《16.2 二次根式的乘除》教案和导学案
- 格式:doc
- 大小:431.50 KB
- 文档页数:15
16.2二次根式的乘除法(2)学习目标1、会进行简单的二次根式除法运算和化简(理解ab =ab(a≥0,b>0));2、理解最简二次根式的概念,并能把二次根式化为最简二次根式。
学习重点、难点重点:掌握和应用二次根式的除法法则进行运算和化简。
难点:正确依据二次根式的除法法则进行二次根式的化简,最简二次根式的运用。
学习过程:一、自主学习计算并填空:(1)916=________,916=_________(2)1636=________,1636=________(3)416=________,416=________自学课本完成下面的题目:1、916______9161636______1636416_______4162、由上题并结合知识回顾中的结论,你发现了什么规律?能叙述并用数学表达式表示发现的规律吗?二、合作交流1、二次根式的除法法则是什么?如何归纳出这一法则的?a b =反过来,ab=2、最简二次根式应满足哪两个条件:(1). (2). 3、说一说怎样把一个二次根式化为最简二次根式? 4、计算:(1)123 (2)3128÷三、课堂检测(1、2必做 3题为选做题): 1、选择题(1)计算112121335÷÷的结果是( ).A .275B .27C .2D .27(2)、下列各式中,是最简二次根式的有( )A.y x 2B.12C.22y x +D.522、计算:(1)482 (2) x x823(3)16141÷ (42964xy3. 化简,求值: 111(11222+---÷-+-m m m m m m ),其中m =3.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)【答案】D【解析】试题分析:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.考点:角平分线的性质.2.下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等;C.等腰三角形的底角可以是直角;D.直角三角形的两锐角互余.【答案】C【分析】根据平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质分别判断即可. 【详解】解:A. 两直线平行,同旁内角互补,正确;B. 等边三角形的三个内角都相等,正确;C. 由于等腰三角形的两个底角相等,且三角形内角和是180°,故等腰三角形的底角不可以是直角,错误;D. 直角三角形的两锐角互余,正确,故选:C.【点睛】本题考查了平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质,熟练掌握各性质是解题关键.3.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A.15°B.20°C.25°D.30°【答案】B【分析】根据三角形的外角性质即可求出答案.【详解】解:延长AC交BD于点E,设∠ABP=α,∵BP平分∠ABD,∴∠ABE=2α,∴∠AED=∠ABE+∠A=2α+60°,∴∠ACD=∠AED+∠D=2α+80°,∵CP平分∠ACD,∴∠ACP=12∠ACD=α+40°,∵∠AFP=∠ABP+∠A=α+60°,∠AFP=∠P+∠ACP∴α+60°=∠P+α+40°,∴∠P=20°,故选B.【点睛】此题考查三角形,解题的关键是熟练运用三角形的外角性质,本题属于基础题型.4.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对【答案】D【解析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD .【详解】∵CD 是直角△ABC 斜边AB 上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB ,同理得:∠B=∠ACD ,∴相等的角一共有5对,故选:D .【点睛】本题考查了直角三角形的性质,熟练掌握同角的余角相等是解题的关键.5.如图,△ABC 中,AB AC =,D 是BC 中点,下列结论,不一定正确的是( )A .AD BC ⊥B .AD 平分BAC ∠ C .2AB BD = D .B C ∠=∠【答案】C 【分析】根据等边对等角和等腰三角形三线合一的性质解答.【详解】解:∵AB=AC ,∴∠B=∠C ,∵AB=AC ,D 是BC 中点,∴AD 平分∠BAC ,AD ⊥BC ,所以,结论不一定正确的是AB=2BD .故选:C .【点睛】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.6.计算结果为x 2﹣y 2的是( )A .(﹣x+y )(﹣x ﹣y )B .(﹣x+y )(x+y )C .(x+y )(﹣x ﹣y )D .