线性方程组基本概念
- 格式:ppt
- 大小:325.00 KB
- 文档页数:23
线性方程组的解法教案一、引言线性方程组是数学中常见的一个重要概念,解决线性方程组问题是解析几何、线性代数等学科的核心内容。
本文将介绍线性方程组的基本概念和解法,帮助读者更好地理解和应用线性方程组。
二、线性方程组的基本概念1. 定义:线性方程组由一组线性方程组成,每个方程中的未知数的最高次数都为1,且系数皆为实数或复数。
线性方程组可以表示为以下形式:a₁x₁ + a₂x₂ + ... + aₙxₙ = b₁a₁x₁ + a₂x₂ + ... + aₙxₙ = b₂...a₁x₁ + a₂x₂ + ... + aₙxₙ = bₙ其中,a₁、a₂、...、aₙ分别为系数,x₁、x₂、...、xₙ为未知数,b₁、b₂、...、bₙ为常数项。
2. 解的概念:对于线性方程组,找到一组使得所有方程都成立的值,即为其解。
如果线性方程组存在解,则称其为相容的;如果不存在解,则称其为不相容的。
三、线性方程组的解法1. 列主元消去法列主元消去法是解决线性方程组的常用方法之一。
具体步骤如下:(1) 将线性方程组化为增广矩阵形式,写成增广矩阵[A|B]的形式。
(2) 对增广矩阵进行初等行变换,化简成上三角形矩阵[U|C]的形式,即上面的元素都为0。
(3) 从最后一行开始,按列主元所在的列进行回代求解,得到每个未知数的值。
2. 矩阵的逆和逆的应用矩阵的逆是解决线性方程组的另一种有效方法。
具体步骤如下:(1) 将线性方程组化为矩阵形式,即AX = B。
(2) 若矩阵A可逆,即存在逆矩阵A⁻¹,则方程组的解可以表示为X = A⁻¹B。
3. 克拉默法则克拉默法则是解决线性方程组的另一种方法,适用于方程组的系数矩阵为方阵的情况。
具体步骤如下:(1) 将方程组的系数矩阵记为A,常数项矩阵记为B。
(2) 分别计算方程组系数矩阵的行列式D和将常数项矩阵替换为方程组系数矩阵第i列后的新矩阵Di的行列式Di,并计算比值di = Di / D。
线性方程组的解法与矩阵运算技巧线性方程组是数学中常见的问题,它涉及到未知数和系数之间的关系。
解决线性方程组的问题,可以帮助我们理解和应用矩阵运算技巧,这在现代科学和工程领域中非常重要。
一、线性方程组的基本概念线性方程组是由一系列线性方程组成的方程组。
每个方程都是未知数的线性组合,形式可以表示为a1x1 + a2x2 + ... + anxn = b。
其中,a1, a2, ..., an是系数,x1, x2, ..., xn是未知数,b是常数。
二、高斯消元法高斯消元法是解决线性方程组的一种常用方法。
它通过消元和回代的方式,将方程组转化为上三角矩阵。
具体步骤如下:1. 将方程组写成增广矩阵的形式,即将系数和常数放在一起,形成一个矩阵。
2. 选取一个主元素,通常选择第一列的第一个非零元素作为主元素。
3. 将主元素所在的行与其他行进行消元,使得主元素下方的元素都变为零。
4. 重复上述步骤,直到将矩阵转化为上三角矩阵。
5. 进行回代,从最后一行开始,逐步求解未知数。
高斯消元法的优点是简单易懂,容易手工计算。
但是当方程组的规模较大时,计算量会非常大,效率较低。
三、矩阵运算技巧矩阵运算是解决线性方程组的另一种方法,它利用矩阵的性质和运算规则,可以更高效地求解线性方程组。
1. 矩阵的加法和减法矩阵的加法和减法是指对应位置元素的相加和相减。
例如,对于两个矩阵A和B,它们的加法可以表示为A + B = C,其中C的每个元素都是A和B对应位置元素的和。
减法同理。
2. 矩阵的乘法矩阵的乘法是指按照一定规则将两个矩阵相乘得到一个新的矩阵。
具体规则如下:- 两个矩阵A和B相乘,要求A的列数等于B的行数。
- 结果矩阵C的行数等于A的行数,列数等于B的列数。
- 结果矩阵C的每个元素是A的对应行和B的对应列的乘积之和。
3. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
例如,对于一个矩阵A,它的转置矩阵表示为A^T,即A的行变为A^T的列,A的列变为A^T的行。
解读初二数学教材中的线性方程组线性方程组是初中数学中的重要知识点之一,也是高中和大学中学习数学的基础。
在初二数学教材中,线性方程组的学习被安排在代数章节的末尾部分,这意味着它的难度相对较大,需要学生们对代数知识有一定的掌握和理解。
本文将从课本内容、解决方法和实际应用等方面解读初二数学教材中的线性方程组。
一、线性方程组的基本概念在初二数学教材中,线性方程组是由若干个线性方程组成的一组方程。
线性方程组的一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b₁a₁x₁ + a₂x₂ + ... + aₙxₙ = b₂...a₁x₁ + a₂x₂ + ... + aₙxₙ = bₙ其中,a₁、a₂、...、aₙ为系数,x₁、x₂、...、xₙ为未知数,b₁、b₂、...、bₙ为常数。
