海上风电机组基础结构-第三章
- 格式:ppt
- 大小:25.67 MB
- 文档页数:68
海上风电送出系统及工程技术本章概括性地介绍海上风电场的发电系统构成和主要设备,重点介绍了其送电系统构成、主要设备和功能特性,以及海上风电送出工程的系统并网技术、海上变电站、换流站技术和海底电缆线路技术。
2.1 海上风力发电系统简介2.1.1 系统构成目前,海上风力发电系统的典型接线图如图2-1所示。
图2-1 海上风力发电系统典型接线图从图2-1可以看出,风力发电机由风能驱动,发出电能,是海上风力发电系统最为重要的系统构件。
电能通过在机舱或基座内的变压器将电压抬升(如690V/35kV)之后汇入海底集电系统。
海底集电系统是连接各风电机组形成的电气系统,主要由连接各风电机组的海底电缆及开关设备构成,其作用是汇集各风电机组发出的电能,输送至陆上或海上升压站。
2.1.2 主要设备及功能特性据前文所述,海上风力发电系统包括海上风电机组及海底集电系统两个部分。
风电机组由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础、升压设备等组成,典型结构如图2-2所示。
海底集电系统由连接各风电机组的海底集电电缆、开关设备等组成。
(1)风轮。
由叶片和轮毂、滑环组成,是风电机组获取风能的关键部件,叶片是由复合材料制成的薄壳结构,分为根部、外壳、龙骨三个部分;轮毂固定在主轴上,内装有变桨系统,与机舱经滑环连接;滑环为旋转部件(叶片和轮毂)与固定部件(机舱)提供电气连接。
(2)传动系统。
由主轴、齿轮箱和联轴节组成(直驱式除外),主轴连接轮毂与齿轮箱,承受很大力矩和载荷;齿轮箱连接主轴与发电机,叶轮转速一般为15~25r/min,发电机(非直驱式)额定转速一般为1500~1800r/min,齿轮箱增速比通常为1∶100左右。
(3)偏航系统。
由风向标传感器、偏航电动机、偏航轴承和齿轮等组成。
偏航轴承连接机舱底架与塔筒齿轮环内齿,并与偏航电机啮合实现机舱偏航对风;偏航电动机驱动机舱转动对风,偏航速度一般为1°/s,通常有3~5台,通过减速箱或变频器降速。
海上风电机组基础结构设计标准《海上风电机组基础结构设计标准》一、适用范围本标准适用于海上风电机组基础结构的设计,包括海上桩基式塔座和浮式塔座。
二、基础结构(一)基础结构组成部分:1. 基础结构的组成部分,包括基础结构的顶部平台、基础结构的腹部、基础结构的桩体或者浮体壳体。
2. 基础结构安装的安全装置。
(二)基础结构的设计要求:1. 基础结构的设计使用年限应满足设备设施安装的要求,保护安装的设备设施不受损坏。
2. 基础结构的设计应符合国家有关规定,并考虑海洋环境的特殊要求,且考虑海洋环境中的气候、海浪强度、土质结构和岩石属性等进行设计。
3. 基础结构的设计应考虑与海洋环境的配合,使其能够抵抗海洋环境的冲击,如海浪冲击、风荷载、悬浮物等,并具备相应的生态保护功能。
4. 基础结构的设计应确保其结构平衡,结构完整,不变形。
5. 基础结构的设计应考虑机组的振动,采用合理的减振措施,控制振动的扩散,保证机组的正常运行。
6. 基础结构的设计应考虑潮汐、海浪、风荷载等荷载和环境条件,以确保机组能够正常运行。
7. 基础结构的设计应考虑设备安装的方便性和机组维护的要求,使其能够满足机组的维护要求。
三、总体设计(一)总体设计的要求:1. 总体设计时应考虑到机组的布局,包括机组与港口的距离、机组之间的距离等,确保机组能够正常运行。
2. 总体设计时应考虑机组的布局与现有工程的叠放关系,使机组的安全运行不受影响。
3. 总体设计时应考虑到机组的安全性,能够满足机组的安全要求,并预留必要的维护空间和设备安装空间,以确保机组能够顺利运行。
4. 总体设计时应考虑海洋环境的影响,确保机组能够顺利运行,并考虑海岸线环境保护的要求,防止对海洋环境造成污染。
(二)总体设计的内容:1. 基础结构的设计,包括机组的布局,配套设施的设计,以及机组配置技术要求的考虑等。