(x ﹣y )(﹣x ﹣y )【答案】A【分析】根据平方差公式和完全平方公式逐一展开即可【详解】A. (﹣x+y )(﹣x ﹣y )=(- x )2- y 2= x 2﹣y 2,故A 选项符合题意;B. (﹣x+y )(x+y )()()22=y x y x y x -+=-,故B 选项不符合题意; C. (x+y )(﹣x ﹣y )()()22=+2x y x y x xy y -+=---,故C 选项不符合题意; D. (x ﹣y )(﹣x ﹣y )=()()()2222=y x y x y x y x -+--=--=-,故D 选项不符合题意;故选A.【点睛】此题考查的是平方差公式以及完全平方公式,掌握平方差公式以及完全平方公式的特征是解决此题的关键. 7.甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:通过计算可知两组数据的方差分别为s 甲2=2.0,s 乙2=2.7,则下列说法:①甲组学生比乙组学生的成绩稳定;②两组学生成绩的中位数相同;③两组学生成绩的众数相同,其中正确的有( ) A .0个B .1个C .2个D .3个【答案】B【分析】根据中位数,众数的计算方法,分别求出,就可以分别判断各个命题的真假.【详解】解:①甲组学生比乙组学生的成绩方差小,∴甲组学生比乙组学生的成绩稳定.②甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同;③甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同. 故选B .【点睛】此题考查方差问题,对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.方差是反映数据波动大小的量.8.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A.35°B.40°C.45°D.50°【答案】C【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,AE⊥BD∴BD是AE的垂直平分线,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.9.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为3m和4m..按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2m B.3m C.4m D.6m【答案】B【解析】根据△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即可求解.【详解】解:在直角△ABC中,BC=4m,AC=3m.则2222435AB BC AC=+=+=∵中心O到三条支路的距离相等,设距离是r.∵△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积∴1111 2222AC BC AB r BC r AC r ⋅=⋅+⋅+⋅∴3×4=5r+4r+3r∴r=1.故O到三条支路的管道总长是1×3=3m.故选:B.【点睛】此题主要考查了三角形的内心的性质,三角形内心到三角形的各边的距离相等,利用三角形的面积的关系求解是解题的关键.10.下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等【答案】B【分析】根据直角三角形全等的判定方法:HL,SAS,ASA,AAS,SSS,做题时要结合已知条件与全等的判定方法逐一验证即可.【详解】A .符合判定HL ,故此选项正确,不符合题意;B .全等三角形的判定必须有边的参与,故此选项错误,符合题意;C .符合判定AAS ,故此选项正确,不符合题意;D .符合判定SAS ,故此选项正确,不符合题意;故选:B .【点睛】本题考查了直角三角形全等的判定定理,熟记直角三角形的判定定理是解题的关键,注意判定全等一定有一组边对应相等的.二、填空题11.已知点A 的坐标为(,2)m ,点B 的坐标为(3,)n ,且点A 与点B 关于x 轴对称,则m n +=________.【答案】1【分析】根据点A 与点B 关于x 轴对称,求出m 和n 的值即可.【详解】∵点A 与点B 关于x 轴对称,∴A ,B 两点的横坐标不变,纵坐标变成相反数,∴m=3n=2⎧⎨-⎩, ∴1m n +=,故答案为:1.【点睛】本题是对坐标系中点对称的考查,熟练掌握点关于对称轴的变化规律是解决本题的关键.12.正方形ABCD 的边长为4,E 为BC 边上一点,BE=3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF=AE,则BM 的长为____. 【答案】52或125 【分析】分两种情况进行分析,①当BF 如图位置时,②当BF 为BG 位置时;根据相似三角形的性质即可求得BM 的长.