垂径定理、圆心角定理、圆周角定理、弧长扇形面积练习
- 格式:docx
- 大小:1.65 MB
- 文档页数:11
初中数学冀教版九年级上册第二十八章弧长和扇形面积的计算练习题一、选择题1.圆心角为的扇形的半径是3cm,则这个扇形的面积是A. B. C. D.2.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是,则圆锥的母线长是A. 8cmB. 12cmC. 16cmD. 24cm3.圆锥的表面展开图由一个扇形和一个圆组成,已知圆的周长为,扇形的圆心角为,则圆锥的全面积为A. B. C. D.4.如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为,则图中阴影部分的面积为A. B. C. D.5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚如图,那么B点从开始至结束所走过的路径长度为A. B. C. 4 D.6.如图已知扇形AOB的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的底面半径为A. 2cmB. 4cmC. 1cmD. 8cm7.一个扇形的半径为6,圆心角为,则该扇形的面积是A. B. C. D.8.如图,在▱ABCD中,,的半径为3,则图中阴影部分的面积是A. B. C. D.9.圆锥的底面半径是5cm,侧面展开图的圆心角是,圆锥的高是A. B. 10cm C. 6cm D. 5cm10.钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是A. B. C. D.二、填空题11.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为,AB的长为20cm,扇面BD的长为15cm,则弧DE的长是______.12.若圆锥的底面直径为6cm,母线长为10cm,则圆锥的侧面积为______.13.已知扇形的面积为,圆心角为,则它的半径为______.14.一个扇形的圆心角是,半径为4,则这个扇形的面积为______结果保留15.如图,中,,CD平分交AB于点D,O是BC上一点,经过C、D两点的分别交AC、BC于点E、F,,,则劣弧的长为______.三、解答题16.如图,在平面直角坐标系中,将点C顺时针旋转后得则.请在图中画出,并写出点A的对应点的坐标;求线段AC旋转到时扫过的面积S.17.如图,的直径,半径,D为上一动点不包括B,C两点,,,垂足分别为E,F.求EF的长.若点E为OC的中点,求劣弧CD的长度;者点P为直径AB上一动点,直接写出的最小值.18.如图,把圆锥的侧面展开得到扇形,其半径,圆心角,求的长.19.已知:扇形的圆心角为,弧长为,求扇形面积.20.如图,AB是的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若,.求的半径;求图中阴影部分的面积.答案和解析1.【答案】B【解析】解:扇形的面积公式,故选:B.根据扇形的面积公式计算可得答案.本题考查扇形的面积公式.2.【答案】B【解析】解:圆锥的底面周长为,即为展开图扇形的弧长,由弧长公式得,,解得,,即圆锥的母线长为12cm.故选:B.根据圆锥侧面展开图的实际意义求解即可.本题考查圆锥的侧面展开图,明确展开图扇形的各个部分与圆锥的关系是正确计算的前提.3.【答案】A【解析】解:设圆锥的底面圆的半径为r,母线长为l,根据题意得,解得,,解得,所以圆锥的全面积.故选:A.设圆锥的底面圆的半径为r,母线长为l,利用圆的周长公式得,解得,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,解得,然后计算底面圆的面积与扇形的面积可得到圆锥的全面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4.【答案】A【解析】解:连接CD、OC、OD.,D是以AB为直径的半圆周的三等分点,,,弧CD的长为,,解得:,又,、是等边三角形,在和中,,≌,.故选:A.连接OC、OD,根据C,D是以AB为直径的半圆周的三等分点,可得,是等边三角形,将阴影部分的面积转化为扇形OCD的面积求解即可.本题考查了扇形面积的计算,解答本题的关键是将阴影部分的面积转化为扇形OCD的面积,难度一般.5.【答案】B【解析】解:如图:,,点从开始至结束所走过的路径长度为弧,故选:B.根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转,并且所走过的两路径相等,求出一个乘以2即可得到.本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.6.【答案】A【解析】解:扇形的弧长是,设底面半径是r,则,解得:.故选:A.首先利用扇形的弧长公式即可求得扇形,然后根据圆的周长公式即可求解.本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.7.【答案】C【解析】解:,故选:C.根据扇形的面积公式计算即可.本题考查的是扇形面积的计算,掌握扇形的面积公式是解题的关键.8.【答案】C【解析】【分析】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.根据平行四边形的性质可以求得的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:在▱ABCD中,,的半径为3,,图中阴影部分的面积是:,故选:C.9.【答案】A【解析】【分析】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为R,根据题意得,解得.即圆锥的母线长为10cm,圆锥的高为:.故选:A.10.【答案】B【解析】解:从9点到9点15分分针扫过的扇形的圆心角是,则分针在钟面上扫过的面积是:故选:B.从9点到9点15分分针扫过的扇形的圆心角是,利用扇形的面积公式即可求解.本题考查了扇形的面积公式,正确理解公式是关键.11.【答案】【解析】解:弧DE的长为:.故答案为:.直接利用弧长公式计算得出答案.此题主要考查了弧长公式计算,正确应用弧长公式是解题关键.12.【答案】【解析】解:圆锥的侧面积故答案为.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【答案】3【解析】解:设半径为r,由题意,得,解得,故答案为:3.根据扇形的面积公式,可得答案.本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.【答案】【解析】解:,故答案为.利用扇形的面积公式计算即可.本题考查扇形的面积,解题的关键是记住扇形的面积是扇形的半径,l是扇形的弧长.15.【答案】【解析】解:连接DF,OD,是的直径,,,,,平分交AB于点D,,,,,在中,,的半径,劣弧的长,故答案为连接DF,OD,根据圆周角定理得到,根据三角形的内角和得到,根据三角函数的定义得到,根据弧长个公式即可得到结论.本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.16.【答案】解:如图所示,;由勾股定理得,,线段AC旋转到时扫过的面积.【解析】根据网格结构找出点A、B绕点C顺时针旋转后的对应点、的位置,再与点C 顺次连接即可,根据平面直角坐标系写出点的坐标;利用勾股定理列式求出AC,再根据扇形的面积公式列式计算即可得解.本题考查了利用旋转变换作图,扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.17.【答案】解:如图,连接OD,圆的半径为.,,,四边形OFDE是矩形,.点E为OC的中点,,,,劣弧CD的长度为.延长CO交于点G,连接DG交AB于点P,则的最小值为DG.,,,的最小值为.【解析】连接OD,由,,知四边形OFDE是矩形,据此可得;先求出的度数,再利用弧长公式求解可得;延长CO交于点G,连接DG交AB于点P,则的最小值为DG,再根据及可得答案.本题主要考查圆的有关概念与性质,解题的关键是掌握矩形的判定与性质、轴对称的性质、圆的相关性质.18.【答案】解:的长为:.【解析】弧长的计算公式为,把半径和圆心角代入公式可以求出弧长.本题考查的是弧长的计算,知道圆心角和半径,代入弧长公式计算.19.【答案】解:设扇形的半径为R,则由弧长公式得:,解得:,即扇形的面积是.【解析】先根据弧长公式求出扇形的半径,再根据扇形面积公式求出即可.本题考查了弧长公式和扇形面积公式的应用,注意:扇形的面积弧长半径.20.【答案】解:直径,.平分AO,.又,..在中,的半径为2;连接OF.在中,,...,,.【解析】本题综合考查了垂径定理和解直角三角形及扇形的面积公式.根据垂径定理得CE的长,再根据已知DE平分AO得解直角三角形求解.先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.。
1《圆》练习题(垂径定理, 弧、弦、圆心角, 圆周角)一、选择题1.已知在⊙O 中, 弦AB 的长为8厘米, 圆心O 到AB 的距离为3厘米, 则⊙O 的半径是( )A. 3厘米B. 4厘米C. 5厘米D. 8厘米2.半径等于12的圆中, 垂直平分半径的弦长为( )A. B. C. D.3.如图1, 在⊙O 中, ∠ABC=50°, 则∠AOC 等于( )A. 50°B. 80°C. 90°D. 100°4.如图2, AB 是⊙O 的直径, ∠ABC=30°, 则∠BAC =( )A. 90°B. 60°C. 45°D. 30°5.如图3, △ABC 内接于⊙O, 连结OA.OB, 若∠ABO =25°, 则∠C 的度数为( ).A. 55°B. 60°C. 65°D. 70°6.如图4, 四边形ABCD 内接于⊙O, 若它的一个外角∠DCE=70°, 则∠BOD=( )A. 35°B.70°C. 110°D.140°7、如图5, △ABC 内接于⊙O, AD ⊥BC 于点D, AD=2cm, AB=4cm, AC=3cm, 则⊙O 的直径是( )A. 2cmB. 4cmC. 6cmD. 8cm8、如图6, BD 是⊙O 的直径, 圆周角∠A = 30(, 则∠CBD 的度数是( )A. 30(B. 45(C. 60(D. 80(9、如图7, AB 为⊙O 的直径, C .D 是⊙O 上的两点, ∠BAC=30º, AD=CD, 则∠DAC 的度数是( )A. 30ºB. 60ºC. 45ºD. 75º10、圆内接四边形ABCD 中, ∠A ∶∠B ∶∠C ∶∠D 可以是( )A. 1∶2∶3∶4B. 1∶3∶2∶4C. 4∶2∶3∶1D. 4∶2∶1∶3AB O C图1 图2 O 30D B C A O D CBA 图3 图4图6图7图52二、填空题11.如图8, ∠A 是⊙O 的圆周角, ∠A=40°, 则∠OBC 的度数为_______.12.如图9, AB 是⊙O 的直径, 点D 在⊙O 上∠AOD=130°, BC ∥OD 交⊙O 于C, 则∠A= .13、如图10, ⊙O 的直径AB=8cm, C 为⊙O 上的一点, ∠BAC=300, 则BC= .14、如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则∠1的度数为 .三、解答题: 15、.如图, AB 、CD 是⊙O 的两条弦, 延长AB 、CD 交于点P, 连结AD 、BC 交于点E . , , 求 的度数.16.如图所示, AB 是⊙O 的一条弦, OD ⊥AB , 垂足为C, 交⊙O 于点D , 点E 在⊙O 上。
2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.542、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为 半径的圆与AB 交于点D ,则AD 的长为( )A.95B. 245C. 185D. 523、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是( )A. AG =BGB. AB ∥BFC.AD ∥BCD. ∠ABC =ADC4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( ) A. cm B. cm C. cm 或cm D. cm 或cm5、(2013•广安)如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )A. cmB. 5cmC. 4cmD. cm6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A. B. C. D.8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. 2B.C.D.9、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A. B. C. D. 3210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A. 10B. 8C. 5D. 311、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C.6D.812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A. B. AF=BF C. OF=CF D. ∠DBC=90°13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A. 5B. 10C. 8D. 614、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O 的半径为()A. 4B. 5C. 4D. 315、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.716、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不.正确..的是()19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.图20 图21 图2220、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.图23 图24 图25 图26 图27 图2823、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB 的长为.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为52,CD=4,则弦AC的长为.26、(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.27、(2013•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=度.28、(2013陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.29、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为13,则点P的坐标为 ____________.30、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分(非直径)弦的直径垂直于弦,并且平分弦所对的两条弧.练习:1.如图,在⊙O中,弦AB的长为8 cm.圆心O到AB的距离为3cm.求⊙O的半径.2.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4m,EM=6m.求⊙O的半径。
圆心角:顶点在圆心的角叫做圆心角。
圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦也相等.推论:(1)在同圆或等圆中,如果两条弧相等、那么它们所对的圆心角相等.所对的弦相等;(2)在同圆或等圆中,如果两条弦相等。
那么它们所对的圆心角相等,所对的优弧和劣弧分别相等.练习:1.如图,在⊙O中,AB=AC,∠ACB=60°,求证:AOB=∠BOC=∠AOC.圆周角:顶点在圆上,并且两边都与圆相交,所形成的角为圆周角。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论:(1)同弧或等弧所对的圆周角相等;(2)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;(3)同弦或等弦所对的圆周角相等或互补;练习:1.如图,⊙O的直径AB为10 cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,求BC,AD, BD的长。
2.如图,圆内接四边形ABCD的对角线AC、BD把它的4个内角分成8个角,这些角中哪些相等?为什么?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
圆内接四边形性质:圆内接四边形的对角互补。
练习:1.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,求∠ADE的度数。
2.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,判断△ABC的形状,并证明你的结论.。