2. 机组的抗海洋环境性能设计,包括抗海浪冲击性能、抗风荷载性能、抗潮汐性能等。
海上风电基础形式及关键技术综述海上风电是指将风力发电机组安装在海上平台上,利用海上的高风速和稳定的风能资源发电的一种新能源。
相比于陆上风电,海上风电具有风速更高、风能资源更为丰富、发电量更大等优点,因此被视为未来风能发电的重要发展方向之一、本文旨在综述海上风电的基础形式和关键技术。
一、基础形式1.海上浅水沉箱式基础:采用沉箱式基础是目前应用最广泛的海上风电基础形式之一、它采用钢质沉箱作为支撑结构,通过将沉箱沉入海底然后灌注混凝土的方式固定在海底。
它的优点是施工简单方便、成本较低,但仅适用于水深在30米以内的海区。
2.海上钢桩式基础:钢桩式基础是适用于水深较深的海区的一种海上风电基础形式。
它采用钢制桩或者预制混凝土桩作为主要支撑结构,通过将桩固定在海底的方式支撑风力发电机组。
它的优点是适用于水深在30米以上的海区,能够承受较大的浪涌和冲击力。
3.海上浮式基础:浮式基础是一种新型的海上风电基础形式,它采用浮式平台作为主要支撑结构,通过浮力来支撑风力发电机组。
浮式基础的优点是可以适用于任意水深的海区,同时可以进行动态调整和定位,适应更为复杂的海洋环境。
二、关键技术1.海洋环境适应性:海上风电基础需要能够承受较大的海浪冲击、潮汐流速以及海水腐蚀等海洋环境的影响。
因此,要保证海上风电基础的耐腐蚀性和结构强度,选择合适的材料和表面处理技术,同时进行充分的结构设计和计算分析。
2.抗风性能:风是驱动风力发电机组工作的关键因素,因此海上风电基础需要具备良好的抗风能力。
这涉及到基础的结构形式选择、基础的稳定性和刚度设计等方面。
同时,需要进行合理的排布和间距设置,以减小风力发电机组之间的相互影响。
3.施工与维护技术:海上风电基础的施工和维护需要考虑到海上工作环境的恶劣性。
因此,需要开发高效的施工技术和维护技术,采用合适的船舶和设备,使得基础的建设和维护能够在复杂的海洋环境中进行。
4.高效发电技术:海上风电的发电效率对于经济可行性和环境效益至关重要。
海上风电风机基础结构形式及安装技术摘要:海上风力发电是未来主要风能趋势,且海岸滩涂风力储量丰富,具有巨大开发潜力。
但是海上存在复杂区域条件和不稳定地形,直接开发很容易引起海底土壤侵蚀和液化,这直接影响到海上风力发电机基础安全性和稳定性。
针对现有风力发电机基础,本文分析现有海上风力发电机基础结构形成,探讨其施工安装技术。
关键词:风机基础;单桩基础;安装技术前言:随着传统热能发展停滞,新能源增长会成为全球趋势。
由于热力和煤炭资源不足,清洁能源成为全球能源领域的热门话题。
风力发电作为清洁、无污染的可再生能源,越来越受到人们关注,本文将对海上风电风机进行分析探讨。
1 现状风能具有可持续发展,是一种清洁无污染能源,是未来能源发展方向。
面对我国当前环境污染现实和环境保护以及节能减排的迫切需要,海上风电将进入发展黄金时代。
故此,近年来将是海上风电发展爆发阶段。
海上风电机组安装,现已建成许多套,在基础上对风力发电机进行综合提升[1]。
2 基础结构形式通常,海上风力发电机形态基础结构主要包括重力基础、单桩基础、高桩承台基础、多桩基础及导管架式基础、吸力锚基础,详见下表。
2.3 高桩承台基础高桩承台基础需要根据实际地质条件和施工难度施工,其外围桩通常从一定角度向内倾斜。
地基应用于风电设备建造前,它是由基桩和上部承载平台组成,是沿海码头常见结构。
优点是对水平位移受力和阻力有利;缺点是基底较长,整体结构较重,因此适合于深度小于20米浅海海域。
2.4 多桩基础多桩基础使用多个钢堆,管道方向上部连接在钢桁架基础部分,基础上部连接在塔筒上。
多桩基础主要用于大规模风力发电园区和水深海域,在许多国家都有使用。
适合水深300米内海洋地区,不适合海底岩石多发地区情况。
多桩基础在海上石油和生产平台建设上非常成熟,可以应用于大众化和海上风能。
其优点包括质量轻、基础强度高、安装技术成熟,适用于深海;缺点是需要大量钢材,生产时间长,成本相对高,安装易受到天气影响[3]。
