min U(F(X))
X∈R
然后求解该问题,并将其最优解X*作为(VP) 的最优解。 由于构造评价函数的多种多样,也就出现 了多种不同的评价函数方法。
处理多目标规划的一些方法
1. 线性加权和法 对 重 且(要 ∑V程λPj)=中度1,的给然p以个后适目构当标造的f评1权(X价系),函数f2数(λXj≥),0…(j,=f1p(,X2,)…按,p其),
挑选出满意的方案来。这时称BC上的点为
非劣解,或有效解。
多目标规划解的概念
对于一般的多目标规划问题:
(VP)
V-min F(X)=(f1(X), f2(X),…,fp(X))T
s.t. gi(X)≤0, i=1,2,…,m
其中X=(x1,x2,…,xn)T, p≥2
设R={X| gi(X)≤0, i=1,2,…,m}
多目标规划解的性质
类似地可证明:像集F(R)的有效点一
定是弱有效点,即
E
* pa
E w* p
通过在像集F(R)上寻找有效点(或弱 有效点),就可以确定约束集合R上 的有效解(或弱有效解)。对此,有 如下的定理。
多目标规划解的性质
定理4 在像集F(R)上,若Epa*已知,则在约 束集合R上,有
X∈R
p-1
其中Rp-1=Rp-2∩{X |fp-1(X)≤fp-1*}
处理多目标规划的一些方法
此时求得最优解X*,最优值为fp*,则 X*就是多目标问题(VP)在分层序列意 义下的最优解。进一步有下列定理。
定理6 设X*是由分层序列法所得到的 最优解,则X*∈Rpa*.
处理多目标规划的一些方法
(2)若fj(Y)= fj(X*), j=1,2,…,j0-1 但fj0(Y)<fj0(X*) 2≤j0≤p 此时必有fj(Y)= fj(X*)≤fj*, j=1,2,…,j0-1 因此,Y是问题 (Pj0) min fp(X) X∈Rj0-2∩{X |fj0-1(X)≤fj0-1*} 的可行解,又由