二、解决线性方程组的方法在初二数学教材中,主要介绍了两种解决线性方程组的方法:代入法和消元法。
1. 代入法代入法是一种比较直观的解决线性方程组的方法。
它的基本思想是将一部分未知数表示成其他未知数的形式,然后代入另一个方程中求解。
具体步骤如下:(1)将其中一个方程的一个未知数表示成其他未知数的形式;(2)将所得的表达式代入另一个方程;(3)通过求解这个方程,得到一个未知数的值;(4)将得到的未知数的值代入第一个方程,求解另一个未知数的值;(5)将求解得到的未知数的值代入原方程组,判断是否满足。
2. 消元法消元法是一种通过消去未知数,逐步求解的方法。
它的基本思想是通过使用加减法或倍乘法,将方程组中的某些未知数相互抵消,从而简化方程组,进而求解。
具体步骤如下:(1)选择一个方程,确定一个未知数的值;(2)将所选择的方程代入其他方程,消去这个未知数;(3)重复上述步骤,逐渐消去其他未知数;(4)将求解得到的未知数的值代入原方程组,判断是否满足。
三、线性方程组的实际应用在初二数学教材中,除了讲解线性方程组的基本概念和解决方法,还将线性方程组应用于实际问题的求解中。
第一讲 基本概念1.线性方程组的基本概念 线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等.线性方程组的解是一个n 维向量()n k k k ,,21 〔称为解向量〕,它满足:当每个方程中的未知数i x 都用i k 替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题有两个:〔1〕判断解的情况.〔2〕求解,特别是在有无穷多解时求通解.021====m b b b 的线性方程组称为齐次线性方程组.n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解〔即只要零解〕和无穷多解〔即有非零解〕.把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. 2.矩阵和向量 〔1〕基本概念矩阵和向量都是描写事物形态的数量形式的发展.由n m ⨯个数排列成的一个m 行n 列的表格,两边界以圆括号或方括号,就成为一个n m ⨯型矩阵.例如是一个54⨯矩阵,对于上面的线性方程组,称矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A212222111211 和()⎪⎪⎪⎪⎪⎭⎫⎝⎛=m mn m m n n b b b a a a a a a a a a A 21212222111211|β 为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i 行第j 列的数称为()j i ,位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A 和B 相等〔记作B A =〕,是指它的行数相等,列数也相等〔即它们的类型相同〕,并且对应的元素都相等.由n 个数构成的有序数组称为一个n 维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是n a a a ,,,21 的向量可表示成()n a a a ,,,21 或⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 21,请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样〔左边是n ⨯1矩阵,右边是1⨯n 矩阵〕.习惯上把它们分别称为行向量和列向量.〔请注意与下面规定的矩阵的行向量和列向量概念的区别.〕一个n m ⨯的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为n ααα,,,21 时〔它们都是表示为列的形式!〕可记()n A ααα,,,21 =.矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等〔记作βα=〕,是指它的维数相等,并且对应的分量都相等. 〔2〕线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加〔减〕法:两个n m ⨯的矩阵A 和B 可以相加〔减〕,得到的和〔差〕仍是n m ⨯矩阵,记作()B A B A -+,法则为对应元素相加〔减〕.数乘:一个n m ⨯的矩阵A 与一个数c 可以相乘,乘积仍为n m ⨯的矩阵,记作cA ,法则为A 的每个元素乘c .这两种运算统称为线性运算,它们满足以下规律:① 加法交换律:A B B A +=+. ② 加法结合律:()()C B A C B A ++=++. ③ 加乘分配律:()cB cA B A c +=+.