华东师大版九年级数学下册第27章 圆必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,DC 是⊙O 的直径,弦AB ⊥CD 于M ,则下列结论不一定成立的是( )A .AM =BMB .CM =DMC .AC BC =D .AD BD =2、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB 于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm3、如图,AB是O的切线,B为切点,连接O A,与O交于点C,D为O上一动点(点D不与点C、点B重合),连接CD BD、.若42∠的度数为()∠=︒,则DAA.21︒B.24︒C.42︒D.48︒4、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.55°5、已知正五边形的边长为1,则该正五边形的对角线长度为().A B C D6、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角45∠=︒,ACB则这个人工湖的直径AD为()m.A.B.C.D.2007、如图,四边形ABCD内接于⊙O,连接BD,若AC BC=,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°8、如图,在O中,如果AB=2AC,则下列关于弦AB与弦AC之间关系正确的是()A.AB=AC B.AB= 2AC C.AB>2AC D.AB< 2AC9、如图,PA、PB是O的切线,A、B是切点,点C在O上,且58∠=︒,则APBACB∠等于()A.54°B.58°C.64°D.68°10、如图,A ,B ,C ,D 都是O 上的点,OA BC ⊥,垂足为E ,若26OBC ∠=︒,则ADC ∠的度数为( )A .26︒B .32︒C .52︒D .64︒第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,AB 为O 的弦,半径⊥OD AB 于点C .若8AB =,2CD =,则O 的半径长为______.2、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留π)3、如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .4、如图,已知P 的半径为1,圆心P 在抛物线2112y x =-+上运动,当P 与x 轴相切时,圆心P 的横坐标为______.5、在下图中,AB是O的直径,要使得直线AT是O的切线,需要添加的一个条件是________.(写一个条件即可)6、如图,从一块直径为2cm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为______cm2.7、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径..是______步.8、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________.9、如图,ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,CD =6,OA 交BC 于点E ,则AD 的长度是 ___.10、已知如图,AB =8,AC =4,∠BAC =60°,BC 所在圆的圆心是点O ,∠BOC =60°,分别在BC 、线段AB 和AC 上选取点P 、E 、F ,则PE +EF +FP 的最小值为____________.三、解答题(5小题,每小题8分,共计40分)1、如图, 菱形ABCD 的顶点A ,B ,D 在⊙O 上, 点C 在⊙O 外, 对角线AC 过圆心O , 且 ∠DAB =60°.(1)求证:直线CD是⊙O的切线;(2)若AB=6,求图中阴影部分的面积.2、(1)如图1,在△ABC中,AC=6,AB=135BAC∠=︒,求△ABC的面积.(2)如图2,半圆O的直径AB=10,C是半圆AB的中点,点D在BC上,且2=,点P是ABCD BD上的动点,试求PC+PD的最小值.(3)如图3,扇形AOB的半径为20,∠AOB=45°,在AB选点P,在边OA上选点E,在边OB上选点F,求PE+EF+FP的长度的最小值.3、如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD,连结AC.(1)△ACD为等边三角形;(2)请证明:E 是OB 的中点;(3)若AB =8,求CD 的长.4、已知顶点为D 的抛物线()()230y a x a =-≠交y 轴于点()0,3C ,且与直线l 交于不同的两点A 、B (A 、B 不与点D 重合).(1)求抛物线的解析式;(2)若90ADB ∠=︒,①试说明:直线l 必过定点;②过点D 作DF l ⊥,垂足为点F ,求点C 到点F 的最短距离.5、如图,等边△ABC 内接于⊙O ,P 是AB 上任一点(点P 与点A 、B 重合),连接AP 、BP ,过点C 作CM ∥BP 交PA 的延长线于点M .(1)求∠APC 和∠BPC 的度数;(2)求证:△ACM ≌△BCP ;(3)若PA =1,PB =2,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.-参考答案-一、单选题1、B【解析】【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,AC BC=,AD BD=,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.2、C【解析】【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.Rt△OBC中,BC=1AB=20cm,2根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.3、B【解析】【分析】如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.【详解】解:如图:连接OB,∵AB是O的切线,B为切点∴∠OBA=90°∵42A ∠=︒∴∠COB =90°-42°=48°∴D ∠=12∠COB =24°.故选B .【点睛】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.4、B【解析】【分析】直接根据圆周角定理求解.【详解】解:35ACB ∠=︒,270AOB ACB ∴∠=∠=︒. 故选:B .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、C【解析】【分析】如图,五边形ABCDE 为正五边形, 证明,AB BC AE CD ,AF BF BG CG 1,AB AG 再证明,ABF ACB ∽可得:,ABBF AC CB设AF =x ,则AC =1+x ,再解方程即可. 【详解】解:如图,五边形ABCDE 为正五边形,∴五边形的每个内角均为108°,,AB BC AE CD∴∠BAG =∠ABF =∠ACB =∠CBD = 36°,∴∠BGF =∠BFG =72°,72,ABG AGB,,,AF BF BG GC BG BF ,AF BF BG CG 1,AB AG,,BAC FAB ABF ACB,ABF ACB ∽∴ ,AB BFAC CB设AF =x ,则AC =1+x , 1,11xx210,x x ∴+-=解得:12x x ==经检验:x = 15151.22AC故选C【点睛】本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明ABF ACB ∽△△是解本题的关键.6、B【解析】【分析】连接BD ,利用同弧所对圆周角相等以及直径所对的角为直角,求证ADB ∆为等腰直角三角形,最后利用勾股定理,求出AD 即可.【详解】解:连接BD ,如下图所示:ACB ∠与ADB ∠所对的弧都是AB .45ADB ACB ∴∠=∠=︒.ABD ∠所对的弦为直径AD ,90ABD ∴∠=︒.又45ADB ∠=︒,ADB ∴∆为等腰直角三角形,在ADB ∆中,100AB DB ==,∴由勾股定理可得:AD ===故选:B .【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.7、B【解析】【分析】如图所示,连接AC ,由圆周角定理∠BAC =∠BDC =50°,再由等弧所对的圆周角相等得到∠ABC =∠BAC =50°,再根据圆内接四边形对角互补求解即可.【详解】解:如图所示,连接AC ,∴∠BAC =∠BDC =50°,∵AC BC =,∴∠ABC =∠BAC =50°,∵四边形ABCD 是圆内接四边形,∴∠ADC =180°-∠ABC =130°,故选B .【点睛】本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键.8、D【解析】【分析】取AB 的中点D ,连接AD ,BD ,则AB =2BD =2AD 根据圆心角、弧、弦关系定理的推论得到AD BD AC ==,又在ABD ∆中,根据三角形三边关系定理得出AD BD AB +>,即可得到2AB AC <.【详解】如图,取弧AB 的中点D ,连接AD ,BD ,则AB =2BD =2AD∵AB =2AC∴BD =AD =ACAD BD AC ∴==.在ABD ∆中,AD BD AB +>,AC AC AB ∴+>,即2AB AC <.故选:D .【点睛】本题主要考查了圆心角、弧、弦的关系及三角形三边关系定理,准确作出辅助线,得出AD BD AC ==是解题的关键.9、C【解析】【分析】连接OB ,OA ,根据圆周角定理可得2116AOB ACB ∠=∠=︒,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接OB ,OA ,如下图:∴2112AOB ACB ∠=∠=︒∵PA 、PB 是O 的切线,A 、B 是切点∴90OBP OAP ∠=∠=︒∴由四边形的内角和可得:36064APB OBP OAP AOB ∠=︒-∠-∠-∠=︒故选C .【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.10、B【解析】【分析】连接OC .根据OA BC ⊥确定AC AB =,90OEB ∠=︒,进而计算出AOB ∠,根据圆心角的性质求出AOC ∠,最后根据圆周角的性质即可求出ADC ∠.【详解】解:如下图所示,连接OC .∵OA BC ⊥,∴AC AB =,90OEB ∠=︒.∴AOC AOB ∠=∠.∵26OBC ∠=︒.∴64AOB ∠=︒.∴64AOC ∠=︒∵ADC ∠和AOC ∠分别是AC 所对的圆周角和圆心角, ∴3122A ADC OC ∠=︒∠=.故选:B .【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.二、填空题1、5【解析】【分析】先根据垂径定理求出AC 的长,设⊙O 的半径为r ,再连接OA ,在Rt △OAC 中利用勾股定理求出r 的值即可.【详解】解:∵⊙O 的弦AB =8,半径OD ⊥AB ,∴AC =12AB =12×8=4,设⊙O 的半径为r ,则OC =r -CD =r -2,连接OA ,在Rt △OAC 中,OA 2=OC 2+AC 2,即r 2=(r -2)2+42,解得r =5.故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.2、23π 【解析】【分析】已知扇形的圆心角为60︒,半径为2,代入弧长公式计算.【详解】解:依题意,n =60︒,r =2,∴扇形的弧长=6022==1801803n r πππ⨯︒︒. 故答案为:23π. 【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=180n r π.3、【解析】【分析】连接OC 交AB 于点D ,再连接OA .根据轴对称的性质确定OC AB ⊥,OD =CD ;再根据垂径定理确定AD =BD ;再根据勾股定理求出AD 的长度,进而即可求出AB 的长度.【详解】解:如下图所示,连接OC 交AB 于点D ,再连接OA .∵折叠后弧AB的中点C与圆心O重叠,⊥,OD=CD.∴OC AB∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴AD=.∴BD=.∴AB AD BD=+=.故答案为:【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.4、2或2-或0【解析】【分析】当⊙P与x轴相切时,圆心P的纵坐标为1或-1,根据圆心P在抛物线上,所以当y为±1时,可以求出点P的横坐标.【详解】x2+1,x=0.解:当y=1时,有1=-12x2+1,x=2±.当y=-1时,有-1=-12故答案是:2或2-或0.【点睛】本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.5、∠ABT=∠ATB=45°(答案不唯一)【解析】【分析】根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.【详解】解:添加条件:∠ABT=∠ATB=45°,∵∠ABT=∠ATB=45°,∴∠BAT=90°,又∵AB是圆O的直径,∴AT是圆O的切线,故答案为:∠ABT=∠ATB=45°(答案不唯一).本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键. 6、2π 【解析】【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,根据扇形面积公式进行求解即可.【详解】解:如图,连接AC ,∵从一块直径为2cm 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC =90°,∴AC 为直径,即AC =2cm ,AB =BC (扇形的半径相等),∵在Rt ABC 中,22222AB BC AC +==,∴AB =BC ∴阴影部分的面积是()29023602ππ= (cm 2). 故答案为:2π. 【点睛】 本题考查了圆周角定理和扇形的面积计算,熟记扇形的面积公式是解题的关键.7、6【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:r ;17= 依据直角三角形面积公式:12S ah =,即为1815602S =⨯⨯=; 内切圆半径面积公式:1()2S r a b c =++,即为1(81517)2S r =⨯++; 所以160(81517)2r =++,可得:3r =,所以直径为:26d r ==;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;8、512π-【解析】【分析】根据直角三角形30度角的性质及勾股定理求出AC 、BC ,∠A =60°,利用扇形面积公式求出阴影面积.【详解】解:在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,∴AC =1,BC ==A =60°,∴图中阴影部分的面积=ABC CAD CBE S S S+-扇形扇形=2601113602π⨯⨯=512π故答案为:512π 【点睛】此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.9、【解析】【分析】过O 作OF AD ⊥于点F ,故1=2AF DF AD =,由AB AC =得OA BC ⊥,故60AOB ∠=︒根据直径所对的圆周角等于90︒得90BCD ∠=︒,由直角三角形中30角所对的边是斜边的一半可得6OA OD CD ===,由三角形外角的性质得1302OAD ODA AOB ∠=∠=∠=︒,在Rt AOF 中由勾股定理可得AF 的值,进而可得AD 值.【详解】如图,过O 作OF AD ⊥于点F ,故1=2AF DF AD =∵AB AC =,∴AB AC =,∴OA BC ⊥,∴60AOB ∠=︒,∵BD 为⊙O 的直径,∴90BCD ∠=︒∵6CD =,30DBC ∠=︒,∴212BD CD ==,162OA OD BD ===, ∴1302AOD ODA AOB ∠=∠=∠=︒, 在Rt AOF 中,6OA =,30OAF ∠=︒,∴3OF =,∴AF =∴2AD AF ==故答案为:【点睛】本题考查圆周角定理,直角三角形的性质以及勾股定理,解题的关键是掌握直角三角形中30角所对的边是斜边的一半,属于中考常考题型.10、12##12-+【解析】【分析】如图,连接BC ,AO ,作点P 关于AB 的对称点M ,作点P 关于AC 的对称点N ,连接MN 交AB 于E ,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,∴当MN的值最小时,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN,∴当PA的值最小时,MN的值最小,取AB的中点J,连接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等边三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=∵∠BOC =60°,OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC BCO =60°,∴∠ACH =30°,∵AH ⊥OH ,AH =12AC =2,CH∴OH∴OA∵当点P 在直线OA 上时,PA 的值最小,最小值为∴MN =.故答案:.【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.三、解答题1、 (1)见解析;(2)阴影部分的面积为4π【解析】【分析】(1)连接OD ,只需证明∠ODC =90°,根据等腰三角形的性质即可证明;(2)阴影部分的面积= S△ABD-S△OBD+S扇形OBD,利用三角形面积公式以及扇形OBD的面积公式求解即可.(1)证明:连接OD.∵四边形ABCD是菱形,且∠DAB=60°,∴AD=CD,∠CAD=∠ACD=30°,∵OA=OD,∴∠DOC=2∠CAD=60°.∴∠ODC=∠ACD+∠DOC=90°.即OD⊥CD,∴CD是⊙O的切线.