数学分析PPT课件第四版华东师大研制 第3章 函数极限
- 格式:ppt
- 大小:3.84 MB
- 文档页数:122
第三章函数极限§1函数极限的概念引言在《数学分析》中,所讨论的极限基本上分两部分,第一部分是“数列的极限”,第二部分是“函数的极限”.二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例.通过数列极限的学习.应有一种基本的观念:“极限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”.例如,数列这种变量即是研究当时,的变化趋势.我们知道,从函数角度看,数列可视为一种特殊的函数,其定义域为,值域是,即; 或或.研究数列的极限,即是研究当自变量时,函数变化趋势.此处函数的自变量n只能取正整数!因此自变量的可能变化趋势只有一种,即.但是,如果代之正整数变量n而考虑一般的变量为,那么情况又如何呢?具体地说,此时自变量x可能的变化趋势是否了仅限于一种呢?为此,考虑下列函数:类似于数列,可考虑自变量时,的变化趋势;除此而外,也可考虑自变量时,的变化趋势;还可考虑自变量时,的变化趋势;还可考虑自变量时,的变化趋势,由此可见,函数的极限较之数列的极限要复杂得多,其根源在于自变量性质的变化.但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同.而在各类极限的性质、运算、证明方法上都类似于数列的极限.下面,我们就依次讨论这些极限.一、时函数的极限1.引言设函数定义在上,类似于数列情形,我们研究当自变量时,对应的函数值能否无限地接近于某个定数A.这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质.例如无限增大时,无限地接近于0;无限增大时,无限地接近于;无限增大时,与任何数都不能无限地接近.正因为如此,所以才有必要考虑时,的变化趋势.我们把象,这样当时,对应函数值无限地接近于某个定数A的函数称为“当时有极限A”.[问题]如何给出它的精确定义呢? 类似于数列,当时函数极限的精确定义如下.2.时函数极限的定义定义1设为定义在上的函数,A为实数.若对任给的,存在正数M,使得当时有, 则称函数当时以A为极限.记作或.3.几点注记(1)定义1中作用与数列极限中作用相同,衡量与A的接近程度,正数M的作用与数列极限定义中N相类似,表明充分大的程度;但这里所考虑的是比M大的所有实数,而不仅仅是正整数n.(2)的邻域描述:当时,(3)的几何意义:对,就有和两条直线,形成以A为中心线,以为宽的带形区域.“当时有”表示:在直线的右方,曲线全部落在这个带形区域内.如果给得小一点,即带形区域更窄一点,那么直线一般往右移;但无论带形区域如何窄,总存在正数M,使得曲线在的右边的全部落在这个更窄的带形区域内.(4)现记为定义在或上的函数,当或时,若函数值能无限地接近于常数A,则称当或时时以A为极限,分别记作,或,或.这两种函数极限的精确定义与定义1相仿,简写如下:当时,,当时,.(5)推论:设为定义在上的函数,则.4.利用=A的定义验证极限等式举例例1证明.例2证明1);2).二、时函数的极限1.引言上节讨论的函数当时的极限,是假定为定义在上的函数,这事实上是,即为定义在上,考虑时是否趋于某个定数A.本节假定为定义在点的某个空心邻域内的函数,.现在讨论当时,对应的函数值能否趋于某个定数A数列.先看下面几个例子:例1.(是定义在上的函数,当时,)例2.(是定义在上的函数,当时,)例3.(是定义在上的函数,当时,)由上述例子可见,对有些函数,当时,对应的函数值能趋于某个定数A;但对有些函数却无此性质.所以有必要来研究当时,的变化趋势.我们称上述的第一类函数为当时以A为极限,记作.和数列极限的描述性说法一样,这是一种描述性的说法.不是严格的数学定义.那么如何给出这类函数极限的精确定义呢?作如下分析:“当自变量越来越接近于时,函数值越来越接近于一个定数A”只要充分接近,函数值和A的相差就会相当小欲使相当小,只要充分接近就可以了.即对,当时,都有.此即.2.时函数极限的定义定义2设函数在点的某个空心邻域内有定义,A为定数,若对任给的,使得当时有,则称函数当趋于时以A为极限(或称A为时的极限),记作或(.3.说明如何用定义来验证这种类型的函数极限4.