()dA cA A d c +=+. ④ 数乘结合律:()()A cd A d c =. ⑤00=⇔=c cA 或0=A .转置:把一个n m ⨯的矩阵A 行和列互换,得到的m n ⨯的矩阵称为A 的转置,记作TA 〔或A '〕. 有以下规律:①()A A TT=. ②()T T TB A B A +=+. ③()T TcA cA =.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时,Tα表示行向量,当α是行向量时,Tα表示列向量.向量组的线性组合:设s ααα,,,21 是一组n 维向量,s c c c ,,,21 是一组数,则称s s c c c ααα+++ 2211为s ααα,,,21 的〔以s c c c ,,,21 为系数的〕线性组合.n 维向量组的线性组合也是n 维向量. 〔3〕n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.〔其上的元素行号与列号相等.〕 下面列出几类常用的n 阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵:对角线外的元素都为0的n 阶矩阵.单位矩阵:对角线上的元素都为1的对角矩阵,记作E 〔或I 〕.数量矩阵:对角线上的元素都等于一个常数c 的对角矩阵,它就是cE . 上三角矩阵:对角线下的元素都为0的n 阶矩阵. 下三角矩阵:对角线上的元素都为0的n 阶矩阵.对称矩阵:满足A A T =矩阵.也就是对任何()j i j i ,,,位的元素和()i j ,位的元素总是相等的n 阶矩阵.〔反对称矩阵:满足A A T -=矩阵.也就是对任何()j i j i ,,,位的元素和()i j ,位的元素之和总等于0的n 阶矩阵.反对称矩阵对角线上的元素一定都是0.〕 3.矩阵的初等变换和阶梯形矩阵 矩阵有以下三种初等行变换: ①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.<称这类变换为倍加变换>类似地,矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了.初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增. 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角. 简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为: ③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意:1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2.一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的. 4.线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组〔即增广矩阵为阶梯形矩阵的方程组〕. 线性方程组的同解变换有三种: ①交换两个方程的上下位置. ②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:〔1〕写出方程组的增广矩阵()β|A ,用初等行变换把它化为阶梯形矩阵()γ|B . 〔2〕用()γ|B 判别解的情况:如果最下面的非零行为()d |0,,0,0 ,则无解,否则有解.有解时看非零行数r 〔r 不会大于未知数个数n 〕,n r =时唯一解;n r <时无穷多解. 〔推论:当方程的个数n m <时,不可能唯一解.〕 〔3〕有唯一解时求解的初等变换法:去掉()γ|B 的零行,得到一个()1+⨯n n 矩阵()00|γB ,并用初等行变换把它化为简单阶梯形矩阵()η|E ,则η就是解.对齐次线性方程组:〔1〕写出方程组的系数矩阵A ,用初等行变换把它化为阶梯形矩阵B .〔2〕用B 判别解的情况:非零行数n r =时只有零解:n r <时有非零解〔求解方法在第五章讲〕.〔推论:当方程的个数n m <时,有非零解.〕 讨论题1.设A 是n 阶矩阵,则〔A 〕A 是上三角矩阵⇒A 是阶梯形矩阵. 〔B 〕A 是上三角矩阵⇐A 是阶梯形矩阵. 〔C 〕A 是上三角矩阵⇔A 是阶梯形矩阵.〔D 〕A 是上三角矩阵与A 是阶梯形矩阵没有直接的因果关系. 2.下列命题中哪几个成立?〔1〕如果A 是阶梯形矩阵,则A 去掉任何一行还是阶梯形矩阵. 〔2〕如果A 是阶梯形矩阵,则A 去掉任何一列还是阶梯形矩阵. 〔3〕如果()B A |是阶梯形矩阵,则A 也是阶梯形矩阵. 〔4〕如果()B A |是阶梯形矩阵,则B 也是阶梯形矩阵. 