(2)解:∵四边形ABCD是菱形,且∠DAB=60°,∴△ABD是等边三角形,∵对角线AC过圆心O,∴BD⊥AC,在Rt△EDA中,∠DAE=30°,AD=AB=BD=6,∴DE=3,AE=∴S △ABD =12BD ⨯AE在Rt △EDO 中,∠DOE =60°,DE =3,∴∠ODE =30°,∴OD =2OE ,∵OD 2=OE 2+DE 2,即4OE 2=OE 2+9,∴OE OD =∴S △OBD =12BD ⨯OE∵四边形ABCD 是菱形,且 ∠DAB =60°,∴∠DOB =120°,∴S 扇形OBD =(21204360ππ⨯=,∴阴影部分的面积= S △ABD -S △OBD +S 扇形OBD 44ππ=..【点睛】本题综合考查了菱形的性质、切线的判定方法、扇形的面积计算方法,熟练掌握切线的判定是解题的关键.2、(1)12;(2)(3)【解析】【分析】(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,解直角三角形求出BD,可得结论.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,因为PC+PD≥CQ所以当点P处于解图2中的位置,PC+PD 取最小值,且最小值为CQ的长度,求出CQ的长即可解决问题.(3)如图3中,在AB上这一点作点P关于OA的对称点S,作点P关于OB的对称点N,连接SN,交OA于点E,交OB于点F,连接OS、ON、OP、EP、FP,因为PE+EF+FP≥SN,所以当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,求出SN,可得结论.【详解】解:(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,∵∠BAC=135°,∴∠BAD=180°﹣∠BAC=180°﹣135°=45°,∵BD⊥CA,交CA延长线于点D,∴△BAD为等腰直角三角形,且∠BDA=90°,∴BD=AD,在△BAD中,BD=AD,∠BDA=90°,∴BD2+AD2=AB2,即2BD2=AB2,∵AB=∴222===,解得:BD=4,BD AB232∵AC=6,∴11641222ABCS AC BD∆=⋅⋅=⨯⨯=.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,∵D关于AB的对称点Q,CQ交AB于点P,∴PD=PQ,∴PC+PD=PC+PQ=CQ,∵点P为AB上的动点,∴PC+PD≥CQ,∴当点P处于解图2中的位置,PC+PD取最小值,且最小值为CQ的长度,∵点C为半圆AB的中点,∴∠COB=90°,∵∠BOD+∠COD=∠COB=90°,∴11903033BOD COB︒︒∠=∠=⨯=,∵AB=10,∴1110522OD AB==⨯=,在Rt△ODH中,由作图知,∠OHD=90°,且∠HOD=∠BOD=30°,∴1522DH OD ==, ∴52QH DH ==,∴OH == ∵由作图知,四边形OMQH 为矩形,∴5,2OM QH MQ OH ====, ∴515522CM OM OC =+=+=,∴CQ ==∴PC +PD 的最小值为(3)如图3中,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS 、ON 、OP 、EP 、FP ,∵点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F , ∴PE =SE ,FP =FN ,∠SOA =∠POA ,∠NOB =∠POB ,OS =OP =ON ,∴PE +EF +FP =SE +EF +FN =SN ,∠SOA +∠NOB =∠POA +∠POB ,∵E 为OA 上的点,F 为OB 上的点,∴PE +EF +FP ≥SN ,∴当点E 、F 处于解图3的位置时,PE +EF +FP 的长度取最小值,最小值为SN 的长度,∵∠POA+∠POB=∠AOB=45°,∴∠SOA+∠NOB=45°,∴∠SON=∠SOA+∠AOB+∠NOB=45°+45°=90°,∵扇形AOB的半径为20,∴OS=ON=OP=20,在Rt△SON中,∠SON=90°,OS=ON=20,∠SON=90°,∴SN OS=∴PE+EF+FP的长度的最小值为【点睛】本题属于圆综合题,考查了轴对称最短问题,矩形的判定和性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.3、 (1)见解析(2)见解析(3)【解析】【分析】(1)根据垂直平分线的性质证明AC=AD=CD即可(2)要证明:E是OB的中点,只要求证OE=12OB=12OC,即证明∠OCE=30°即可;(3)在直角△OCE中,根据勾股定理就可以解得CE的长,进而求出CD的长.(1)证明:连接AC,如图∵直径AB垂直于弦CD于点E,∴AC AD=,AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即:△ACD是等边三角形,(2)△ACD是等边三角形,CF是AD的中垂线,∴FA FD=∴∠=∠=30°,ACF DCFOC,在R t△COE中,OE=12OB,∴OE=12∴点E为OB的中点;(3)解:在R t△OCE中,AB=8AB=4,∴OC=12又∵BE =OE ,∴OE =2,∴CE∴CD =2CE =【点睛】本题考查了垂径定理、勾股定理、中垂线性质、30°所对的直角边是斜边的一半,等边三角形的判定和性质.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.4、 (1)21233y x x =-+【解析】【分析】(1)将点()0,3C 代入()()230y a x a =-≠即可求得a 的值,继而求得二次函数的解析式; (2)①设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x NF x =-=-,联立直线解析式和抛物线解析式,根据根与系数的关系求得2112,x x x x +进而求得12y y ,证明AMD DNB ∽,根据相似比求得12y y ,进而根据两个表达式相等从而得出b 与k 的关系式,代入直线解析式,根据直线过定点与k 无关,进而求得定点坐标;②设P (3,3),由①可知l 经过点P ,则3DP =, 90DFP ∠=︒,进而根据90°圆周角所对的弦是直径,继而判断F 的轨迹是以DP 的中点G 为圆心,PD 为直径的圆,根据点与圆的位置即可求得CF 最小值.(1)解:∵抛物线()()230y a x a =-≠交y 轴于点()0,3C , ∴39a =解得13a = ∴抛物线为()221132333y x x x =-=-+ (2)①如图,过点,A B 分别作x 轴的垂线,垂足分别为,M N ,设直线l 的解析为y kx b =+,设11(,)A x y ,()22,B x y ,则123,3MD x ND x =-=-,则,A B 的坐标即为21233y kx b y x x =+⎧⎪⎨=-+⎪⎩的解 即23(2)930x k x b -++-=∴()()2236493936120k b k k b ∆=+--=++>, 121236,93x x k x x b +=+=-()()2212121212()y y kx b kx b k x x kb x x b ∴=++=+++()()229336k b kb k b =-+++2296k kb b =++()23k b =+90,ADB AM x ∠=︒⊥轴,BN x ⊥轴90AMD BND ∴∠=∠=︒ADM MAD ADM BDN ∴∠+∠=∠+∠MAD NDB ∴∠=∠AMD DNB ∴∽AM MD DN NB∴= 112233y x x y -∴=- ()()121233y y x x ∴=--()121239x x x x =+--()()336(93)99333k b k b k b =+---=+=+∴()23k b +()33k b =+ ()()3330k b k b ∴++-=∴30k b +=或330k b +-=3b k ∴=-或33b k =-y kx b =+当3b k =-时,3(3)y kx k k x =-=-则l 过定点()3,0A 、B 不与点D 重合则此情况舍去;当33b k =-时,33(3)3y kx b kx k k x =+=+-=-+即过定点()33,l ∴必过定点(3,3)②如图,设P (3,3),DF l ⊥,90DFP ∠=︒,3DP =F ∴在以DP 的中点G 为圆心,PD 为直径的圆上运动3(3,0),(3,3),(3,)2D P G ∴PG =1322DP =CG ∴==CF CG FG ∴≥-=CF ∴【点睛】本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键.5、 (1)∠APC =60°,∠BPC =60°(2)见解析【解析】【分析】(1)根据等边三角形的性质得到∠ABC=∠BAC=∠ACB=60°,根据圆周角定理即可得到∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)根据平行线的性质得到∠BPM+∠M=180°,∠PCM=∠BPC,求得∠M=∠BPC=60°,根据圆周角定理得到∠PAC+∠PCB=180°,根据全等三角形的判定定理即可得到结论;(3)作PH⊥CM于H,根据全等三角形的性质得到CM=CP,AM=BP,根据直角三角形的性质得到PH,根据三角形的面积公式即可得到结论;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,求得∠PBQ=30°,得到PQ,根据勾股定理得到BQ和AN,根据弧长公式即可得到结论.(1)解:∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵BC BC=,=,AC AC∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)证明:∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM =∠BPC =60°,∴∠M =180°-∠BPM =180°-(∠APC +∠BPC )=180°-120°=60°, ∴∠M =∠BPC =60°,又∵A 、P 、B 、C 四点共圆,∴∠PAC +∠PCB =180°,∵∠MAC +∠PAC =180°,∴∠MAC =∠PBC ,∵AC =BC ,在△ACM 和△BCP 中,M BPC MAC PBC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACM ≌△BCP (AAS );(3)解:∵CM ∥BP ,∴四边形PBCM 为梯形,作PH ⊥CM 于H ,∵△ACM ≌△BCP ,∴CM =CP ,AM =BP ,又∠M =60°,∴△PCM 为等边三角形,∴CM =CP =PM =PA +AM =PA +PB =1+2=3,在Rt △PMH 中,∠MPH =30°,∴PH ,∴S 四边形PBCM =12(PB +CM )×PH =12(2+3; (4) 解:过点B 作BQ ⊥AP ,交AP 的延长线于点Q ,过点A 作AN ⊥BC 于点N ,连接OB ,∵∠APC =∠BPC =60°,∴∠BPQ =60°,∴∠PBQ =30°,∴PQ =12PB =1,在Rt △BPQ 中,BQ在Rt △AQB 中,AB =∵△ABC 为等边三角形,∴AN 经过圆心O ,∴BN =12AB∴AN =在Rt △BON 中,设BO =x ,则ON −x ,2x)2=x2,解得:x,∵∠BOA=∠BCA=120°,∴AB的长度为1203180π=【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.。
第3讲圆知识点1 圆周角定理1. 圆的有关概念(1)圆的定义:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
以点O 为圆心的圆记作“⊙O”,读作“圆O”.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;圆是以圆心为对称中心的中心对称图形.(2)弦:连接圆上任意两点的线段叫做弦.(3)直径:经过圆心的弦叫做直径.(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(5)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”.大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示).2. 圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”.3. 圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.典例剖析例(1)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°(例(1)图)(例(2)图)(2)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.跟踪训练1.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.50°C.40°D.30°(第1题图)(第2题图)(第3题图)2.如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.3.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.过关精练1.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°(第1题图)(第2题图)(第3题图)(第4题图)2.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60°B.50°C.40°D.30°3.如图,AB是⊙O的直径,点C在⊙O上,则∠ACB的度数为()A.30°B.45°C.60°D.90°4.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°(第5题图)(第6题图)(第7题图)(第8题图)6.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°7.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.如图,AB为⊙O的直径,点C、D在⊙O上,若∠CBA=70°,则∠D的度数是.9.如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为.(第9题图)(第10题图)10.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.知识点2 垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.典例剖析例(1)如图⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2(例(1)图)(例(2)图)(2)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.跟踪训练1.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1(第1题图)(第2题图)2.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.3.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm(第1题图)(第2题图)(第3题图)2.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.83.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD =20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.4(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在直径为10cm的⊙O中,BC是弦,半径OA⊥BC于点D,AD=2cm,则BC的长为cm.6.如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=.7.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.知识点3 切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线性质的运用见切点,连半径,见垂直.例(1)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°(例(1)图)(例(2)图)(2)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2B.C.D.跟踪训练1.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°(第1题图)(第2题图)2.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则P A的长为()A.4B.2C.3D.2.5过关精练1.如图AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A.60°B.50°C.40°D.30°(第1题图)(第2题图)2.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB 的度数为()A.40°B.50°C.65°D.75°(第3题图)(第4题图)(第5题图)4.