ξξd x f y t x t t ),()(00⎰+=,可以进行如下的估计,)(),(),()()(0000t t M d x f d x f t x t y t t t t -≤≤=-⎰⎰ξξξξ200001)(!2)()()(),(),()()(000t t MLd t ML d x y L d x f y f t x t y t t t t t t -=-≤-≤-≤-⎰⎰⎰ξξξξξξξξ现在我们可以假设n n n t t n ML t x t y )(!)()(011-≤---,则有 .)()!1()(!)()(),(),()()(10011000+---+=-≤-≤-≤-⎰⎰⎰n nnt t n n t t n t t n t t n ML d t n ML d x y L d x f y f t x t y ξξξξξξξξ故由数学归纳法得知,对于所有的正整数n ,有下面的估计式10)()!1()()(+-+≤-n nn t t n ML t x t y ,于是我们可知在00t t Mbt ≤≤-上有110)()!1()()!1()()(+++≤-+≤-n n n n n Mb n ML t t n ML t x t y , (9)1)()!1(++n n M b n ML 是收敛级数的公项,且当∞→n 时, 0)()!1(1→++n n Mb n ML . 因而)}({t y n 在00t t Mbt ≤≤-上一致收敛于)(t x .根据极限的唯一性,即可知)()(t x t y =,00t t Mbt ≤≤-.命题5证毕.综合命题1~5,即得到Banach 空间中常微分方程解的存在唯一性定理的证明. 例题 求初值问题⎪⎩⎪⎨⎧=--=0)1(22y yt dtdy 其中R :[]0,2-∈t ,[]1,1-∈y 的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.解 ()4),(max ,==∈y t f M Ry t则利用本文的结果41==Mbh , 在R 上函数22),(y t y t f -=的利普希茨常数可取2=L ,因为L y yf=≤-=∂∂22. 0)(0=t y ,313))(()(220211+=-=⎰-t d y t y t ξξξ,4211631893))(()(74321212+---=-=⎰-t t t t d y t y t ξξξ.在本文的估计式(9)中令)()(t y t x =,则有误差估计式110)()!1()()!1()()(+++≤-+≤-n n n n n Mb n ML t t n ML t y t y ,从而可得241)41(!324)()(322=⨯⨯≤-t y t y .利用本文结果,初值问题解的存在区间为Mbt t Mbt +≤≤-00为此将10-=t ,41=Mb代入上式,可得解的存在区间为4345-≤≤-t ; 第二次近似解为42116318937432+---=t t t t y ;在解的存在区间的误差估计为2412≤-y y . 结束语在Banach 空间中,通过运用皮卡的逐步逼近法,从证明解的存在性,到解的唯一性,采用严密的逻辑推理和理论证明,得到扩大解的存在区间后Banach 空间中常微分方程解的存在唯一性定理,从而使定理更加实用.当然,展望未来,我们还可以利用所得到的结果进一步作为探究其他问题的可靠性依据.参考文献[1] 王高雄,周之铭,朱思铭,王寿松,编.常微分方程[M].北京:高等教育出版社,2006.[2] 郭大均,孙经先.抽象空间常微分方程[M].济南:山东科学技术出版社,2003.[3] 王兴涛,编.常微分方程[M].哈尔滨:哈尔滨工业大学出版社,2004.[4] 邓海荣,马兆丰.Banach空间中常微分方程解的存在唯一性定理的注[J].扬州大学学报:自然科学版,2007,10(1): 1~3.[5] 房琦贵.关于常微分方程解的存在唯一问题的讨论[J].高校讲坛,2010.[6] 王声望,郑伟行,编.实变函数与泛函分析概要[M].北京:高等教育出版社,2005.如不慎侵犯了你的权益,请联系告知!致谢在完成终稿的今天,在敲完最后一个句号的时刻,我的思想同周围凝固的热气一样停驻了,不知道是慰藉还是悲伤,大学四年的生活就这样结束了,而眼前的路还很长,虽然似乎有些迷茫,但我必须整理心情,背上行囊,坚定的踏上新的征程……我要感谢,非常感谢我的指导老师何老师.在忙碌的教学工作中挤出时间来审查修改我的论文,循循善诱的教导和不拘一格的思路给予我无尽的启迪.他为人随和热情﹑治学严谨细心﹑广博的学识﹑深厚的学术素养,在论文的写作和措辞等方面他也总会以专业标准严格要求,从选题﹑定题﹑开始,一直到论文的反复修改,何老师始终认真负责地给予我深刻而细致地指导,帮助我开拓研究思路,精心点拨﹑热忱鼓励.正是何老师的无私帮助与热忱鼓励,我的毕业论文才能够得以顺利完成,谢谢何老师.再次,我还要认真地谢谢我身边所有的朋友和同学,你们对我的关心﹑帮助和支持是我不断前进的动力之一,我的大学生活因为有你们而更加精彩.最后,向在百忙中抽出时间对本文进行评审并提出宝贵意见的各位专家表示衷心地感谢!(本资料素材和资料部分来自网络,仅供参考。