〔5〕如果⎪⎪⎭⎫⎝⎛B A 是阶梯形矩阵,则A 和B 都是阶梯形矩阵.第二讲 行列式一.概念复习 1.形式和意义形式:用2n 个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式: 如果行列式的列向量组为n ααα,,,21 ,则此行列式可表示为n ααα,,,21 .意义:是一个算式,把这2n 个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号!〔不必形式一样,甚至阶数可不同.〕 每个n 阶矩阵A 对应一个n 阶行列式,记作A .行列式这一讲的核心问题是值的计算,以与判断一个行列式的值是否为0.2.定义〔完全展开式〕2阶和3阶行列式的计算公式: 2112221122211211a a a a a a a a -=.一般地,一个n 阶行列式的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:nnj j j ααα 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标n j j j 21构成n ,,2,1 的一个全排列〔称为一个n 元排列〕,共有!n 个n 元排列,每个n 元排列对应一项,因此共有!n 个项. 所谓代数和是在求总和时每项先要乘1+或1-.规定()n j j j 21τ为全排列n j j j 21的逆序数〔意义见下面〕,则项n nj j j a 2121αα所乘的是()()n j j j 211τ-.全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:()10002323436512,215634002323=+++++=τ.至此我们可以写出n 阶行列式的值:()()∑-=nnn j j j nj j j j j j nnn n nna a a a a a a a a a a 212121212122221112111ατ.这里∑nj j j 21表示对所有n 元排列求和,称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上〔下〕三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0. 3.化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的1-n 阶行列式称为()j i ,位元素ij a 的余子式,记作ij M .称()ij ji ij M A +-=1为元素ij a 的代数余子式.定理〔对某一行或列的展开〕行列式的值等于该行〔列〕的各元素与其代数余子式乘积之和.命题第三类初等变换〔倍加变换〕不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理,于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握. 4.其它性质行列式还有以下性质:① 把行列式转置值不变,即A A T =.② 某一行〔列〕的公因子可提出.于是,A c cA n =. ③ 对一行或一列可分解,即如果某个行〔列〕向量γβα+=,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行〔列〕向量α换为β或γ所得到的行列式.例如γβαγβαγββα,,,,,,2121+=+.④ 把两个行〔列〕向量交换,行列式的值变号.⑤ 如果一个行〔列〕向量是另一个行〔列〕向量的倍数,则行列式的值为0. ⑥某一行〔列〕的各元素与另一行〔列〕的对应元素的代数余子式乘积之和0=. ⑦如果A 与B 都是方阵〔不必同阶〕,则B A A A B*0 B0* ==.X 德蒙行列式:形如 in ni n i n i n n na a a a a a a a a a a a ----32122322213211111 的行列式〔或其转置〕.它由n a a a a ,,,,321 所决定,它的值等于()∏-ji i jαα.因此X 德蒙行列式不等于n a a a a ,,,,0321 ⇔两两不同.对于元素有规律的行列式〔包括n 阶行列式〕,常常可利用性质简化计算,例如直接化为三角行列式等. 5.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n 〔即系数矩阵为n 阶矩阵〕的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为()D D D D D D n / , ,/ ,/21 ,这里D 是系数行列式的值,i D 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够.