如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°5.如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.如图,P是⊙O外一点,P A是⊙O的切线,PO=26cm,P A=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm(第6题图)(第7题图)7.如图,AB是⊙O的直径,P A切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5D.8.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.(第8题图)(第9题图)9.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.410.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.(第10题图)(第11题图)(第12题图)11.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=.12.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.13.如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC =.(第13题图)(第14题图)(第15题图)14.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=度.15.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=度.16.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=.(第16题图)(第17题图)17.已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=.知识点4 扇形面积的计算(1)圆面积公式:S=πr2(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长)(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.例(1)如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是.(2)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).跟踪训练1.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.(第1题图)(第2题图)(第3题图)2.如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A.B.(2﹣)πC.πD.π3.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).1.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π(第1题图)(第2题图)(第3题图)2.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+3.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣24.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1B.4﹣πC.D.2(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣6.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4B.C.π﹣2D.8.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣4(第8题图)(第8 题图)(第10题图)9.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣10.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)11.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).(第11题图)(第12题图)(第13题图)12.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB 于点E,图中阴影部分的面积是(结果保留π).13.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).14.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为第 11 页 共 12 页半径作弧,交AB 于点D ,则图中阴影部分的面积是 .(结果保留π)15.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为 .(结果保留π)(第14题图) (第15题图)16.如图,一个圆心角为90°的扇形,半径OA =2,那么图中阴影部分的面积为 (结果保留π).(第16题图) (第17题图) (第18题图)17.如图在正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点,若圆的半径等于1,则图中阴影部分的面积为 .18.如图,在扇形OAB 中,∠AOB =90°.D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的▱ODCE 的顶点C 在上.若OD =8,OE =6,则阴影部分图形的面积是 (结果保留π).19.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为 .(第19题图) (第20题图)20.如图,在矩形ABCD 中,CD =2,以点C 为圆心,CD 长为半径画弧,交AB 边于点E ,且E 为AB 中点,则图中阴影部分的面积为 .21.如图,在▱ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).22.如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB.为半径画弧,交AC于点D,则阴影部分的面积是第12 页共12 页。
《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
第14讲圆的有关性质⎧⎪⎪⎨⎪⎪⎩垂径定理弧、弦、圆心角的关系圆的有关性质圆周角定理及推论圆内接四边形的性质 知识点1垂径定理①弦和直径:(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径。
直径等于半径的两倍。
②弧:(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B 为端点的的弧记作AB ⌒,读作弧AB.(2)半圆、优弧、劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如 ACB .小于半圆的弧叫做劣弧,如AB 。
(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。
③弦心距:(1)圆心到弦的距离叫做弦心距。
(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。
四者有一个相等,则其他三个都相等。
圆心到弦的垂线段的长度称为这条弦的弦心距。
④圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。
⑤垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.⑥同心圆与等圆(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。
如图一,半径为r1与半径为r2的⊙O叫做同心圆。
(图一)(2)等圆:圆心不同,半径相等的两个圆叫做等圆。
【文库独家】九年垂径定理、弦、弧、圆心角、圆周角练习1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
6003. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。
你认为图中有哪些相等的线段?为什么?ADBOCE4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。
5. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD ⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为____________cm。
6. 如图所示,AB是圆O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=_________________。
CA P ODCE OA D B7. 如图所示,在△ABC中,∠C=90°,AB=10,AC=8,以AC为直径作圆与斜边交于点P,则BP的长为________________。
8. 如图所示,四边形ABCD内接于圆O,∠BCD=120°,则∠BOD=____________度。
9.如图所示,圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A. 3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<510.下列说法中,正确的是()A. 到圆心的距离大于半径的点在圆内B. 圆的半径垂直于圆的切线C. 圆周角等于圆心角的一半D. 等弧所对的圆心角相等11.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 135°D. 270°12. 如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC 等于()A. 140°B. 110°C. 120°D. 130°13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________; 14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;B16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。
自学资料一、圆的相关定义【知识探索】1.定理:不在同一直线上的三点确定一个圆.【说明】(1)过平面上一点能作无数多个圆;(2)过平面上两点能做无数多个圆,这些圆的圆心在两点连线的垂直平分线上;(3)过平面上三点:①三点不在同一直线上,能作唯一一个圆;②三点在同一直线上,不能作圆.【错题精练】例1.下列命题正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A. 1个B. 2个C. 3个D. 4个第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【解答】解:①过两点可以作无数个圆,正确;②经过三点一定可以作圆,错误;③任意一个三角形有一个外接圆,而且只有一个外接圆,正确;④任意一个圆有且只有一个内接三角形,错误,正确的有2个,故选:B.【答案】B例2.有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A. 4个B. 3个C. 2个D. 1个【答案】C例3.如图,在平面直角坐标系中,点A坐标为(﹣4,0),⊙O与x轴的负半轴交于B(﹣2,0).点P是⊙O上的一个动点,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于()A.B.C.D.【解答】第2页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】C例4.如图,已知△ABC.(1)尺规作图作△ABC的外接圆(保留作图痕迹,不写作法);(2)设△ABC是等腰三角形,底边BC=10,腰AB=6,求圆的半径r.【答案】解:(1)如图所示;(2)连接OB,连接OA交BC于点E,∵△ABC是等腰三角形,底边BC=10,腰AB=6,∴BE=CE=5,AE=√AB2−BE2=√11,在Rt△BOE中,r2=52+(r-√11)2∴r=18√11=18√1111.第3页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第4页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.【答案】4≤OP≤55.已知:△ABC(如图)(1)求作:△ABC的外接圆(要求:用尺规作图,保留作图痕迹,不要求写作法及证明).(2)若∠A=60°,BC=8√3,求△ABC的外接圆的半径.【答案】解:(1)如图所示:⊙O即为所求△ABC的外接圆;(2)过点O作OD⊥BC于点D,∵∠A=60°,BC=8√3,∴∠COD=60°,CD=4√3,第5页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴CO=4√3sin60°=8,答:△ABC的外接圆的半径为8.二、圆心角、弧、弦、弦心距、圆周角之间的关系【知识探索】年份题量分值考点题型2015114圆内接四边形的性质;点与圆的位置关系选择、简答201613圆周角定理;填空2017219弧长面积;切线的性质;圆周角定理选择、填空、简答201824圆周角定理;填空2019216扇形面积;切线长定理;圆心角、圆周角、垂径定理填空、解答【错题精练】例1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A. 51.5°B. 60°C. 72°D. 76°【解答】解:连接OD.∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=52°,∴∠AOB=(360°-52°)÷4=77°,第6页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第7页 共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训∴α=(180°-77°)÷2=51.5°. 故选:A .【答案】A例2.如图,在△ABC 中,∠C=90°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E .(1)若∠A=25°,求BD̂的度数. (2)若BC=9,AC=12,求BD 的长.【答案】解:(1)连接CD ,如图, ∵∠ACB=90°,∴∠B=90°-∠A=90°-25°=65°,∵CB=CD ,∴∠CDB=∠B=65°, ∴∠BCD=180°-2∠B=50°, ∴BD ̂的度数为50°;(2)作CH ⊥BD ,如图,则BH=DH , 在Rt △ACB 中,AB=√92+122=15, ∵12CH•AB=12BC•AC , ∴CH=9×1215=365, 在Rt △BCH 中,BH=√92−(365)2=275,∴BD=2BH=545.̂的度数为()例3.已知如图,在⊙O中,OA⊥OB,∠A=35°,则CDA. 20°B. 25°C. 30°D. 35°【解答】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°-35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°-70°=20°,̂的度数为20°,∴CD故选:A.【答案】A例4.已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC (1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.第8页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°-∠AOD-∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.例5.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E为BD̂的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径【答案】解:(1)连结AE,BD,∵E为BD̂的中点,∴ED̂=BÊ,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,第9页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第10页 共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训∴∠AEB=90°, 即AE ⊥BC ,∴∠AEB=∠AEC=90°,在△AEC 和△AEB 中{∠CAE =∠BAE AE =AE ∠AEC =∠AEB ,∴△AEC ≌△AEB (ASA ), ∴CE=BE , ∴DE=CE=BE=12BC ;(2)在Rt △CBD 中,BD 2=BC 2-CD 2=32, 设半径为r ,则AB=2r , 由(1)得AC=AB=2r , AD=AC-CD=2r-2,在Rt △ABD 中AD 2+BD 2=AB 2, ∴(2r-2)2+32=(2r )2, 解得:r=4.5,∴⊙O 的半径为4.5.