【详解】如图,当BF 如图位置时,∵AB=AB ,∠BAF=∠ABE=90°,AE=BF ,∴△ABE ≌△BAF (HL ),∴∠ABM=∠BAM ,∴AM=BM ,AF=BE=3,∵AB=4,BE=3,∴AE= 2222435AB BE+=+=,过点M作MS⊥AB,由等腰三角形的性质知,点S是AB的中点,BS=2,SM是△ABE的中位线,∴BM=12AE=12×5=52,当BF为BG位置时,易得Rt△BCG≌Rt△ABE,∴BG=AE=5,∠AEB=∠BGC,∴△BHE∽△BCG,∴BH:BC=BE:BG,∴BH=125.故答案是:52或125.【点睛】利用了全等三角形的判定和性质,等角对等边,相似三角形的判定和性质,勾股定理求解.13.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.【答案】(a+b)2﹣(a﹣b)2=4ab【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.14.关于x 的多项式(4)(23)mx x +-展开后不含x 的一次项,则m =______.【答案】1【分析】先将多项式展开,再合并同类项,然后根据题意即可解答.【详解】解:∵(mx+4)(2-3x )=2mx-3mx 2+8-12x=-3mx 2+(2m-12)x+8∵展开后不含x 项,∴2m-12=0,即m=1,故答案为:1.【点睛】本题考查了多项式乘以多项式的法则的应用,主要考查学生的化简能力.15.已知2211221899m n n m +=--,则11m n -的值等于___________. 【答案】29-【分析】先进行配方计算出m ,n 的值,即可求出11m n -的值. 【详解】2211221899m n n m +=--22112218099m n n m +++=-22112929099m m n n -++++=221133033m n ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭+1130,3033m n +=-=9,9m n =-=, 则1129m n -=-, 故答案为:29-.【点睛】本题是对完全平方非负性的考查,熟练掌握配方知识和完全平方非负性是解决本题的关键.16.已知:如图,ABC 和ADE 为两个共直角顶点的等腰直角三角形,连接CD 、BE .图中一定与线段CD 相等的线段是__________.【答案】BE【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=90°,∴∠BAC -∠BAD=∠DAE -∠BAD ,∴∠DAC=∠BAE ,∵在△CAD 和△BAE 中,AB AC DAC BAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△BAE ,∴CD=BE.故答案为BE.点睛:本题关键在于掌握三角形全等的判定方法.17.观察一组数据,34,59,716,925,......,它们是按一定规律排列的,那么这一组数据的第n 个数是_________.【答案】()2211n n ++【分析】根据题意可知,分子是从3开始的连续奇数,分母是从2开始的连续自然数的平方,进一步即可求得第n 个数为221(1)n n ++. 【详解】∵这组数据中的每个数都是分数,分子是从3开始的连续奇数,分母是从2开始的连续自然数的平方.∴这组数据的第n 个数是()2211n n ++(n 为正整数)故答案是:()2211n n ++(n 为正整数)【点睛】 对于找规律的题目,通常按照顺序给出一系列量,要求我们根据这些已知的量找出一般的规律,找出的规律通常包含着序列号,因此,把变量和序列号放在一起加以比较,就比较容易的发现其中的奥秘.三、解答题18.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹).【答案】见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.19.直线364y x =-+与x 轴相交于点B ,与y 轴相交于点A .(1)求直线AB 与坐标轴围成的面积;(2)在x 轴上一动点P ,使ABP ∆是等腰三角形;请直接写出所有P 点的坐标,并求出如图所示AP PB =时点P 的坐标;(3)直线3y x 与直线AB 相交于点C ,与x 轴相交于点D ;点Q 是直线CD 上一点,若BQD ∆的面积是BCD ∆的面积的两倍,求点Q 的坐标.【答案】(1)24;(2)所有P 点的坐标()()()78,02,018,04--,,,(,0),点P 的坐标7,04⎛⎫ ⎪⎝⎭;(3)4566,77Q ⎛⎫ ⎪⎝⎭或8766,77⎛⎫-- ⎪⎝⎭. 【分析】(1)先求出OA,OB 的长度,然后利用面积公式即可求解;(2)ABP ∆是等腰三角形,分三种情况讨论:若AB AP =时;若AB BP =时;若AP BP =时,图中给出的情况是AP BP =时,设OP x =,利用勾股定理即可求出x 的值,从而可确定P 的坐标;(3)先求出点C 的坐标,然后根据面积之间的关系求出D 的纵坐标,然后将纵坐标代入直线CD 中即可求出横坐标.