法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵()β|A 作初等行变换,使得A 变为单位矩阵:()()ηβ||E A →,η就是解.用在齐次方程组上:如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是0≠A .第三讲 矩阵一.概念复习1.矩阵乘法的定义和性质定义2.1 当矩阵A 的列数和B 的行数相等时,和A 和B 可以相乘,乘积记作AB .AB 的行数和A 相等,列数和B 相等.AB 的()j i ,位元素等于A 的第i 个行向量和B 的第j 个列向量〔维数相同〕对应分量乘积之和. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A 212222111211,⎪⎪⎪⎪⎪⎭⎫⎝⎛=ns n n s s b b b b b b b b b B 212222111211,⎪⎪⎪⎪⎪⎭⎫⎝⎛==ms m m s s c c c c c c c c c AB C 212222111211,则nj in j i j i ij b a b a b a c +++= 2211.矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件. ② 矩阵乘法无交换律.③ 矩阵乘法无消去律,即一般地由0=AB 推不出0=A 或0=B .由AC AB =和0≠A 推不出C B =.〔无左消去律〕 由CA BA =和0≠A 推不出C B =.〔无右消去律〕请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来. 矩阵乘法适合以下法则:① 加乘分配律 ()AC AB C B A +=+,()BC AC C B A +=+. ② 数乘性质()()AB c B cA =.③ 结合律 ()()BC A C AB =.④()TT TA B AB =.2.n 阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质:B A AB =.如果BA AB =,则说A 和B 可交换.方幂 设k 是正整数,n 阶矩阵A 的k 次方幂kA 即k 个A 的连乘积.规定E A =0.显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①h k h k A A A +=.②()kh hkA A =. 但是一般地()kAB 和k k B A 不一定相等!n 阶矩阵的多项式设()0111a x a xa x a x f m m m m ++++=-- ,对n 阶矩阵A 规定 ()E a A a A a A a A f m m m m 0111++++=-- .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:()2222B AB A B A +±=±;()()()()B A B A B A B A B A -+=-+=-22.二项展开式成立:()∑=-=+mi i i m i mmB A CB A 1等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的.一个n 阶矩阵的多项式可以因式分解. 3.分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵〔一切A 的纵向切割和B 的横向切割一致!〕,再用它们来作乘法.〔1〕两种常见的矩阵乘法的分块法则〔2〕⎪⎪⎭⎫⎝⎛++++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛222212212122112122121211211211112221121122211211B A B A B A B A B A B A B A B A B B B B A AA A要求ij A 的列数jk B 和的行数相等. 准对角矩阵的乘法:形如的矩阵称为准对角矩阵,其中k A A A ,,,21 都是方阵. 两个准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=k A A A A00000021, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=k B B B B00000021如果类型相同,即i A 和i B 阶数相等,则⎪⎪⎪⎪⎪⎭⎫⎝⎛=k k B A B A B A AB000002211. 〔2〕乘积矩阵的列向量组和行向量组设A 是n m ⨯矩阵B 是s n ⨯矩阵.A 的列向量组为n ααα,,,21 ,B 的列向量组为s βββ,,,21 ,AB 的列向量组为s γγγ,,,21 ,则根据矩阵乘法的定义容易看出〔也是分块法则的特殊情形〕:①AB 的每个列向量为:i i A βγ=,s i ,,2,1 =. 