例6.如图,点A ,B ,C 在⊙O 上,AB ∥OC .(1)求证:∠ACB+∠BOC=90°;(2)若⊙O 的半径为5,AC=8,求BC 的长度.【答案】(1)证明:∵AB̂对的圆周角是∠ACB ,对的圆心角是∠AOB , ∴∠AOB=2∠ACB , ∵OB=OA ,∴∠ABO=∠BAO , ∵AB ∥OC ,∴∠ABO=∠BOC ,∠BAO+∠AOC=180°, ∴∠BAO+∠AOB+∠BOC=180°, 即2∠ACB+2∠BOC=180°, ∴∠ACB+∠BOC=90°;(2)延长AO 交⊙O 于D ,连接CD ,则∠ACD=90°,由勾股定理得:CD=√AD2−AC2=√(5+5)2−82=6,∵OC∥AB,∴∠BOC=∠ABO,∠COD=∠BAO,∵∠BAO=∠ABO,∴∠BOC=∠COD,在△BOC和△DOC中{OB=OD∠BOC=∠DOC OC=OC∴△BOC≌△DOC(SAS),∴BC=CD,∵CD=6,∴BC=6.例7.如图,AB是半圆O的直径,AC是弦,∠CAB=60∘,若AB=6cm.(1)求弦AC的长;(2)点P从点A开始,以1cm/s的速度沿AB向点B运动,到点B停止,过点P作PQ∥AC,交半圆O于点Q,设运动时间为t(s).①当t=1时,求PQ的长;②若△OPQ为等腰三角形,直接写出t(t>0)的值.【解答】(1)解:如图1中,∵OA=OC,∠CAB=60∘,∴△AOC是等边三角形,∴AC=OA=3(cm);(2)解:①如图2中,作OH⊥PQ于H,连接OQ,由题意得:AP=1,OP=2,∵PQ∥AC,∴∠OPH=∠CAB=60∘,在Rt△OPH中,∵∠POH=90∘−∠OPH=30∘,OP=2,∴PH=1OP=1,OH=√3PH=√3,2在Rt△QOH中,HQ=√OQ2−OH2=√6,∴PQ=PH+HQ=1+√6;②如图3中,∵△OPQ是等腰三角形,观察图象可知,只有OP=PQ,作PH⊥OQ于H.∵PQ∥AC,∴∠QPB=∠CAB=60∘,∵PQ=PO,PH⊥OQ,,∠POQ=∠PQO=30∘,∴OH=HQ=32∴OP=OH÷cos30∘=√3,∴AP=3+√3,∴t=3+√3秒时,△OPQ是等腰三角形.【答案】(1)3cm;(2)①1+√6;②t=3+√3.例8.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.【解答】(1)解:△ABC为等腰三角形.理由如下:连结AE,如图,∵,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90∘,∴AE⊥BC,∴△ABC为等腰三角形;(2)解:∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=12BC=12×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE=√102−62=8,∵AB为直径,∴∠ADB=90∘,∴12AE⋅BC=12BD⋅AC,∴BD=8×1210=485,在Rt△ABD中,∵AB=10,BD=485,∴AD=√AB2−BD2=145,∴sin∠ABD=ADAB =14510=725.【答案】(1)略;(2)725.【举一反三】1.如图,弦AC、BD相交于点E,且AB̂=BĈ=CD̂,若∠AED=80°,则∠ACD的度数为()A. 20°B. 25°C. 30°D. 15°【解答】解:如图,设AB̂的度数为m,AD̂的度数为n,∵AB̂=BĈ=CD̂,∴BĈ、CD̂的度数都为m,∴3m+n=360°①∵∠AED=80°,∴∠C+∠D=80°,∴12m+12n=80°②,由①②组成{3m+n=360°12m+12n=80°,解得m=100°,n=60°∴∠ACD=12n=30°.故选:C.【答案】C2.已知△ABC内接于⊙O,点D平分弧BmĈ.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.【答案】(1)证明:∵点D平分弧BmĈ,∴弧DC=弧DB,∵∠BAC=2∠ABC,∴弧BDC=2弧AC,∴弧CA=弧CD,∴AC=CD;(2)解:连结BD,如图②,∵BC为⊙O的直径,∴∠BAC=∠BDC=90°,在Rt △BAC 中,∵BC=10,AB=6,∴AC=√BC 2−AB 2=8;∵弧DC=弧DB ,∴DB=DC ,∴△BCD 为等腰直角三角形,∴CD=√22BC=5√2.3.如图,在⊙O 中,点C 是优弧ACB 的中点,D 、E 分别是OA 、OB 上的点,且AD=BE ,弦CM 、CN 分别过点D 、E .(1)求证:CD=CE .(2)求证:AM̂=BN ̂.【答案】(1)证明:连接OC .∵AĈ=BC ̂, ∴∠COD=∠COE ,∵OA=OB ,AD=BE ,∴OD=OE ,∵OC=OC ,∴△COD ≌△COE (SAS ),∴CD=CE .(2)分别连结OM ,ON ,∵△COD ≌△COE ,∴∠CDO=∠CEO ,∠OCD=∠OCE ,∵OC=OM=ON ,∴∠OCM=∠OMC ,∠OCN=∠ONC ,∴∠OMD=∠ONE ,∵∠ODC=∠DMO+∠MOD ,∠CEO=∠CNO+∠EON ,∴∠MOD=∠NOE ,∴AM̂=BN ̂.4.如图,已知△ABC中,AB=AC,以AB为直径的⊙O与边BC相交于点D,过点D作⊙O的切线与AC交于点E.(1)求BDBC的值.(2)判断DE与AC的位置关系,并证明你的结论.(3)已知BC:AB=2:3,DE=4√2,求⊙O的直径.【解答】(1)解:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,∴BDBC =12;(2)解:DE⊥AC;连接OD,∵DE是⊙O的切线,∴DE⊥OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴AC∥OD,∴DE⊥AC;(3)解:∵BDBC =12且BC:AB=2:3,∴AB:CD=3,∵∠ADB =∠DEC =90∘,∠B =∠C ,∴△ABD ∽△DCE ,∴DC AB =CE BD =13,设CE =a ,则BD =CD =3a ,AB =9a ,在Rt△DEC 中,由勾股定理得:DE =2a √2=4√2,∴a =2,∴AB =18.【答案】(1)12;(2)DE ⊥AC ;(3)18.5.已知直径CD ⊥弦BF 于 E ,AB 为ʘO 的直径.(1)求证:FD̂=AC ̂; (2)若∠DAB=∠B ,求∠B 的度数.【答案】(1)证明:∵直径CD ⊥弦BF ,∴FD̂=BD ̂, ∵∠AOC=∠BOD ,∴BD̂=AC ̂, ∴FD̂=AC ̂; (2)解:由圆周角定理得,∠BOD=2∠DAB ,∵∠DAB=∠B ,∴∠BOD=2∠B ,∵CD ⊥BF ,∴∠B=30°.6.如图,⊙O 的半径为2,弦BC =2√3,点A 是优弧BC 上一动点(不包括端点),△ABC 的高BD 、CE 相交于点F ,连结ED .下列四个结论:①∠A 始终为60°;②当∠ABC =45∘时,AE =EF ;③当△ABC 为锐角三角形时,ED =√3;④线段ED 的垂直平分线必平分弦BC .其中正确的结论是 .(把你认为正确结论的序号都填上)【答案】①②③④.7.圆O的直径为10cm,A是圆O内一点,且OA=3cm,则圆O中过点A的最短弦长=__________cm【答案】88.如图,在圆O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=__________°【答案】501.如图,AB圆O的直径,点C在圆O上,若∠OCA=50°,AB=4,则弧BC的长为()πA. 103B. 109π C. 59πD. 518π【答案】B2.如图,将钢珠放在一个边长AB=8mm 的正方形的方槽内,测得钢珠顶端离零件表面的距离为8mm ,则这个钢珠的直径为______mm .【答案】103.如图,AB 是半圆的直径,E 是弦AC 上一点,过点E 作EF ⊥EB ,交AB 于点F ,过点A 作AD ∥EF ,交半圆于点D .若C 是BD ̂的中点,AF AE =√54,则EFAD 的值为 .【解答】解:延长BE 交AD 于A',∵AD ∥EF ,EF ⊥BE ,∴AA'⊥BA',∴∠AA'B=90°,∵AB 为⊙O 的直径,∴∠ADB=90°,∴D 与A'重合,∵AFAE =√54,∴设AF=√5a,AE=4a,过F作FG⊥AE于G,∵C是BD̂的中点,∴CD̂=BĈ,∴∠DAC=∠BAC,∵AD∥EF,∴∠BFE=∠DAB=2∠BAC=∠BAC+∠AEF,∴∠BAC=∠AEF,∴AF=EF,∴AG=EG=2a,由勾股定理得:FG=a,∵∠DAE=∠GAF,∠ADE=∠AGF=90°,∴△ADE∽△AGF,∴ADAE =AGAF,∴AD4a =2a√5a,AD=8a√5,∴EFAD =√5a8a√5=58,故答案为:58.【答案】584.在⊙O的内接△ABC中,AD⊥BC于D,(1)①图1中,若作直径AP,求证:AB.AC=AD.AP;②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式及自变量x的取值范围;(2)图2中,点E为⊙O上一点,且弧AE=弧AB,求证:CE+CD=BD.【答案】5.在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x。
专题12垂径定理、圆周角和圆心角的关系(6个知识8种题型)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.垂径定理(重点)知识点2.垂径定理的推论(难点)知识点3.圆周角(重点)知识点4.圆周角定理(重点)知识点5.圆周角定理的推论(难点)知识点6.圆内接四边形的概念与性质(重点)【方法二】实例探索法题型1.最短距离问题题型2.辅助线的添加方法题型3.方程思想题型4.垂径定理的实际应用题型5.圆中角度的计算题型6.圆内接四边形与圆周角定理的综合应用题型7.动点问题题型8.圆周角定理与其他几何知识的综合【方法三】成果评定法【学习目标】1.掌握垂径定理,并会运用垂径定理进行简单的计算。
2.掌握与垂径定理有关的推论,并能运用这一推论解决相关问题。
3.认识圆周角,掌握圆周角和圆心角的关系,直径所对的圆周角的特征。
4.能运用圆心角和圆周角的关系、直径所对的圆周角的特征解决相关问题。
【知识导图】【倍速学习五种方法】【方法一】脉络梳理法知识点1.垂径定理(重点)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.【例1】.(2022秋•锡山区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,AB=16,则OC的长为.【变式】.(2022秋·江苏南京·九年级南京市第一中学校考阶段练习)如图,AB是⊙O的直径,弦CD⊥AB 于点E,则下列结论一定正确的个数有()①CE =DE ;②BE =OE ;③ CBBD =;④∠CAB =∠DAB .A .4个B .3个C .2个D .1个知识点2.垂径定理的推论(难点)推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例2】.(2022秋·九年级统考期中)如图,O 的弦8AB =,M 是AB 的中点,且3OM =,则O 的半径等于()A .7B .4C .5D .6【变式】.(2023秋·浙江台州·九年级统考期末)如图,在正方形网格中,一条圆弧经过、、A B C 三点,那么这条圆弧所在圆的圆心是().A .点PB .点QC .点RD .点M知识点3.圆周角(重点)1.圆周角定义:像图中∠AEB 、∠ADB 、∠ACB 这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆心角与圆周角的区别与联系【例3】观察下图中角的顶点与两边有何特征?指出哪些角是圆周角?知识点4.圆周角定理(重点)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【例4】如图,100AOB ∠= ,点C 在O 上,且点C 不与A、B 重合,则ACB ∠的度数为()A.50 B.80 或50 C.130 D.50 或130【变式】如图,AB 是⊙O 的弦,∠AOB=80°则弦AB 所对的圆周角是.知识点5.圆周角定理的推论(难点)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)【例5】(2023秋·江苏·九年级专题练习)如图,CD 是O 的直径,A 、B 是O 上的两点,若40ACD ∠=︒,则ABC ∠的度数为()A .50︒B .40︒C .20︒D .140︒【变式】如图,⊙A 过点O(0,0),C(3,0),D(0,1),点B 是x 轴下方⊙A 上的一点,连接BO 、BD ,则∠OBD 的度数是.知识点6.圆内接四边形的概念与性质(重点)(1)定义:圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).【例6】(2022秋•靖江市期末)如图,已知四边形ABCD内接于⊙O.求证:∠A+∠C=180°.【变式】如图已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是.【方法二】实例探索法题型1.最短距离问题题型2.辅助线的添加方法A.6B.题型3.方程思想3.(2022秋•江宁区校级月考)如图是一个隧道的横截图,它的形状是以点O为圆心的一部分,如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,若CD=4m,EM=6m,则⊙O的半径为m.题型4.垂径定理的实际应用4.(2022秋•如皋市校级月考)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为m.5.(2022•钟楼区校级模拟)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米6.(2022秋•泰州月考)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?题型5.圆中角度的计算7.(2022秋•鼓楼区期末)如图,AB为⊙O的直径,D是弦AC延长线上一点,AC=CD,DB的延长线交⊙O 于点E,连接CE.(1)求证∠A=∠D;(2)若的度数为108°,求∠E的度数.题型6.圆内接四边形与圆周角定理的综合应用8.(2022秋•宿城区期末)如图,四边形ABCD内接于一圆,CE是边BC的延长线.(1)求证∠DAB=∠DCE;(2)若∠DAB=60°,∠ACB=70°,求∠ABD的度数.9.(2022秋•镇江期中)如图,四边形ABCD为⊙O的内接四边形,∠EAD=∠BAC,BA、CD延长线交于点E.求证:BD=BC.题型7.动点问题10.(2023·江苏泰州·统考中考真题)已知:A 、B 为圆上两定点,点C 在该圆上,C ∠为 AB 所对的圆周角.知识回顾(1)如图①,O 中,B 、C 位于直线AO 异侧,135AOB C ︒∠+∠=.①求C ∠的度数;②若O 的半径为5,8AC =,求BC 的长;逆向思考(2)如图②,P 为圆内一点,且120APB ∠<︒,PA PB =,2APB C ∠=∠.求证:P 为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若90APB ∠=︒,点C 在P 位于直线AP 上方部分的圆弧上运动.点D 在P 上,满足2CD CB CA =-的所有点D 中,必有一个点的位置始终不变.请证明.题型8.圆周角定理与其他几何知识的综合11.(2023•滨江区一模)如图1,AB 为⊙O 的直径,CD ⊥AB 于点E ,,BF 与CD 交于点G .(1)求证:CD =BF .(2)若BE =1,BF =4,求GE 的长.(3)连结GO ,OF ,如图2,求证:.【方法三】成果评定法一.选择题(共6小题)1.(2023秋•惠山区校级期中)如图,AB 是O 的直径,弦CD AB ⊥于点E ,10AB cm =,8CD cm =,则BE 的长为()A .5cmB .3cmC .2cmD .1.5cm2.(2023春•鼓楼区校级月考)如图,在正方形ABCD 中,4AB =,以边CD 为直径作半圆O ,E 是半圆O 上的动点,EF DA ⊥于点F ,EP AB ⊥于点P ,设EF x =,EP y =22x y +()A .231-B .423-C .251-D .252-3.(2023秋•滨湖区校级期中)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”用现在的几何语言表达即:如图,弦AB CD ⊥,垂足为点D ,1CD =寸,1AB =尺(10寸),则圆的直径长度是()A .12寸B .24寸C .13寸D .26寸4.(2023秋•铜山区校级月考)如图,点A 、B 、C 在O 上,30ACB ∠=︒,则AOB ∠的度数是()A .30︒B .40︒C .60︒D .65︒5.(2023•苏州)如图,AB 是半圆O 的直径,点C ,D 在半圆上, CDDB =,连接OC ,CA ,OD ,过点B 作EB AB ⊥,交OD 的延长线于点E .设OAC ∆的面积为1S ,OBE ∆的面积为2S ,若1223S S =,则tan ACO ∠的值为()A 2B .223C .75D .326.(2023秋•梁溪区校级期中)如图,DCE ∠是O 内接四边形ABCD 的一个外角,若82DCE ∠=︒,那么BOD ∠的度数为()A.160︒B.164︒C.162︒D.170︒二.填空题(共6小题)7.(2023秋•滨海县期中)如图,点A,B,C,D在OABD∠=.∠=︒,则ADC上,30CAD∠=︒,508.(2023秋•镇江期中)如图,某圆弧形拱桥的跨度16=,则该拱桥的半径为m.CD m=,拱高5AB m9.(2023秋•高新区校级期中)如图是一个圆柱形的玻璃保温水杯,将其横放,截面是个半径为5cm的圆,杯内水面8=,则水的最大深度CD是cm.AB cm10.(2023秋•丰县期中)如图,点A是半圆上的一个三等分点,点B是 AD的中点,P是直径CD上一动点,O+的最小值为.的半径是2,则PA PB11.(2023秋•鼓楼区校级月考)如图,已知OPA=,的弦,点P在弦AB上.若4的半径为7,AB是OPB=,则OP的长为.612.(2023秋•建湖县期中)如图,点A 、B 、C 在O 上,//BC OA ,连接BO 并延长,交O 于点D ,连接AC 、DC .若18A ∠=︒,则D ∠的大小为︒.三.解答题(共6小题)13.(2023秋•仪征市期中)如图,在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D .(1)求证AC BD =;(2)若3AC =,大圆和小圆的半径分别为6和4,则CD 的长度是.14.(2023秋•广陵区期中)如图,四边形ABCD 内接于O ,BC 为O 的直径,//OA CD .(1)若70ABC ∠=︒,求BAD ∠的度数;(2)求证: AB AD =.15.(2023秋•句容市期中)已知:如图,C ,D 是以AB 为直径的O 上的两点,分别连接OC 、OD 、AD 、CD 、BC ,且//OD BC ,求证:AD DC =.16.(2023秋•淮安区期中)某地有一座圆弧形拱桥,桥下水面宽度AB为24m,拱顶高出水面8m(即8)=,CD m ⊥,OC AB(1)求出该圆弧形拱桥所在圆的半径;(2)现有一艘宽10m,船舱高出水面7.5m的货船要经过这里,此货船能顺利通过这座桥吗?17.(2023秋•邳州市期中)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质是解决下面的问题:如图,CD为OAB=,求CD的长.的直径,弦AB CDCE=,10⊥于点E,118.(2023秋•泗阳县期中)如图,AB是O∠的度数.∠=︒,求ABDDCB的弦,30的直径,CD是O。