【详解】(1)当0y =时,8x =,(8,0)B ∴ ,8OB = ;当0x =时,6y =,(0,6)A ∴,6OA = ;∴AOB ∆的面积11682422OA OB ==⨯⨯=; (2)ABP ∆是等腰三角形,分三种情况讨论:若AB AP =时,有OP OB =,此时()8,0P -;若AB BP =时,10AB OA ===10BP ∴=此时()2,0P -或()18,0P ;若AP BP =时,设OP x =,则8AP PB x ==-,由222AO OP AP +=,得:()22268x x +=-∴74x =此时7,04P ⎛⎫ ⎪⎝⎭; (3)由364y x =-+以及3y x 得1233,77x y ==,所以1233,77C ⎛⎫ ⎪⎝⎭, ∵BQD ∆的面积是BCD ∆的面积的两倍,∴Q 点的纵坐标为667或667-, 把667y =代入3y x 得457x =, 把667y =-代入3y x 得877x =- 因此4566,77Q ⎛⎫ ⎪⎝⎭或8766,77⎛⎫-- ⎪⎝⎭. 【点睛】本题主要考查一次函数与几何综合,数形结合及分情况讨论是解题的关键.20.已知32,32m n =-=+,求代数式22m mn n ++的值.【答案】11【解析】先求出m+n 和mn 的值,再根据完全平方公式变形,代入求值即可.【详解】∵32,32m n =-=+,∴m+n=23,mn=1∴22m mn n ++=222()(23)111m n mn +-=-=.【点睛】此题考查了二次根式的混合运算法则,完全平方公式的应用,主要考查了学生的计算能力,题目较好. 21.图①是一个长为2m ,宽为2n 的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:方法一:S =小正方形 ;方法二:S =小正方形 .(2)(m+n)2,(m−n) 2,mn 这三个代数式之间的等量关系为___(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x−y 的值.【答案】(1)(m+n)2−4mn,(m−n)2;(2)(m+n)2−4mn=(m−n)2;(3)±5.【分析】(1)观察图形可确定:方法一,大正方形的面积为(m+n )2,四个小长方形的面积为4mn ,中间阴影部分的面积为S=(m+n )2-4mn ;方法二,图2中阴影部分为正方形,其边长为m-n ,所以其面积为(m-n )2.(2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n )2-4mn=(m-n )2.(3)根据(2)的关系式代入计算即可求解.【详解】(1)方法一:S 小正方形=(m+n)2−4mn. 方法二:S 小正方形=(m−n) 2.(2)(m+n)2,(m−n)2,mn 这三个代数式之间的等量关系为(m+n)2−4mn=(m−n)2.(3)∵x+y=9,xy=14,∴x−y=()24x y xy ±+-=±5.故答案为(m+n)2−4mn,(m−n)2;(m+n)2−4mn=(m−n)2,±5.【点睛】 此题考查完全平方公式的几何背景,解题关键在于掌握计算公式.22.如图,在ABC ∆中,AE 平分BAC ∠,BE AE ⊥于点E ,点F 是BC 的中点.(1)如图1,BE 的延长线与AC 边相交于点D ,求证:1()2EF AC AB =-; (2)如图2,ABC ∆中9AB =,5AC =,求线段EF 的长.【答案】(1)见解析;(2)2 【分析】(1)先证明AB=AD ,根据等腰三角形的三线合一,推出BE=ED ,根据三角形的中位线定理即可解决问题.(2)先证明AB=AP ,根据等腰三角形的三线合一,推出BE=ED ,根据三角形的中位线定理即可解决问题.【详解】(1)证明:如图1中,∵AB BD ⊥,90AED AEB ∠=∠=︒∴,90BAE ABE ∴∠+∠=︒,90DAE ADE ∠+∠=︒,BAE DAE ∠=∠∵,ABE ADE ∠=∠∴,AB AD ∴=,∵AE BD ⊥,BE DE ∴=,BF FC =∴, 111()()222EF DC AC AD AC AB ==-=-∴.(2)如图2中,延长AC 交BE 的延长线于P .∵AE BP ⊥,90AEP AEB ∠=∠=︒∴,90BAE ABE ∴∠+∠=︒,90PAE APE ∠+∠=︒;BAE PAE ∠=∠∵,ABE APE ∠=∠∴,AB AP =∴,∵AE BD ⊥,BE PE =∴,∵BF FC =,1111()()(95)22222EF PC AP AC AB AC ==-=-=-=∴.【点睛】本题考查三角形的中位线定理、等腰三角形的判定和性质等知识,解题的关键是熟练应用所学知识解决问题,属于中考常考题型.23.