20162017广州市天河区八年级上学期期末试卷

  • 格式:doc
  • 大小:561.50 KB
  • 文档页数:7

下载文档原格式

  / 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年广东广州天河初二上期末试卷

一、选择题(本大题共10小题,每小题3分,共30分) 1、下列图形中是轴对称图形的是( ).

A .

B .

C .

D .

2、下列计算正确的是( ). A .257a a a +=

B .21x x -=

C .33a a +=

D .236x x x =g

3、下列两个图形不一定全等的是( ). A .面积相等的两个正方形 B .面积相等的两个长方形 C .半径相等的两个圆

D .大小一样的两面五星红旗

4、下列长度的三根小木棒能构成三角形的是( ). A .2cm ,3cm ,5cm B .7cm ,4cm ,2cm C .3cm ,4cm ,8cm

D .3cm ,3cm ,4cm

5、下列从左到右的变形属于因式分解的是( ). A .296(3)(3)6x x x x -+=+-+ B .2(5)(2)310x x x x +-=+- C .22816(4)x x x -+=-

D .2632a b a ab -=-g

6、一个多边形的每个内角均为,则这个多边形是( ). A.七边形

B.六边形

C.五边形

D.四边形

7、如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果≌PQO NMO ∆∆,则他需测量长度的线段是( ). A .PO

B .PQ

C .MO

D .MQ

8、如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定

≌ABE ACD ∆∆( ).

A .

B

C ∠=∠ B .A

D A

E =

C .B

D C

E =

D .B

E CD =

9、如图,ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若6024,A ABD ∠=∠=o o ,则ACF ∠的度数为( ).

A .48o

B .36o

C .30o

D .24o

10、如图,Rt ABC ∆中,90ACB ∠=o ,50B ∠=o ,D ,F 分别是BC ,AC 上的点,DE AB ⊥,垂足为E ,CF BE =,DF DB =,则ADE ∠的度数为( ).

A .40o

B .50o

C .70o

D .80o

二、填空题(本大题共6小题,每小题3分,共18分) 11、分解因式:36ma mb -= . 12、计算:32(2)a -= . 13、如果分式23

x

x +有意义,那么x 的取值范围是 .

14、如图,在Rt ABC ∆中,90C ∠=o ,AD 是ABC ∆的角平分线,3DC =,则点D 到AB 的距离是 .

15、如图,ABC ∆中,60A ∠=o ,将ABC ∆沿DE 翻折后,点A 落在BC 边上的点'A 处.如果'70A EC ∠=o ,那么'A DE ∠的度数为 .

16、对于实数a 、b ,定义一种新运算“⊗”为:22

1

a b a b ⊗=-,这里等式右边是实数运算.例

如:22

11

13138

⊗==--,则方程的解是 .

三、解答题(本大题共9小题,共72分) 17、解答下列问题:

(1)计算:(2)(2)(1)x x x x +-+-. (2)解方程:111

x x x +=-.

18、如图,在ABC ∆中,边BC 和AB 上的高分别为AD 和CE ,两条高相交于点O ,60B ∠=o ,75CAB ∠=o .

(1)填空:若3AB =,4BC =,则CE 与AD 的长度比值为 . (2)求CAD ∠和AOC ∠的度数.

19、在平面直角坐标系中,A (2,3),B (1,1),C (4,2) (1)在图中作出ABC ∆关于x 轴的轴对称图形'''A B C ∆,并写出点'A ,'B ,'C 坐标.

(2)在y 轴上找到一点P ,使得线段PA PB +的值最小.(只要求在图中标出点P ,保留作图痕迹,不写作法)

20、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:

通过这段对话,请你求出该地驻军原来每天加固的米数.

21、在ABC ∆中,P 是BC 边上的一点,过P 作直线交AB 于M ,交AC 的延长线于N ,且

PM PN =,∥MF AN .

(1)求证:PMF ∆≌PNC ∆. (2)若AB AC =,求证:BM CN =.

22、如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:2420=-,221242=-,222064=-,因4,12,20都是“神秘数”.

(1)请再写出一个50以内的“神秘数”.

(2)下面是两个同学演算后的发现,请判断这两个“发现”结论的对错,并说明理由. ①小天发现:由两个连续偶数22k +和2k (其中k 取非负整数)构造出来的“神秘数”也是4的倍数.

②小河发现:2016是“神秘数”.

23、如图所示,在ABC ∆中,AB AC =,120A ∠=o . (1)作线段AB 的垂直平分线,分别交BC 、AB 于点M 、

N (要求用尺规作图,保留作图痕迹,不写作法).

(2)连接AM ,判断ACM ∆的形状,并给予证明.

(3)求证:2CM BM =.

24、【阅读】把等式2310(0)x x x -+=≠的两边同时乘以

1x 得130x x -+=,移项得1

3x x

+=,两边平方得222221111

()223x x x x x x x x +=++=++=g g ,所以

22

2211()2327x x x x

+

=+-=-=. 【思考】若等式成立,求下列各式的值: (1)221x x +

= ,4

4

1x x += . (2)先计算22()()a b a ab b +-+=__________,把计算结果作为公式,求33

1

x x +的值.