函数极限的定义的几点说明:(1)是结论,是条件,即由推出.(2)是表示函数与A的接近程度的.为了说明函数在的过程中,能够任意地接近于A,必须是任意的.这即的第一个特性——任意性,即是变量;但一经给定之后,暂时就把看作是不变的了.以便通过寻找,使得当时成立.这即的第二特性——暂时固定性.即在寻找的过程中是常量;另外,若是任意正数,则均为任意正数,均可扮演的角色.也即的第三个特性——多值性;()(3 是表示与的接近程度,它相当于数列极限的定义中的N.它的第一个特性是相应性.即对给定的,都有一个与之对应,所以是依赖于而适当选取的,为此记之为;一般说来,越小,越小.但是,定义中是要求由推出即可,故若满足此要求,则等等比还小的正数均可满足要求,因此不是唯一的.这即的第二个特性——多值性.(4)在定义中,只要求函数在的某空心邻域内有定义,而一般不要求在处的函数值是否存在,或者取什么样的值.这是因为,对于函数极限我们所研究的是当趋于的过程中函数的变化趋势,与函数在该处的函数值无关.所以可以不考虑在点a的函数值是否存在,或取何值,因而限定“”.(5)定义中的不等式;.从而定义2,当时,都有,使得.(6)定义的几何意义.例1.设,证明.例2.证明1);2).例3.证明.例4.证明.练习:1)证明; 2)证明.三、单侧极限1.引言有些函数在其定义域上某些点左侧与右侧的解析式不同,如或函数在某些点仅在其一侧有定义,如.这时,如何讨论这类函数在上述各点处的极限呢?此时,不能再用前面的定义(讨论方法),而要从这些点的某一侧来讨论.如讨论在时的极限.要在的左右两侧分别讨论.即当而趋于0时,应按来考察函数值的变化趋势;当而趋于0时,应按来考察函数值的变化趋势;而对,只能在点的右侧,即而趋于0时来考察.为此,引进“单侧极限”的概念.2.单侧极限的定义定义3设函数在内有定义,A为定数.若对任给的,使得当时有, 则称数A为函数当趋于时的右极限,记作或或.类似可给出左极限定义(,,或或).注:右极限与左极限统称为单侧极限.3.例子例5讨论在的左、右极限.例6讨论函数在处的单侧极限.4.函数极限与的关系.定理3.1.注:1)利用此可验证函数极限的存在,如由定理3.1知:.还可说明某些函数极限不存在,如由例2知不存在.2),,可能毫无关系,如例2.作业:P47. 1(3), (5), 3,7。
lim()x xf x A→= *点击以上标题可直接前往对应内容定理3.2(唯一性)证 不妨设以及 A x f x x =→)(lim 0.)(lim 0B x f x x =→由极限的定义,对于任意的正数 ,1δ存在正数,||010时当δ<-<x x (1),2|)(|ε<-A x f ,||020时当δ<-<x x )(lim 0x f x x →存在, 则此极限唯一.若 的基本性质 A x f xx =→)(lim 0,2δ,ε后退 前进 目录 退出(2) 式均成立,.|)(||)(|||ε<-+-≤-B x f x f A B A 由ε 的任意性,推得 A = B. 这就证明了极限是唯一的.12min{,},δδδ=令(1) 式与.2|)(|ε<-B x f (2)(1),2|)(|ε<-A x f 00||,x x δ<-<当时所以定理3.3(局部有界性)证 ,1=ε取.1|)(|<-A x f .1|||)(|+<A x f 由此得,)(lim 0A x f x x =→若上在)()(0x U x f,)(0x U则存在有界.这就证明了 在某个空心邻域 上有界.),(0δx U)(x f ,0>δ存在00x x δ<-<当时,注(1) 试与数列极限的有界性定理(定理 2.3)作一 (2) 有界函数不一定存在极限; 这上并不是有界的在但.)2,0(1,11lim )3(1xx x =→说明定理中 “局部” 这两个字是关键性的.比较;定理3.4(局部保号性)则对任何正数)(A r A r -<<或使得存在,)(,0x U.)0)((0)(<-<>>r x f r x f 或.|)(|ε<-A x f .)(r A x f >->ε由此证得 有对一切,)(0x U x∈有时,当δ<-<||00x x 证 不妨设 0.A >,)0(0)(lim 0<>=→或A x f x x 若 ,0>δ存在,r A -=ε取 (0,),r A ∈对于任何定理3.5(保不等式性))(lim )(lim 0x g x f x x x x →→与设则内有且在某邻域,)()()(0x g x f x U ≤).