<<圆>>知识点归纳(1)掌握圆的有关性质和计算① 弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.② 垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.③ 在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半. ④ 圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角. (2)点与圆的位置关系① 设点与圆心的距离为d ,圆的半径为r ,则点在圆外d r ⇔>; 点在圆上d r ⇔=; 点在圆内d r ⇔<. ② 过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆. ③ 三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系① 设圆心到直线l 的距离为d ,圆的半径为r ,则直线与圆相离d r ⇔>;直线与圆相切d r ⇔=;直线与圆相交d r ⇔<.② 切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径. ③ 切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线. 到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线.④ 三角形的内心是三角形三条内角平分线的交点. 三角形的内心到三角形三边的距离相等. ⑤ 切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长. ⑥ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)与圆有关的计算① 弧长公式:180n rl π= 扇形面积公式:213602n r S lr π==扇形 (其中为n 圆心角的度数,r 为半径) ② 圆柱的侧面展开图是矩形.圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体. 圆柱的侧面积=底面周长×高 圆柱的全面积=侧面积+2×底面积③ 圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体. ④ 圆锥的侧面积=12×底面周长×母线;圆锥的全面积=侧面积+底面积能力提升(一)—— 圆中的有关概念和性质一、知识点回顾:1.确定一个圆有两要素,一是 ,二是 ,圆心确定 、半径确定 ;2.圆既是 对称图形,又是 对称图形;它的对称中心是 ,对称轴是 ,有 条对称轴。
实验九年级数学? 垂径定理,圆周角与圆心角的关系?复习题例2.如图,△ABC中,∠A=m°.〔1〕如图〔1〕,当O是△ABC的内心时,求∠BOC的度数;〔2〕如图〔2〕,当O是△ABC的外心时,求∠BOC的度数;〔3〕如图〔3〕,当O是高线BD与CE的交点时,求∠BOC的度数.例3.如图,Rt△ABC中,AC=8,BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的间隔.1.如图1,⊙O内切于△ABC,切点为D,E,F.∠B=50°,∠C=60°,•连结OE,OF,DE,DF,那么∠EDF等于〔〕A.40° B.55° C.65° D.70°2.如图2,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,•那么∠DOE=〔〕A.70° B.110° C.120° D.130°3.如图3,△ABC中,∠A=45°,I是内心,那么∠BIC=〔〕° B.112° C.125° D.55°4.以下命题正确的选项是〔〕A.三角形的内心到三角形三个顶点的间隔相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形5.在Rt△ABC中,∠C=90°,AC=3,AB=5,那么它的内切圆与外接圆半径分别为〔〕A.1.5,2.5 B.2,5 C.1,2.5 D.2,26.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F.〔1〕求证:BF=CE;〔2〕假设∠C=30°,CE=23,求AC的长.1.如图,在半径为R的圆内作一个内接正方形,•然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n个内切圆,它的半径是〔〕A.〔22〕n R B.〔12〕n R C.〔12〕n-1R D.〔22〕n-1R2.如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,•DC=1,那么⊙O的半径等于〔〕A.45B.54C.34D.563.如图,△ABC的内切圆⊙O分别和边BC,AC,AB切于D,E,F,•假如AF=2,BD=7,CE=4.〔1〕求△ABC的三边长;〔2〕假如P为弧DF上一点,过P作⊙O的切线,交AB于M,交BC于N,求△BMN的周长.4.如图,⊙O与四边形ABCD的各边依次切于M,N,G,H.〔1〕猜测AB+CD与AD+BC有何数量关系,并证明你的猜测;〔2〕假设四边形ABCD增加条件AD∥BC而成为梯形,梯形的中位线长为m,其他条件不变,试用m表示梯形的周长.一. 选择题。
《圆的基本性质》知识归纳与题型训练(9题型清单)一、圆的认识圆:在同一平面内,线段OP绕它固定的一个端点O旋转一周,另一端点P所经过的封闭曲线叫做圆其他基本定义:定点O叫做圆心;线段OP叫做圆的半径;连结圆上任意两点的线段BC叫做弦;经过圆心的弦AB叫做直径;圆弧:圆上任意两点间的部分叫做圆弧,简称弧;点与圆的位置关系:d表示同一平面内点到圆心的距离d⇔r=rddr⇔点在圆内;点在圆上;<>⇔点在圆外;要点诠释:(1)其他基础定义:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧,半径相等的两个圆叫等圆,能够重合的圆弧叫做相等的弧;(2)圆的确定:不在同一直线上的三个点确定一个圆(3)三角形与圆:经过三角形各个顶点的圆叫做三角形的外接圆,这个外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形二、图形的旋转旋转三要素:旋转中心、旋转方向、旋转角度图形旋转的性质:图形旋转所得的图形和原图形全等;对应点到旋转中心的距离相等;任何一对对应点与旋转中心连线所成的角度等于旋转的角度要点诠释:有旋转必有等腰三角形,并且有8字类的相似三、垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧;推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧推论2:平分弧的直径垂直平分弧所对的弦要点诠释:垂径定理相关计算常和直角三角形结合,利用勾股定理列方程求弦长、半径、弦心距等四、圆心角圆心角:顶点在圆心的角叫做圆心角;圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;推论:在同圆或等圆中,如果两个圆心角、两条弧、两个弦心距中有一对量相等,那么他们所对应的其余各对量都相等;要点诠释:与圆心角有关的定理及应用都有一个前提,即“在同圆或等圆中”,不加这个条件对应结论不成立。
五、圆周角圆周角:顶点在圆上,且角的两边都和圆相交的角做圆周角;圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半;推论1:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等;要点诠释:在同圆或等圆中,如果两个圆心角、两条弧、两个弦心距,两条弦,两个圆周角中有一对量相等,六、圆内接四边形圆的内接四边形:一个四边形的各个顶点在同一圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆;圆的内接四边形的性质定理:圆内接四边形的对角互补;要点诠释:圆内接四边形的一个外角等于与其相邻内角的对角七、正多边形正多边形:各边相等、各内角也相等的多边形叫做正多边形圆内接正多边形:我们把经过一个正多边形的各个顶点的圆叫做这个正多边形的外接圆,这个正多边形叫作圆内接正多边形。
弧长与扇形面积一、选择题1.(2016·湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2. (2016兰州,12,4分)如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108º,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()(A)πcm (B) 2πcm(C) 3πcm (D) 5πcm【答案】:C 【解析】:利用弧长公式即可求解 【考点】:有关圆的计算3.(2016福州,16,4分)如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r下,则r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可. 【解答】解:如图,r 上=r 下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l ,圆心角度数为n ,圆的半径为R );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.4. (2016·四川资阳)在Rt △ABC 中,△ACB=90°,AC=2,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A.2﹣π B.4﹣π C.2﹣π D.π【考点】扇形面积的计算.【分析】根据点D为AB的中点可知BC=BD=AB,故可得出△A=30°,△B=60°,再由锐角三角函数的定义求出BC的长,根据S阴影=S△A B C﹣S扇形C B D即可得出结论.【解答】解:△D为AB的中点,△BC=BD=AB,△△A=30°,△B=60°.△AC=2,△BC=AC•tan30°=2•=2,△S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.5. (2016·四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2 D.(4+16)πcm2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长=cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.6.(2016·四川广安·3分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD 、OE 的长度,最后将相关线段的长度代入S 阴影=S 扇形ODB ﹣S △DOE +S △BEC .【解答】解:如图,假设线段CD 、AB 交于点E , ∵AB 是⊙O 的直径,弦CD ⊥AB , ∴CE=ED=2, 又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°, ∴OE=DE •cot60°=2×=2,OD=2OE=4,∴S 阴影=S 扇形ODB ﹣S △DOE +S △BEC =﹣OE ×DE+BE •CE=﹣2+2=.故选B .7. (2016吉林长春,7,3分)如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA=2,∠P=60°,则的长为( )A .πB .πC .D .【考点】弧长的计算;切线的性质. 【专题】计算题;与圆有关的计算.【分析】由PA 与PB 为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB 的度数,利用弧长公式求出的长即可.【解答】解:∵PA 、PB 是⊙O 的切线, ∴∠OBP=∠OAP=90°, 在四边形APBO 中,∠P=60°, ∴∠AOB=120°, ∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键. 8.(2016·广东深圳)如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A.42-πB.84-πC.82-πD.44-π 答案:A考点:扇形面积、三角形面积的计算。
初中数学圆形专题训练50题含参考答案一、单选题1.如图,四边形ABCD 内接于O ,若:5:7A C ∠∠=,则C ∠=( )A .210︒B .150︒C .105︒D .75︒2.如图,P 是∠O 外一点,P A 是∠O 的切线,A 为切点,PO 与∠O 相交于B 点,已知∠BCA =34°,C 为∠O 上一点,连接CA ,CB ,则∠P 的度数为( )A .34°B .56°C .22°D .28° 【答案】C 【分析】根据切线的性质可得:90,OAP ∠=︒ 利用圆周角定理可得:2,O ACB ∠=∠ 从而可求出结果.【详解】解:∠P A 是∠O 的切线,A 为切点,∠∠OAP =90°,又∠∠BCA =34°,∠∠O =2∠ACB =68°,∠∠P =90°﹣∠AOB =90°﹣68°=22°.故选:C.【点睛】本题考查的是切线的性质定理,圆周角定理,掌握利用圆周角定理与切线的性质定理求解角的大小是解题的关键.3.如图,AB为∠O直径,CD为弦,AB∠CD于E,连接CO,AD,∠BAD=25°,下列结论中正确的有()∠CE=OE;∠∠C=40°;∠ACD=ADC;∠AD=2OEA.∠∠B.∠∠C.∠∠∠D.∠∠∠∠【答案】B【分析】根据圆周角定理,垂径定理,圆心角、弧、弦的关系以及直角三角形边的关系进行判断即可.【详解】解:∠AB为∠O直径,CD为弦,AB∠CD于E,∠CE=DE,BC BD=,ACB ADB=,∠∠BOC=2∠A=40°,ACB BC ADB BC+=+,即ADC ADC=,故∠正确;∠∠OEC=90°,∠BOC=40°,∠∠C=50°,故∠正确;∠∠C≠∠BOC,∠CE≠OE,故∠错误;作OP∠CD,交AD于P,∠AB∠CD,∠AE<AD,∠AOP=90°,∠OA<PA,OE<PD,∠PA+PD>OA+OE∠OE<OA,∠AD>2OE,故∠错误;故选:B.【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握性质定理是解题的关键.4.下列命题正确的是()A.相等的圆心角所对的弧是等弧B.等圆周角对等弧C.任何一个三角形只有一个外接圆D.过任意三点可以确定一个圆【答案】C【分析】根据圆周角与弧的关系可判断出各选项,注意在等圆中这个条件.【详解】A、缺少条件,必须是在同圆或等圆中,相等的圆心角所对的弧才相等;故本选项错误;B、缺少条件,必须是在同圆或等圆中,相等的圆周角所对的弧才相等;故本选项错误;C、任何一个三角形只有一个外接圆,故本选项正确;D、缺少条件,过任意不共线的三点才可以确定一个圆,故本选项错误.故选:C.【点睛】本题考查命题与定理的知识,属于基础题,掌握相关的性质定理是解题的关键.5.如图,四边形ABCD为∠O的内接四边形,已知∠BOD=110°,则∠BCD的度数为()A.55°B.70°C.110°D.125°∠四边形ABCD为∠O的内接四边形,∠∠BCD=180°−∠A=125°,故选D【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质. 6.如图,点A,B,C均在圆O上,当∠BOC=120°时,∠BAC的度数是()A.65°B.60°C.55°D.50°7.如图,在O中,AB所对的圆周角∠ACB=50°,D为AB上的点.若∠AOD=35°,则∠BOD的大小为()A.35°B.50°C.55°D.65°【答案】D【分析】在同圆中,由同弧所对的圆周角等于其圆心角的一半解答.【详解】解:∠ACB=50°,AOB∴∠=⨯︒=︒250100BOD AOB AOD∴∠=∠-∠=︒-︒=︒1003565故选:D.