概率论与数理统计知识点总结(超详细版)

  • 格式:doc
  • 大小:602.50 KB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》

第一章 概率论的基本概念 §2.样本空间、随机事件

1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然

导致事件B 发生

B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生 B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生

B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生

φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃

结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —

§3.频率与概率

定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A

发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A

发生的频率

概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋

予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:

(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有

∑===n

k k n

k k A P A P 1

1

)()( (n 可以取∞)

2.概率的一些重要性质: (i ) 0)(=φP

(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===n

k k n

k k A P A P 1

1

)()( (n

可以取∞)

(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -= (逆事件的概率)

(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃

§4等可能概型(古典概型)

等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同

若事件A 包含k 个基本事件,即}{}{}{2

]

1k

i i i e e e A =,里

个不同的数,则有

中某,是,,k k n 2,1i i i ,21

()

中基本事件的总数

包含的基本事件数S }{)(1

j A n k e P A P k

j i ==

=∑= §5.条件概率

(1) 定义:设A,B 是两个事件,且0)(>A P ,称)

()

()|(A P AB P A B P =

为事件A 发生的条件下事件B 发生的条件概率 (2) 条件概率符合概率定义中的三个条件

1。非负性:对于某一事件B ,有0)|(≥A B P 2。规范性:对于必然事件S ,1)|(=A S P

3可列可加性:设 ,,21B B 是两两互不相容的事件,则有

∑∞

=∞

==1

1

)()(i i i i A B P A B P

(3) 乘法定理 设0)(>A P ,则有)|()()(B A P B P AB P =称为乘法公式

(4) 全概率公式: ∑==n

i i i B A P B P A P 1)|()()(

贝叶斯公式: ∑==

n

i i

i

k k k B A P B P B A P B P A B P 1

)

|()()

|()()|(

§6.独立性

定义 设A ,B 是两事件,如果满足等式)()()(B P A P AB P =,则称事件A,B 相互独立

定理一 设A ,B 是两事件,且0)(>A P ,若A ,B 相互独立,则

()B P A B P =)|(

定理二 若事件A 和B 相互独立,则下列各对事件也相互独立:A 与—

与,与,B A B A B

第二章 随机变量及其分布

§1随机变量

定义 设随机试验的样本空间为X(e)X {e}.S ==是定义在样本空间S 上的实值单值函数,称X(e)X =为随机变量

§2离散性随机变量及其分布律

1. 离散随机变量:有些随机变量,它全部可能取到的值是有限个

或可列无限多个,这种随机变量称为离散型随机变量

k k )(p x X P ==满足如下两个条件(1)0k ≥p ,(2)∑∞

=1k k P =1

2. 三种重要的离散型随机变量

(1)

分布

设随机变量X 只能取0与1两个值,它的分布律是

)101,0k p -1p )k (k

-1k <<===p X P (,)(,则称X 服从以p 为参数的

分布或两点分布。

(2)伯努利实验、二项分布

设实验E 只有两个可能结果:A 与—

A ,则称E 为伯努利实验.设

1)p 0p P(A)<<=(,此时p -1)A P(=—

.将E

独立重复的进行n 次,则称

这一串重复的独立实验为n 重伯努利实验。

n 2,1,0k q p k n )k X (k

-n k ,

,=⎪⎪⎭

⎫ ⎝⎛==P 满足条件(1)0k ≥p ,(2)∑∞

=1k k P =1注意到k

-n k q p k n ⎪⎪⎭

⎝⎛是二项式

n q p )(+的展开式中出现k p 的那一项,我们称随机变量X 服从参数为n ,p 的二项分布。 (3)泊松分布

相关主题