综合与实践:问题情境:如图 1,AB ∥CD ,∠PAB=25°,∠PCD=37°,求∠APC 的度数,小明的思路是:过点P 作PE ∥AB ,通过平行线性质来求∠APC问题解决:(1)按小明的思路,易求得∠APC 的度数为 °;问题迁移:如图 2,AB ∥CD ,点 P 在射线 OM 上运动,记∠PAB=α,∠PCD=β.(2)当点 P 在 B ,D 两点之间运动时,问∠APC 与α,β 之间有何数量关系? 请说明理由; 拓展延伸:(3)在(2)的条件下,如果点 P 在 B ,D 两点外侧运动时 (点 P 与点 O ,B ,D 三点不重合)请你直接写出当点 P 在线段 OB 上时,∠APC 与 α,β 之间的数量关系 ,点 P 在射线 DM 上时,∠APC 与 α,β 之间的数量关系 .【答案】(1)62;(2)APC αβ∠=+,理由详见解析;(3)APC βα∠=-;APC αβ∠=-.【分析】(1)根据平行线的性质,得到∠APE=∠PAB=25°,∠CPE=∠PCD=37°,即可得到∠APC ;(2)过P 作PE ∥AD 交AC 于E ,推出AB ∥PE ∥DC ,根据平行线的性质得出∠APE=α,∠CPE=β,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE ,∠β=∠CPE ,即可得出答案;【详解】解:()1如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠APE=∠PAB=25°,∠CPE=∠PCD=37°, ∴∠APC=25°+37°=62°;故答案为:62;()2APC ∠与,αβ之间的数量关系是:APC αβ∠=+; 理由:如图,过点P 作//PE AB 交AC 于点E ,∵//AB CD ,////,AB PE CD ∴,,APE CPE αβ∴=∠=∠APC APE CPE a β∠=∠+∠=+∴; ()3如图3,所示,当P 在射线DM 上时, 过P 作PE ∥AB ,交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD ,∴∠APC=∠1-∠PCD ,∴∠APC=α-β,∴当P 在射线DM 上时,APC αβ∠=-;如图4所示,当P 在线段OB 上时,同理可得:∠APC=β-α,∴当P 在线段OB 上时,APC βα∠=-.故答案为:APC βα∠=-;APC αβ∠=-.【点睛】本题主要考查了平行线的性质和判定的应用、三角形内角和定理的证明、外角的性质,主要考查学生的推理能力,第3问在解题时注意分类讨论思想的运用.24.如图,在四边形ABCD 中,∠B=90°,AB ∥ED ,交BC 于E ,交 AC 于F ,DE = BC,030CDE ACB ∠=∠=.(1) 求证:△FCD 是等腰三角形(2) 若AB=3.5cm,求CD 的长.【答案】(1)详见解析;(2)CD=1cm.【解析】(1)首先根据平行线的性质得出∠DEC =∠B =90°,然后在△DCE 中根据三角形内角和定理得出∠DCE 的度数,从而得出∠DCF 的度数.在△CDF 中根据等角对等边证明出△FCD 是等腰三角形; (2)先证明△ACB ≌△CDE ,得出AC =CD ,再根据含30°角的直角三角形的性质求解即可.【详解】(1)∵DE ∥AB ,∠B =90°,∴∠DEC =90°,∴∠DCE =90°﹣∠CDE =60°,∴∠DCF =∠DCE ﹣∠ACB=30°,∴∠CDE=∠DCF,∴DF=CF,∴△FCD是等腰三角形;(2)在△ACB和△CDE中,∵90B DECBC DEACB CDE∠∠∠∠==︒⎧⎪=⎨⎪=⎩,∴△ACB≌△CDE,∴AC=CD.在Rt△ABC 中,∠B=90°,∠ACB=30°,AB=3.5,∴AC=2AB=1,∴CD=1.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质和含30°角的直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.25.(1)如图1,在△ABC中,D是BC的中点,过D点画直线EF与AC相交于E,与AB的延长线相交于F,使BF=CE.①已知△CDE的面积为1,AE=kCE,用含k的代数式表示△ABD的面积为;②求证:△AEF是等腰三角形;(2)如图2,在△ABC中,若∠1=2∠2,G是△ABC外一点,使∠3=∠1,AH∥BG交CG于H,且∠4=∠BCG﹣∠2,设∠G=x,∠BAC=y,试探究x与y之间的数量关系,并说明理由;(3)如图3,在(1)、(2)的条件下,△AFD是锐角三角形,当∠G=100°,AD=a时,在AD上找一点P,AF上找一点Q,FD上找一点M,使△PQM的周长最小,试用含a、k的代数式表示△PQM周长的最小值.(只需直接写出结果)【答案】(1)①k+1;②见解析;(2)y=34x+45°,理由见解析;(3)2(1)(1)k kk a+-【分析】(1)①先根据AE与CE之比求出△ADE的面积,进而求出ADC的面积,而D中BC中点,所以△ABD面积与△ADC面积相等;②延长BF至R,使FR=BF,连接RC,注意到D是BC中点,过B过B点作BG∥AC交EF于G.