【点睛】本题考查圆周角与圆心角的性质,是基础考点,掌握相关知识是解题关键.8.如图,四边形ABCD内接于∠O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°【答案】D【分析】连接OD、OB,根据圆内接四边形的性质求出∠DCB,根据圆周角定理求出∠BOD,求出∠BPD的范围,即可解答.【详解】连接OD、OB,∠四边形ABCD内接于∠O,∠∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∠40°≤∠BPD≤80°,∠∠BPD不可能为90°,故选D.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9.如图,已知四边形ABCD 内接于∠O,AB是∠O的直径,EC与∠O 相切于点C,∠ECB=35°,则∠D 的度数是()A.145°B.125°C.90°D.80°【答案】BOC【详解】解:连接.∠EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选:B.10.如图,AC 是汽车挡风玻璃前的刮雨刷.如果65AO cm =,15CO cm =,当刮雨刷AC 绕点O 旋转90时,则刮雨刷AC 扫过的面积为( )A .225cm πB .21000cm πC .225cmD .21000cm11.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A.0.5B.1C.2D.412.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【答案】B【详解】试题分析:根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.解:设底面圆的半径为r,则:2πr==π.∠r=, ∠圆锥的底面周长为, 故选B .考点:圆锥的计算.13.如图,AB 为半圆O 的直径,C 为半圆上一点,且弧AC 为半圆的,设扇形AOC ,∠COB ,弓形BmC 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 1<S 2<S 3【答案】B 【详解】试题分析:首先根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1.再根据题意,知S 1占半圆面积的.所以S 3大于半圆面积的.解:根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1,再根据题意,知S 1占半圆面积的,所以S 3大于半圆面积的.因此S 2<S 1<S 3.故选B .考点:扇形面积的计算.14.如图,在矩形ABCD 中,2AB =,BC =B 为圆心,BA 长为半径画弧,交CD 于点E ,连接BE ,则扇形BAE 的面积为( )A .3πB .35πC .23πD .34π 【答案】C【分析】解直角三角形求出30CBE ∠=︒,推出60ABE ∠=︒,再利用扇形的面积公式【详解】解:四边形=BA BE∴∠cos CBE∴∠=CBE∴∠ABE∴S15.下列事件中,是随机事件的是()A.∠O的半径为5,OP=3,点P在∠O外B.相似三角形的对应角相等C.任意画两个直角三角形,这两个三角形相似D.直径所对的圆周角为直角【答案】C【分析】根据随机事件的定义进行分析解答即可.【详解】解:(1)点P一定在∠O内,A是不可能事件,故错误.(2) 相似三角形的对应角一定相等,是必然事件,B错误.(3) 任意画两个直角三角形,这两个三角形不一定相似,C正确.(4) 直径所对的圆周角一定为直角,D为为为为为为为错误.综上选C.【点睛】本题考查随机事件的定义,熟悉掌握是解题关键.16.如图,AC是∠O的直径,弦BD∠AO于E,连接BC,过点O作OF∠BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B cm C.2.5cm D cm17.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:∠勒洛三角形是中心对称图形;∠在图1中,等边三角形的边长为2,则勒洛三角形的周长为2π;∠在图2中,勒洛三角形的周长与圆的周长相等;∠使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;上述结论中,所有正确结论的序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠18.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.连接BD,BE,CE,若∠CBD=33°,则∠BEC=()A.66°B.114°C.123°D.132°【答案】C【分析】根据圆周角定理可求∠CAD=33°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【详解】在∠O中,∠∠CBD=33°,∠∠CAD=33°,∠点E是△ABC的内心,∠∠BAC=66°,∠∠EBC+∠ECB=(180°﹣66°)÷2=57°,∠∠BEC=180°﹣57°=123°.故选C.【点睛】考查了三角形的内切圆与内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.19.如图,四边形ABCD为正方形,O为AC、BD的交点,∠DCE为Rt∠,∠CED=90°,OE=CE DE=5,则正方形的面积为()A.5B.6C.7D.8∠CE DE=5故选:B【点睛】本题考查了四点共圆的判定及圆周角定理,同弧或等弧所对的圆周角相等,正方形的判定及性质定理,全等三角形的判定及性质.20.如图,AB 是∠O 的直径,弦CD∠AB 于点G ,点F 是CD 上一点,且满足13CF FD ,连接AF 并延长交∠O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:∠∠ADF∠∠AED ;∠FG =2;∠tan∠E ;∠S △DEF =结论的个数是( )A .1B .2C .3D .4AFD ADE S S =ADE S =△DEF =AFD ,∠所以正确的结论是∠∠∠.二、填空题21.如图,有4个圆|A ,B ,C ,D ,且圆A 与圆B 的半径之和等于圆C 的半径,圆B 与圆C 的半径之和等于圆D 的半径,现将圆A ,B ,C 摆放如图甲,圆B ,C ,D 摆放如图乙.若图甲和图乙的阴影部分面积分别为4π和12π.则圆D 面积为__________.【答案】28π【分析】根据题意得到圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图得到方程求出b 的关系,再根据圆D 的面积与b 的关系即可求解.【详解】∠图甲阴影部分面积分别为4π,即圆A 的面积为4π,∠圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图可得222(22)12(2)b b b ππππ+=+++化简得226b b +=,∠圆D 的面积为2(22)b π+=4π()22b b ++4π=28π,故填:28π.【点睛】此题主要考查圆的面积求解,解题的关键是根据图形找到等量关系进行列方程求解.22.圆的有关概念:(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做__.线段OA 叫做__.(b )圆是所有点到定点O 的距离__定长r 的点的集合.(2)弦:连接圆上任意两点的__叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦); (3)弧:圆上任意两点间的部分叫__(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够__的弧叫等弧.(5)等圆:能够__的两个圆叫等圆,半径__的两个圆也叫等圆.【答案】 圆心 半径 等于 线段 弧 完全重合 完全重合 相等【分析】根据圆、弦、弧、等弧、等圆的定义即可作答.【详解】(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心.线段OA 叫做半径.(b )圆是所有点到定点O 的距离等于定长r 的点的集合.(2)弦:连接圆上任意两点的线段叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);(3)弧:圆上任意两点间的部分叫弧(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够完全重合的弧叫等弧.(5)等圆:能够完全重合 的两个圆叫等圆,半径相等的两个圆也叫等圆.故答案为:圆心,半径;等于;线段;弧;完全重合;完全重合;相等.【点睛】本题主要考查了圆、弦、弧的定义,牢记相关定义是解答本题的关键. 23.如图,在矩形ABCD 中,8AB =,6AD =,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,则r 的取值范围是 _____.90,Rt ABD 中,由勾股定理得:2AD AB +A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,且CD BD <<10r <<,24.如图ABC 内接于O ,半径为6,2sin 3A =∠,则BC 的长为___________.【详解】解:作O的直径,∠90D=sin D CD.25.如图,PA、PB分别切∠O于A、B,并与∠O的另一条切线分别相交于D、C两点,已知PA=6,则∠PCD的周长=_______.【答案】12【详解】试题分析:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角.设DC与∠O的切点为E∠PA、PB分别是∠O的切线,且切点为A、B∠PA=PB=6同理可得DE=DA,CE=CB则∠PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=12.考点:切线长定理26.如图,若BC是∠O的弦,OD∠BC于D,且∠BOD=50 o,点A在∠O上(不与B、C重合),则∠BAC=________.27.若圆锥的底面积为16π cm2,母线长为12 cm,则它的侧面展开图的圆心角为__________.【答案】120°【分析】根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】由题意得,圆锥的底面积为16πcm²,28.如图,在等腰直角三角形ABC 中,4AB BC ==,点M 是AB 的中点,将ABC 绕点M 旋转至A B C '''的位置,使AB A C ''⊥,其中点C 的运动路径为弧CC ',连接CM ,则图中阴影部分的面积为_______.29.如图,ABC内接于O,若OAB30∠=,则C∠=______.【详解】OA OB=30OAB=∠=,1803030120=--=,由圆周角定理得,1602C AOB∠=∠=,故答案为60.【点睛】本题考查的是三角形的外接圆与外心,等腰三角形的性质,掌握圆周角定理是解题的关键.30.如图,BC为∠O的直径,弦AD∠BC于点E,直线l切∠O于点C,延长OD交l 于点F,若AE=2,为ABC=22.5°,则CF的长度为31.用一张圆形的纸剪一个边长为4 cm的正六边形,则这个圆形纸片的半径最小应为_______cm.【答案】4【分析】要剪一张圆形纸片完全盖住这个正六边形,这个圆形纸片的边缘即为其外接圆,根据正六边形的边长与外接圆半径的关系即可求出.【详解】∠正六边形的边长是4cm,∠正六边形的半径是4cm,∠这个圆形纸片的最小半径是4cm,故答案为4cm.【点睛】此题主要考查了正多边形与圆的知识,注意正六边形的外接圆半径与边长相等,这是一个需要谨记的内容.32.如图,AB与∠O相切于点A,BO与∠O相交于点C,点D是∠O上一点,∠B=38°.则∠D的度数是_____.33.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD =12cm,则球的半径为______cm.【答案】7.5【分析】首先找到EF的中点M,作MN∠AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是(12﹣x) cm,MF=6 cm,然后在直角三角形MOF中利用勾股定理求得OF的长即可.【详解】解:EF 的中点M ,作MN∠AD 于点M ,取MN 上的球心O ,连接OF ,∠四边形ABCD 是矩形,∠∠C =∠D =90°,∠四边形CDMN 是矩形,∠MN =CD =12 cm设OF =x cm ,则ON =OF ,∠OM =MN ﹣ON = (12﹣x) cm ,MF =6 cm ,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(12﹣x )2+62=x 2,解得:x =7.5,故答案为:7.5.【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确的作出辅助线构造直角三角形.34.已知Rt ABC 中,90ACB ∠=︒,6cm AC =,8cm BC =,以C 为圆心,4.8cm 长度为半径画圆,则直线AB 与O 的位置关系是__________.与O 的位置关系是相切.2268=+与O 的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.35.如图,一次函数y=x轴、y轴交于A、B两点,P为一次函数=的图像上一点,以P为圆心能够画出圆与直线AB和y轴同时相切,则y x∠BPO=_________.∠∠OBP=15°又∠BOP=45°∠∠BPO=180°-45°-15°=120°相交时,点P即为圆心.(2)当∠ABO的外角平分线与y x如图,同理可求∠OBP=30°+75°=105°∠∠BPO=180°-45°-105°=30°故答案为:30°或120°【点睛】本题主要考查了切线的判定和性质,角平分线的性质及三角形的内角和的应用,正确的对点P的位置进行分类是解题的关键.36.如图,四边形ABCD内接于∠O,点E在AB的延长线上,BF∠AC,AB=BC,∠ADC=130°,则∠FBE=_______°.【答案】65【详解】连接BD,如图所示:∠∠ADB和∠ACB是弧AB所对的圆周角,∠BDC和∠BAC是弧BC所对的圆周角,∠∠ADB=∠ACB,∠BDC=∠BAC,又∠∠BDC+∠ADB=∠ADC,∠ADC=130°,∠∠BAC+∠ACB=130°,又∠AB=BC,∠∠BAC=∠ACB=65°,又∠BF∠AC,∠∠FBE=∠BAC=65°;故答案是:65.37.如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧AB,使点B在O右下方,且4tan3AOB∠=.在优弧AB上任取一点P,且能过P作直线l OB∥交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧AB上一段AP的长为13π,则AOP∠的度数为__________,x的值为__________;(2)x的最小值为__________,此时直线l与弧AB所在圆的位置关系为__________26nπ⨯38.如图,在Rt ABC △中,903cm 4cm C AC BC ∠=︒==,,, 以BC 边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是___;此圆锥展开的侧面扇形的圆心角为____.边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是此圆锥展开的侧面扇形的扇形弧长是底面圆周长,此圆锥展开的侧面扇形的圆心角度数为【点睛】本题考查了勾股定理,圆锥的计算;得到几何体的组成是解决本题的突破39.如图,在平面直角坐标系xOy 中,一次函数y +4的图象与x 轴、y 轴交于A 、B 点,点C 在线段OA 上,点D 在直线AB 上,且CD =2,∠DEC 是直角三角形(∠EDC =90°),DE ,连接AE ,则AE 的最大值为_________.∠+∠=______度,阴影四边形的面积为______.【答案】 105︒##105度 1##1-+∠90ABD ,AB BD =90ABC BAC ∠+∠=︒=BAC DBE ∠=∠,(AAS BAC DBE ≌△△AC BE =,BC DE =三、解答题41.如图,在∠O 中,直径AB 与弦CD 相交于点E ,连接AC 、BD .(1)求证:AEC DEB △∽△;(2)连接AD ,若3AD =,30C ∠=︒,求∠O 的半径.【答案】(1)证明见解析(2)∠O 的半径为3Rt ADB 中,26AD ==,132AB ==的半径为【点睛】本题考查圆的基本知识,相似三角形的判定,以及含42.如图,在O 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作GD AO ⊥于点D ,交AC 于点E ,交O 于点F ,M 是GE 的中点,连接CF ,CM .(1)判断CM 与O 的位置关系,并说明理由;(2)若ECF 2A ∠∠=,CM 6=,CF 4=,求MF 的长.与O 相切;理由见解析;3343.已知:如图,线段BC 与经过点C 的直线l .求作:在直线l 上求作点D ,使150CDB ∠=︒.作法:∠分别以点B ,C 为圆心,BC 长为半径画弧,两弧交于BC 上方的点A ,连接AB ,AC ;∠以点A 为圆心,以AB 长为半径画圆交直线l 于点D (不同于点C ),连接BD .则点D 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠60BAC ∠=︒.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠30CEB ∠=︒.(_________________________)(填推理依据)∠点B ,D ,C ,E 在A 上.