海上风电机组结构海上风力发电是一种在全球范围内广泛应用的可再生能源,而风电机组的结构是整个系统的核心部分。
本文将详细介绍海上风电机组结构的各个主要组成部分。
1.风轮风轮是风电机组的核心部件,它利用风力带动发电机工作。
一般来说,风轮包括叶片和轮毂两部分。
此外,根据不同的设计,风轮还可以包含刹车装置和测风设备等其他部件。
这些部件能够有效地吸收并利用风能,提高风电机组的效率。
2.塔筒塔筒是风电机组的另一重要部件,它负责将风轮吸收到的能量传输到发电机。
一般来说,塔筒包括底座、中间段和顶端三部分。
此外,塔筒还需具有防腐蚀和耐久性,并能承受很大的力量。
它不仅支撑着整个风电机组的结构,还将风能转化为电能的过程中的关键环节。
3.齿轮箱齿轮箱是连接风轮和发电机的关键部件,它可以将风轮的高速转动变为发电机的工作转速,从而将动能转化为电能。
此外,齿轮箱还需具有很高的准确性和稳定性,从而保证电力的质量。
齿轮箱的设计和制造需要经过精密的计算和实验验证,以确保其性能达到最优。
4.发电机发电机是风电机组的核心部件,它负责将动能转化为电能。
根据不同的设计,发电机包括的部件也不尽相同。
例如,水平轴风电机组通常使用的是三相异步发电机或双馈异步发电机,而垂直轴风电机组则可能使用的是直线发电机或旋转发电机。
5.控制系统控制系统是保证风电机组正常工作的关键,它负责监测风电机组的运作状态,并对其进行及时维护和修复。
控制系统一般由各种传感器、控制器和执行器等组成,能够实时监测和控制风电机组的各个部件。
6.变压器变压器是将电压转换成用户所需电压的重要设备,它可以将高压电变为低压电,保证用电的安全性和稳定性。
对于海上风电机组来说,变压器也是必不可少的设备之一,因为它需要将海上与陆地电网连接起来,实现电能的传输和分配。
7.支撑结构支撑结构包括机座、横梁等部件,它们负责支撑整个机组的工作,并保证其稳定的运转。
这些部件的设计和制造也需要经过精密的计算和实验验证,以确保其能够承受住各种恶劣环境和载荷条件下的运行。
第3章风力发电机组整体结构填空题1、并网型风力发电机的功能是将风轮获取的【空气动能】转换成【机械能】,再将【机械能】转化为【电能】。
2、风力发电机组的基本要求是能在风电场所处的【气候】和【环境】条件下长期安全运行,以较低的成本获取【最大的年发电量】。
3、风电机组对其零部件要求极其严格,对【结构设计】、【材料选用】、【加工工艺】和【质量控制】都提出了远高于普通设备的要求。
4、并网型风力发电机组的整体结构分为【风轮】(包括叶片、轮毂和变桨距系统)、【机舱】(包括传动系统、发电机系统、辅助系统、控制系统等)、【塔架】和【基础】等几大部分。
5、用钢筋混凝土制成的塔架基础必须保证机组在极端恶略的气象条件下能够保持塔筒【垂直】,使机组稳定运行。
6、风电机组的主要部分布置要使得机组在运行时,机头(机舱与风轮)重心与【塔架】和【基础】中心相一致,整个机舱底部与塔架的连接应能抵御风轮对塔架造成的【动力负载】和【疲劳负荷】作用。
7、机舱外壳是【玻璃纤维】和【环氧树脂】制成的机舱罩,具有成本低、重量轻、强度高的特点,能有效的防雨、防潮、和抵御盐雾、风沙的侵蚀。
8、风电机组如果不使用齿轮增速箱,在很低的风轮转速下只能用一个极数较多的发电机,例如对应30r/min的风轮转速需要使用【200】极的发电机,而发电机转子的【质量】与转矩大小成比例,这样的发电机将会非常庞大和笨重。
9、风电机组使用齿轮箱,是为了将风轮上的【低转速高转矩】能量,转换为用于发电机上的【高转速低转矩】能量,这样就可以使用结构较小的普通发电机发电。
10、直驱式风力发电机没有【齿轮箱】,由风轮直接驱动发电机,亦称无齿轮箱风力发电机。
11、直驱式发电机应用于风电机上还是有一些问题需要研究解决,如【减轻发电机的体积和重量】,【方便运输】;【最适合的机型】(同步、永磁、可变磁阻等)选择;电流和电压的波动的影响;变流器的选择;【设计低损耗的发电机】;永磁发电机导致过量的铁损耗;磁性材料的选择;在运行或失效的情况下如何【防止消磁状况】等。