即()()s s A A A A ββββββ,,,,,,2121 =. ②()Tn b b b ,,,21 =β,则n n b b b A αααβ+++= 2211.应用这两个性质可以得到:如果()Tni i i i b b b ,,,21 =β,则n ni i i i b b b A αααβγ+++== 22111.类似地,乘积矩阵AB 的第i 个行向量是B 的行向量组的线性组合,组合系数就是A 的第i 个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的. 〔1〕当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.〔2〕利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量;用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵kE 乘一个矩阵相当于用k 乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵. 两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘. 求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.〔3〕矩阵分解:当一个矩阵C 的每个列向量都是另一个A 的列向量组的线性组合时,可以构造一个矩阵B ,使得AB C =.例如设()γβα,,=A ,()γαγβαγβα2,3,2++--+=C ,令⎪⎪⎪⎭⎫ ⎝⎛--=211012131B ,则AB C =.〔4〕初等矩阵与其在乘法中的作用对单位矩阵E 作一次初等〔行或列〕交换,所得到的矩阵称为初等矩阵. 有三类初等矩阵: ()j i E ,:交换E 的i ,j 两行〔或列〕所得到的矩阵.()()c i E :用非0数c 乘E 的第i 行〔或列〕所得到的矩阵,也就是把E 的对角线上的第i 个元素改为c .()()c j i E ,()j i ≠:把E 的第j 行的c 倍加到第i 行上〔或把第i 列的c 倍加到第j 列上〕所得到的矩阵,也就是把E 的()j i ,位的元素改为c .命题 对矩阵作一次初等行〔列〕变换相当于用一个相应的初等矩阵从左〔右〕乘它. 4.矩阵方程和可逆矩阵〔伴随矩阵〕 〔1〕矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程: 〔I 〕B AX =. 〔II 〕B XA =.这里假定A 是行列式不为0的n 阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.〔否则解的情况比较复杂.〕当B 只有一列时,〔I 〕就是一个线性方程组.由克莱姆法则知它有唯一解.如果B 有s 列,设()s B βββ,,,21 =,则X 也应该有s 列,记()s X X X X ,,,21 =,则有i i AX β=,s i ,,2,1 =,这是s 个线性方程组.由克莱姆法则,它们都有唯一解,从而BAX =有唯一解.这些方程组系数矩阵都是A ,可同时求解,即得 〔I 〕的解法:将A 和B 并列作矩阵)B A ,对它作初等行变换,使得A 变为单位矩阵,此时B 变为解X .〔II 〕的解法:对两边转置化为〔I 〕的形式:B X A =.再用解〔I 〕的方法求出T X ,转置得X .矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成〔I 〕或〔II 〕的形式,要用恒等变形简化为以上基本形式再求解. 〔2〕可逆矩阵的定义与意义定义设A 是n 阶矩阵,如果存在n 阶矩阵B ,使得E AB =,E BA =,则称A 为可逆矩阵.此时B 是唯一的,称为A 的逆矩阵,通常记作1-A . 如果A 可逆,则A 在乘法中有消去律:00=⇒=B AB ;C B AC AB =⇒=.〔左消去律〕;00=⇒=B BA ;C B CA BA =⇒=.〔右消去律〕如果A 可逆,则A 在乘法中可移动〔化为逆矩阵移到等号另一边〕:C A B C AB 1-=⇔=.1-=⇔=CA B C BA .由此得到基本矩阵方程的逆矩阵解法:〔I 〕B AX =的解B A X 1-=. 〔II 〕B XA =的解1-=BA X .这种解法想法自然,好记忆,但是计算量比初等变换法大〔多了一次矩阵乘积运算〕.〔3〕矩阵可逆性的判别与性质定理 n 阶矩阵A 可逆0≠⇔A .证明 "⇒〞对E AA =-1两边取行列式,得11=-A A ,从而0≠A .〔并且11--=A A .〕"⇐〞因为0≠A ,矩阵方程E AX =和E XA =都有唯一解.