(lim )(lim 0x g x f x x x x →→≤证 0lim (),lim (),x x x x f x A g x B →→==设;)(ε->A x f 有时而当,||020δ<-<x x .)(ε+<B x g 分别存在正数 12,,δδ有 都存在,0,ε>则对于任意使当 010||x x δ<-<时, 满足时则当令,||0,},min{021δδδδ<-<=x x ,)()(εε+<≤<-B x g x f A所以证得是任意正数因为从而有,.2εε+<B A .B A ≤定理3.6(迫敛性)lim ()lim (),x x x x f x g x A →→==设0x 且在的某个空心).()()(x g x h x f ≤≤.)(lim 0A x h x x =→那么证 因为 00lim ()lim (),x x x x f x g x A →→==有时当,||00δ<-<x x (),A f x A εε-<<+().A g x A εε-<<+.)()()(εε+<≤≤<-A x g x h x f A 再由定理的条件,又得这就证明了 0)(x x h 在点的极限存在,并且就是 A .0,ε>所以对于任意,0>δ存在0()U x 邻域内有定理3.7(四则运算法则);)(lim )(lim )]()([lim )1(0x g x f x g x f x x x x x x →→→±=±;)(lim )(lim )()(lim )2(000x g x f x g x f x x x x x x →→→⋅=g f g f ⋅±,在点 x 0 的极限也存在, 且都存在, ,0)(lim )3(0≠→x g x x 又若在点 x 0 的极限也存在,g f则.)(lim )(lim )()(lim 00x g x f x g x f x x x x x x →→→=并有,)(lim 0x f x x →若)(lim 0x g xx → 则§2 函数极限概的性质A x f x x =→)(lim 0范例这个定理的证明类似于数列极限中的相应定理, 这就可以知道这些定理是显然的.里将证明留给读者. 在下一节学过归结原则之后, 的基本性质 A x f xx =→)(lim 0的基本性质 §2 函数极限概的性质A x f xx =→)(lim 0范例arctan lim x x x→+∞πlim arctan ,2x x →+∞=因解为例1 .arctan limxxx ∞+→求002=⋅=π范例1lim 0,x x →∞=所以1=lim arctan lim x x x x →+∞→+∞⋅例 2 .1lim 0⎥⎦⎤⎢⎣⎡→x x x 求有时又当,0<x 0>x 当,11lim )1(lim 00==-++→→x x x 由于,111x x x -≤⎥⎦⎤⎢⎣⎡<于是求得.11lim 0=⎥⎦⎤⎢⎣⎡→x x x 解 由取整函数的性质, .1111xx x ≤⎥⎦⎤⎢⎣⎡<-时, 有 ,111≤⎥⎦⎤⎢⎣⎡<-x x x 因此由迫敛性得 ;11lim 0=⎥⎦⎤⎢⎣⎡+→x x x 同理得 .11lim 0=⎥⎦⎤⎢⎣⎡-→x x x例 3 求极限 π4lim(tan 1).x x x →-π4lim tan tan1,4x x π→==解 因为所以π4ππlim(tan 1)11 1.44x x x →-=⋅-=-例4 .)1(1lim 0>=→a a xx 求证特别又有.1111εε+<<<--NNa a ,1N=δ取,|0|0时当δ<-<x ,1111εε+<<<<--NxNa a a .1lim 0得证即=→xx a 证 ,11lim ,1lim ==∞→∞→n n nn aa 因为所以 ,,0N ∃>∀ε有时当,N n ≥,1111εε+<<<--nna a复习思考题1. lim (), lim (),x x x x f x a g x →→=设存在不存在试问02. lim (),lim (),x x u u g x u f u A →→==设这时是否必有lim (())?x x f g x A →=0lim ()()?x x f x g x →极限是否必定不存在。