∠180CDB CEB ∠+∠=︒.(_________________________)(填推理依据)即150CDB ∠=︒. 【答案】(1)见解析(2)圆周角定理;圆内接四边形对角互补【分析】(1)根据题意作出图形即可求解;(2)根据圆周角定理,以及圆内接四边形对角互补,即可求解.【详解】(1)解;如图所示,(2)证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠=60?BAC ∠.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠=30?CEB ∠(圆周角定理)∠点B ,D ,C ,E 在A 上.∠+=180CDB CEB ∠∠︒.(圆内接四边形对角互补)即150CDB ∠=︒.故答案为:圆周角定理;圆内接四边形对角互补.【点睛】本题考查了等边三角形的判定和性质,圆周角定理,圆内接四边形的性质,掌握圆周角定理是解题的关键.44.某市政府计划修建一处公共服务设施,使它到三所公寓A 、B 、C 的距离相等. (1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC =56°,则∠BPC =【答案】(1)见解析;(2)112°【分析】(1)连接AB 、BC 、AC ,作线段AB 和AC 的垂直平分线,交点P 即为所求; (2)利用三角形外心的性质结合圆周角定理得出答案.【详解】解:(1)如图所示:P 点即为所求;(2)连接PB 、PC ,∠点P 是三角形ABC 的外心,∠∠BPC =2∠BAC =112°.【点睛】此题主要考查了应用设计与作图,掌握线段垂直平分线的性质,得出P 点是三角形ABC 的外心是解题关键.45.如图ABC 内接于O ,60B ∠=,CD 是O 的直径,点P 是CD 延长线上一点,且AP AC =.()1求证:P A 是O 的切线;()2若PD =O 的直径.)O 的直径为30,继而根据等腰三角形的性质可得出30,继而由P ,可得出30的直角三角形的性质求出PD OD =,可得出O 的直径.连接OA ,如图,B 60∠=,AOC 2B 120∠∠∴=,又OA OC =,OAC 30∠∠∴=,又AP AC =P ACP 30∠∠=,90,是O的切线.Rt OAP中,P30∠=,=+,2OA OD PD=,又OA OD=,PD OA=,PD5∴=2OA2PD∴的直径为O【点睛】本题考查了切线的判定、圆周角定理、含掌握切线的判定定理、圆周角定理及含46.如图,已知等边∠ABC,AB=2,以AB为直径的半圆与BC边交于点D,过点D 作DF∠AC,垂足为F,过点F作FG∠AB,垂足为G,连结GD.(1)求证:DF是∠O的切线;(2)求FG的长.22447.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可异证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是∠O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求∠O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.【答案】(1)见解析;(2)∠O的半径R为7.【分析】(1)连结AC,BD,根据圆周角定理得到∠C=∠B,∠A=∠D,再根据三角形相似的判定定理得到△APC∠∠DPB,利用相似三角形的性质得AP:DP=CP:BP,变形有AP•BP=CP•DP;由此得到相交弦定理;(2)由AB=10,PA=4,OP=5,易得PB=10-4=6,PC=OC-OP=R-5,PD=OD+OP=R+5,根据相交弦定理得到PA•PB=PC•PD,即4×6=(R-5)×(R+5),解方程即可得到R的值.【详解】(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,∠O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∠∠C=∠B,∠A=∠D,∠∠APC∠∠DPB,∠AP:DP=CP:BP,∠AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∠AB=10,PA=4,OP=5,∠PB=10﹣4=6,PC=OC﹣OP=R﹣5,PD=OD+OP=R+5,由(1)中结论得,PA•PB=PC•PD,∠4×6=(R﹣5)×(R+5),解得R=7(R=﹣7舍去).所以∠O的半径R=7.【点睛】本题考查的是圆,熟练掌握相交弦定理和相似三角形的判定与性质是解题的关键.48.如图,点C在以AB为直径的∠O上.AE与过点C的切线垂直,垂足为D,AD 交∠O于点E,过B作BF∠AE交∠O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∠AE交∠O于F,连接CF,求CF的长.49.如图,已知∠O的直径AB=8,过A、B两点作∠O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.∠求∠COD的面积.∠试判断直线CD与∠O的位置关系,并说明理由.(2)若直线CD与∠O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.50.在平面直角坐标系xOy 中,对于线段MN 及点P 、Q ,若60MPN ∠=︒且线段MN 关于点P 的中心对称线段M N ''恰好经过点Q ,则称点Q 是点P 的线段60MN -︒对经点.(1)设点()0,2A .∠()1Q ,()24,0Q ,312Q ⎫-⎪⎪⎝⎭,其中为某点P 的线段60OA -︒对经点的是______.∠已知()0,1B ,设∠B 的半径为r ,若∠B 上存在某点P 的线段60OA -︒对经点,求r 的取值范围.(2)若点()4,0Q 同时是相异两点1P 、2P 的线段60OD -︒对经点,直接写出线段OD 长的取值范围. 为边的等边三角形的外接圆C 上优弧上的横纵坐标的最值,根据定义以及中点坐标公的方法作出图形,作M 的切线关于P 中心对N 为圆心,矩形对角线长度为半径两圆组成的图两直线之间的部分,除公共部分以外的图形,即图中阴影部分,包括边轴上的部分,根据图形求得)作辅助线,设,M N 在OD 同时是相异两点1P 、2P 的线段33DM x =,OM 长,解一元一次不等式组求解即可.Q 为边的等边三角形的外接圆C 上优弧上的一点,()0,2A2OA ∴=C 为AOP 的外心,则过点C 分别作CG 2OC33GC =3GC ∴=33C x ∴=∴P 的横坐标最大值为Qx交M于点S作M的是C的直径)AA交M于点F1根据对称性,同理可得过N的r的最值也为M N在OD)作辅助线,设,T 为,M N 的交点,2MT NT OM ∴===11=22TH MN OD ∴==在Rt NTH 中, NH OH ON NH =+OR ON NR =+()4,0D236+∴解得433即433≤。
1、如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,CD ⊥AB , 如果∠DAB=65°,那么∠AOC 等于 A.25° B.30° C.50° D.65°2.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D ,则AB 的长为A B .163C D .123.如图,A ,B ,C 三点在已知的圆上,在△ABC 中, ∠ABC =70°,∠ACB =30°,D 是的中点, 连接DB ,DC ,则∠DBC 的度数为A .30°B .45°C .50°D .70°4. 如图,⊙O 的半径为3,点P 是弦AB 延长线上的一点,连接OP ,若OP =4, ∠P =30°,则弦AB 的长为A .B .CD . 25、如右图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EF GH的值为A.B.32C. D. 26、时针匀速运动,设∠APB=y (单位:度),如果y 与P 运动的时间x (单位:秒),的函数关系的图象大致如图2所示,那么P 的运动路线可能为( )A.O →B →A →OB.O →A →C →OC.O →C →D →OD.O →B →D →O7.如图,AD ,BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),点P 运动的时间为x (单位:秒),那么表示y 与x 关系的图象是( )BAC8.小阳在如图①所示的扇形舞台上沿O -M -N 匀速行走,他从点O 出发,沿箭头所示的方向经过点M 再走到点N ,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t (单位:秒),他与摄像机的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图②,则这个固定位置可能是图①中的 A. 点Q B. 点P C. 点M D. 点N9.小明四等分弧AB ,他的作法如下: (1)连接AB (如图);(2)作AB 的垂直平分线CD 交弧AB 于点M ,交AB 于点T ;(3)分别作AT ,TB 的垂直平分线EF ,GH ,交弧AB 于N ,P 两点,则N ,M ,P 三点把弧AB 四等分。
你认为小明的作法是否正确: 理由是10、已知:如图,A 、B 、C 为⊙O 上的三个点,⊙O 的直径为4cm ,∠ACB=45°,求AB 的长11.如图所示,以平行四边形ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC ,AD 于E ,F 两点,交BA 的延长于G ,判断弧EF 和弧FG 是否相等,并说明理由。
12.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO ⊥CD 于点A ,求间径就是要求⊙O 的直径.再次阅读后,发现AB =______寸,CD =____寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O 的直径.图①图②13. 如图1,正方形ABCD 是一个6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径; (2)求点P 经过的路径总长.14.如图,四边形ABCD 内接于⊙O ,BC 的延长线与AD 的延长线相交于点E ,且DC=DE . 求证:∠A =∠AEB .15.如图,⊙O 与割线AC 交于点B ,C ,割线AD 过圆心O ,且∠DAC =30°.若⊙O 的半径OB=5,AD =13,求弦BC 的长.图2图116. 已知:如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为 ⊙O 的直径,AD =6,求BC 的长.17.如图,点A ,B ,C ,D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,求∠OAD +∠OCD 的度数.18. 如图,M 是AB 的中点,过点M 的弦MN 交弦AB 于点C ,⊙O 的半径为4cm , MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.19.已知:如图,C ,D 是以线段AB 为直径的⊙O 上的两点,且四边形OBCD 是菱形.求证: AD DC=.20.(5分)如图,⊙O 中,弦AB CD 、相交于AB 的中点E ,连接AD 并延长至点F ,DF AD =,连接BC 、BF .(1)求证:CBE AFB △∽△; (2)当58BE FB =时,求CBAD 的值.(2)解:A B C MN O · OABCDFB21.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于点E .(1)求证:∠BCO =∠D ; (2)若CD=AE =2,求⊙O 的半径.22.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,求EC 的长.23.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,AB =12,cos A = (1)求OC 的长;(2)点E ,F 在⊙O 上,EF ∥AB .若EF =16,直接写出EF 与AB 之间的距离.24. 如图,BC A ∆是⊙O 的内接三角形,⊙O 的直径BD 交AC 于点E ,BD AF ⊥与点F ,延长AF 交BC 于点G . 求证:2AB BG BC = .24.如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E . 连接AC 、OC 、BC .(1)求证:∠ACO =∠BCD . (2)若BE =3,CD =8,求⊙O 的直径.ABCO B25.如图,⊙O 是Rt ∆ABC 的外接圆,∠ABC = 90°, AC = 13,BC =5,弦BD = BA ,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠BCA =∠BAD ; (2)求DE 的长.26. 如图, AB 为⊙O 的直径,与弦CD 相交于点E ,且AC =2,AE =,CE =1.求 的长度.27如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,∠1=∠C , (1)求证:CB ∥PD ; (2)若AB=5,sin ∠P=,求BC 的长.28 如图,AB 是⊙O 的直径,CB 是弦,OD ⊥CB 于E ,交劣弧CB 于D ,连接AC . (1)请写出两个不同的正确结论; (2)若CB =8,ED =2,求⊙O 的半径.29.已知:如图,以△ABC 的一边BC 为直径的⊙O 分别交AB 、AC 于D 、E 两点.(1)当△ ABC 为等边三角形时,则图1中△ODE 的形状是 ; (2)若∠A=60°,AB ≠AC (如图2),则(1)的结论是否还成立?请说明理由.35C B 图2图1C B30. 如图,在平面直角坐标系xOy 中,O C B ∆的外接圆与y 轴交于点(0)A ,60,45OCB COB ∠=︒∠=︒,求OC 的长.解:31.(7分)如图,O 的直径AB 为10cm ,弦AC 为6cm ,ACB ∠的平分线交AB 于E ,交O 于D .求弦AD CD ,的长及CEDE的值.32. 如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,做CD ⊥AB 交外圆于点C .测得CD =10cm ,AB =60cm ,求这个车轮的外圆半径长.33如图,在⊙O 中,弦BC ,BD 关于直径AB 所在直线对称.E 为半径OC 上一点,3OC OE =, 连接AE 并延长交⊙O 于点F ,连接DF 交BC 于点M . (1)请依题意补全图形; (2)求证:AOC DBC ∠=∠; (3)求BMBC的值.34.如图,AB 是⊙O 的一条弦,且AB=点C ,E 分别在⊙O 上,且OC ⊥AB 于点D ,∠E =30°,连接OA . (1)求OA 的长;(2)若AF 是⊙O 的另一条弦,且点O 到AF的距离为直接写出∠BAF 的度数.35已知:如图,在半径为的⊙O 内,有互相垂直的两条弦AB ,CD ,它们相交于P 点. (1)求证:PA ·PB=PC·PD ; (2)设BC 的中点为F ,连接FP 并延长交AD 于E ,求证:EF AD ;(3)如果AB=8,CD=6,求O 、P 两点之间的距离.36.如图,⊙O 的半径为20,A 是⊙O 上一点,以OA 为对角线作矩形OBAC ,且OC =12. 直线BC 与⊙O 交于D ,E 两点,求CE -BD 的值.5237 如图,在平面直角坐标系中,以点C (1,1)为圆心,2为半径作圆,交x 轴 于A B ,两点,点P 在⊙C 上. (1)求出A B ,两点的坐标;(2)试确定经过A 、B 且以点P 为顶点的抛物线解析式;(3)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.38 【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sin α=13,求sin2α的值.小娟是这样给小芸讲解的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB =90°. 设∠BAC =α, 则sin α=BCAB =13.易得∠BOC =2α.设BC =x ,则AB =3x ,则AC=.作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CD OC= .【问题解决】已知,如图2,点M ,N ,P 为⊙O 上的三点,且∠P =β,sin β =35,求sin2β的值.N 图2A图139..已知:⊙O 是△ABC 的外接圆,AB=AC ,点M 为⊙O 上一点,且在弦BC 下方. (1)如图①,若∠ABC =60°,BM =1,CM =3,则AM 的长为 ; (2)如图②,若∠ABC =45°,BM =1,CM =3,则AM 的长为 ; (3)如图③,若∠ABC =30°,BM =1,CM =3,则AM 的长为 ;(4)如图④,若∠ABC =n°,BM a =,CM b =(其中b a >),求出AM 的长(答案用含有a ,b 及n°的三角函数的代数式表示).图① 图② 图③ 图④40、以AB 为直径作半圆O ,AB =10,点C 是该半圆上一动点,联结AC 、BC ,并延长BC至点D ,使DC=BC ,过点D 作DE ⊥AB 于点E 、交AC 于点F ,联结OF .(1)如图①,当点E 与点O 重合时,求∠BAC 的度数;(2)如图②,当DE =8时,求线段EF 的长;(3)在点C 运动过程中,若点E 始终在线段AB 上,是否存在以点E 、O 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出此时线段OE 的长;若不存在,请说明理由.BO O E A B C D F O ① ② (备用图)。