高考文科立体几何证明专题

  • 格式:doc
  • 大小:996.88 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 4

立体几何专题

1.如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,

F 是BC 的中点,AF 与DE 交于点

G ,将ABF

∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中BC =

. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ;

(3) 当2

3

AD =时,求三棱锥F DEG -的体积F DEG V -.

【解析】(1)在等边三角形ABC 中,AD AE =

AD AE

DB EC

=

,在折叠后的三棱锥A BCF -中 也成立,//DE BC ∴ ,DE ⊄平面BCF ,

BC ⊂平面BCF ,//DE ∴平面BCF ;

(2)在等边三角形ABC 中,F 是

BC 的中点,所以AF BC ⊥①,12

BF

CF ==. 在三棱锥A BCF -中,2

BC =

,222BC BF CF CF BF ∴=+∴⊥② BF CF F CF ABF ⋂=∴⊥平面;

(3)由(1)可知//GE CF ,结合(2)可得GE

DFG ⊥平面

.

111111132323323324F DEG E DFG

V V DG FG GF --⎛⎫∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎪ ⎪⎝⎭

【解析】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.

2.如图5所示,在四棱锥P-ABCD 中,AB ⊥平面PAD,AB CD,PD=AD,E 是PB 的中点,F 是DC 上的点且DF=

2

1

AB,PH 为∆PAD 中AD 边上的高. (1) 证明:PH ⊥平面ABCD ;

(2) 若PH=1,AD=2,FC=1,求三棱锥E-BCF 的体积; (3) 证明:EF ⊥平面PAB . 解:(1)

ABCD

PH PAD PAD AB PAD 平面所以平面,面又中的高为⊥=⋂⊥∴⊂⊥⊥∴∆A

AD AB AB PH PH AD PH PH

(2):过B 点做BG G CD BG ,垂足为⊥;

连接HB,取HB 中点M ,连接EM ,则EM 是BPH ∆的中位线

ABCD )1(平面知:由⊥PH

ABCD 平面⊥∴EM BCF 平面EM⊥∴

即EM 为三棱锥B CF -E 底面上的高

BG FC •=

∆2

1S BCF =22

2121=

⨯⨯

2

1

21=

PH EM=12

221223131

=⨯⨯=••=-EM

S V BCF BCF E

(3):取AB 中点N ,PA 中点Q ,连接EN ,FN ,EQ ,DQ N

FN EN FN AB NADF AB 2

1

DF //EN PAB EN PAD PAD AB PAD ,//=⋂⊥∴∴=⊥∴∴∆⊥∴⊂⊥∴⊥是距形四边形又的中位线是又平面,平面平面 EN

AB PA PA

AB PA CD CD AB

3、如图,已知三棱锥A —BPC 中,AP ⊥PC , AC ⊥BC , M 为AB 中点,D 为PB 中点,且△PMB 为正三角形。 (Ⅰ)求证:DM ∥平面APC ;

(Ⅱ)求证:平面ABC ⊥平面APC ;

(Ⅲ)若BC =4,AB =20,求三棱锥D —BCM 的体积.

4、已知正方体ABCD —A 1B 1C 1D 1,其棱长为2,O 是底ABCD 对角线的交点。 求证:(1)C 1O ∥面AB 1D 1;

(2)A 1C ⊥面AB 1D 1。

NEF

AB N NE NF

NF AB NADF AB

EF NEF EF NEF AB 平面是距形四边形平面又平面⊥∴=⋂⊥∴∴⊥∴⊂⊥∴

(3)若M 是CC 1的中点,求证:平面AB 1D 1⊥平面MB 1D 1

5.如图,P A 垂直于矩形ABCD 所在的平面,AD =P A =2,CD =22,E 、F 分别是AB 、PD 的中点.

(1)求证:AF ∥平面PCE ; (2)求证:平面PCE ⊥平面PCD ; (3)求四面体PEFC 的体积.

6.如图,已知在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AC =BC ,M 、N 、P 、Q 分别是

AA 1、BB 1、AB 、B 1C 1的中点. (1)求证:平面PCC 1⊥平面MNQ ;

D 1O

D

B A

C 1

B 1

A 1

C

M

(2)求证:PC 1∥平面MNQ .

7.如图,在棱长为2的正方体1111D C B A ABCD -中,

E 、

F 分别为1DD 、DB 的中点.

(1)求证:EF //平面11D ABC ; (2)求证:EF C B 1⊥

8.右图为一简单集合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,

//EC PD ,且2PD AD EC ===2 .

(1)画出该几何体的三视图; (2)求四棱锥B -CEPD 的体积;

P

D

E

(3)求证://BE 平面PDA .

9.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AB ==,E ,F ,G 分别为PC 、PD 、BC 的中点. (1)求证:EFP GC 面⊥; (2)求证:;EFG PA 面//; (3)求三棱锥P EFG -的体积.

3、解:(Ⅰ)由已知得,MD 是∆ABP 的中位线

∴AP MD ∥ ……………2分