设B ,C 分别是它们的解,即E AB =,E CA =.事实上()C CE CAB EB B C B =====,于是从定义得到A 可逆. 推论如果A 和B 都是n 阶矩阵,则E BA E AB =⇔=.于是只要E AB =〔或E BA =〕一式成立,则A 和B 都可逆并且互为逆矩阵. 可逆矩阵有以下性质:①如果A 可逆,则1-A 也可逆,并且()A A =--11.T A 也可逆,并且()()T T A A 11--=.0≠c 时,cA 也可逆,并且()111---=A c cA .对任何正整数k ,k A 也可逆,并且()()k k A A 11--=.〔规定可逆矩阵A 的负整数次方幂()()k k k A A A 11---==.〕②如果A 和B 可逆,则AB 也可逆,并且()111---=A B AB .〔请自己推广到多个可逆矩阵乘积的情形.〕初等矩阵都是可逆矩阵,并且()()j i E j i E ,,1=-,()()()()11--=c i E c i E ,()()()()c j i E c j i E -=-,,1. 〔4〕逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A 可逆时,1-A 是矩阵方程E AX =的解,于是可用初等行变换求1-A :这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多. ②伴随矩阵若A 是n 阶矩阵,记ij A 是A 的()j i ,位元素的代数余子式,规定A 的伴随矩阵为()T ij mn n nn n A A A A A A A A A A A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 212221212111*. 请注意,规定n 阶矩阵A 的伴随矩阵并没有要求A 可逆,但是在A 可逆时,*A 和1-A 有密切关系. 基本公式:E A A A AA ==**.于是对于可逆矩阵A ,有A A A /*1=-,即1*-A A A .因此可通过求*A 来计算1-A .这就是求逆矩阵的伴随矩阵法.和初等变换法比较,伴随矩阵法的计算量要大得多,除非2=n ,一般不用它来求逆矩阵.对于2阶矩阵⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛a c b d d c b a *, 因此当0≠-bc ad 时,()bc ad a c b d d c b a -⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-1.伴随矩阵的其它性质:①如果A 是可逆矩阵,则*A 也可逆,并且()()*/*11--==A A A A . ②1*-=n A A .③()()T T A A **=. ④()**1A c cA n -=.⑤()***A B AB =;()()k k A A **=.⑥当2>n 时,()A A A n 2**-=;2=n 时,()A A =**.。
线性方程组知识点总结一、引言线性方程组是数学中重要的概念,广泛应用于各个领域。
本文将对线性方程组的基本概念、求解方法和应用进行总结和介绍。
二、基本概念1. 线性方程组的定义:线性方程组是由若干个线性方程组成的方程集合,形式一般为a1x1 + a2x2 + ... + anxn = b。
2. 线性方程组的解:线性方程组的解是使得所有方程都成立的一组变量值,分为唯一解、无解和无穷多解三种情况。
3. 线性方程组的系数矩阵:系数矩阵是由线性方程组中各个方程的系数构成的矩阵,记作A。
4. 线性方程组的增广矩阵:增广矩阵是将线性方程组的系数矩阵和常数项列向量合并成一个矩阵,记作[A | b]。
三、求解方法1. 列主元消元法:利用行初等变换将线性方程组转化为简单形式,其中列主元消元法是一种常用的方法。
具体步骤包括选主元、消元和回代三个过程。
2. 矩阵法:利用矩阵的逆、转置等性质,可以通过求解矩阵方程来求解线性方程组。
3. 克拉默法则:克拉默法则是一种利用行列式的性质来求解线性方程组的方法,通过计算线性方程组的系数行列式和常数行列式的比值,可以得到方程组的解。
四、应用领域1. 工程学:线性方程组广泛应用于工程学中的结构分析、电路分析、力学运动等问题的求解。
2. 经济学:线性方程组在经济学中的需求分析、均衡分析、成本分析等方面有着重要应用。
3. 计算机科学:线性方程组在图像处理、数据分析、模型建立等计算机科学的领域中起着关键作用。
五、总结线性方程组是数学中的基础概念,对于理解和解决实际问题具有重要意义。
本文总结了线性方程组的基本概念、求解方法和应用领域,希望能为读者提供一定的参考和启发。
建议读者在学习线性方程组时,注重理论与实践的结合,加强对各种方法的理解和运用能力,进一步提升问题求解的能力和水平。