得BGD CED≅,再利用等腰三角形性质和判定即可解答;(2)设∠2=α.则∠3=∠1=2∠2=2α,根据平行线性质及三角形外角性质可得∠4=α,再结合三角形内角和等于180°联立方程即可解答;(3)分别作P点关于FA、FD的对称点P'、P'',则PQ+QM+PM=P'Q+QM+MP“≥P'P''=FP,当FP垂直AD 时取得最小值,即最小值就是AD边上的高,而AD已知,故只需求出△ADF的面积即可,根据AE=kEC,AE=AF,CE=BF,可以将△ADF的面积用k表示出来,从而问题得解.【详解】解:(1)①∵AE =kCE ,∴S △DAE =kS △DEC ,∵S △DEC =1,∴S △DAE =k ,∴S △ADC =S △DAE +S △DEC =k+1,∵D 为BC 中点,∴S △ABD =S △ADC =k+1.②如图1,过B 点作BG ∥AC 交EF 于G .∴BGD CED ∠=∠,BGF AED ∠=∠在△BGD 和△CED 中,BGD CEDBD CD BDG CDE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BGD CED ≅(ASA ),∴BG =CE ,又∵BF =CE ,∴BF =BG ,∴BGF F ∠=∠,∴F AED ∠=∠∴AF =AE ,即△AEF 是等腰三角形.(2)如图2,设AH 与BC 交于点N ,∠2=α.则∠3=∠1=2∠2=2α,∵AH ∥BG ,∴∠CNH =∠ANB =∠3=2α,∵∠CNH =∠2+∠4,∴2α=α+∠4,∴∠4=α,∵∠4=∠BCG ﹣∠2,∴∠BCG =∠2+∠4=2α,在△BGC 中,3180BCG G ∠+∠+∠=︒,即:4180x α+=︒,在△ABC 中,12180BAC ∠+∠+∠=︒,即:3180y α+=︒,联立消去α得:y =34x+45°.(3)如图3,作P 点关于FA 、FD 的对称点P'、P'',连接P'Q 、P'F 、PF 、P''M 、P''F 、P'P'',则FP'=FP =FP'',PQ =P'Q ,PM =P''M ,∠P'FQ =∠PFQ ,∠P''FM =∠PFM ,∴∠P'FP''=2∠AFD ,∵∠G =100°,∴∠BAC =34∠G+45°=120°, ∵AE =AF ,∴∠AFD =30°,∴∠P'FP''=2∠AFD =60°,∴△FP'P''是等边三角形,∴P'P''=FP'=FP ,∴PQ+QM+PM =P'Q+QM+MP''≥P'P''=FP ,当且仅当P'、Q 、M 、P''四点共线,且FP ⊥AD 时,△PQM 的周长取得最小值.AE kCE =,AF AE =,BF CE =,1AB k AF k-∴=, ()111ADF ABD k k k S S k k +∴==--,∴当FP AD ⊥时,()()2121ADF k k S FP AD k a+==-, PQM ∴的周长最小值为()()211k k k a +-.【点睛】 本题是三角形综合题,涉及了三角形面积之比与底之比的关系、全等三角形等腰三角形性质和判定、轴对称变换与最短路径问题、等边三角形的判定与性质等众多知识点,难度较大.值得强调的是,本题的第三问实际上是三角形周长最短问题通过轴对称变换转化为两点之间线段最短和点到直线的距离垂线段最短.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.2.如果关于x 的分式方程4122ax x x =+--有解,则a 的值为( ) A .1a ≠B .2a ≠C .1a ≠-且2a ≠-D .1a ≠且2a ≠【答案】D【分析】先去分母,然后讨论无解情况,求出即可.【详解】去分母得:42ax x =+- 21x a =-,则1a ≠, 当x=2时,为增根方程无解,则2a ≠,则1a ≠且2a ≠,故选D.【点睛】本题是对分式方程的考查,熟练掌握分式方程知识的考查是解决本题的关键.3.等式(x+4)0=1成立的条件是( )A .x 为有理数B .x ≠0C .x ≠4D .x ≠-4【答案】D【解析】试题分析:0指数次幂的性质:. 由题意得,x≠-4,故选D. 考点:0指数次幂的性质点评:本题属于基础应用题,只需学生熟练掌握0指数次幂的性质,即可完成.4.下列计算中正确的是( )A .(ab 3)2=ab 6B .a 4÷a =a 4C .a 2•a 4=a 8D .(﹣a 2)3=﹣a 6【答案】D【分析】分别根据积的乘方运算法则、同底数幂的除法和同底数幂的乘法运算法则依次计算即可得出答案.【详解】解:A 、(ab 3)2=a 2b 6≠ab 6,所以本选项错误;B 、a 4÷a =a 3≠a 4,所以本选项错误;C 、a 2•a 4=a 6≠a 8,所以本选项错误;D 、(﹣a 2)3=﹣a 6,所以本选项正确.故选:D .【点睛】本题考查了幂的运算性质,属于基础题型,熟练掌握幂的运算法则是解题的关键.5.若把分式3425x y x y +-中的,x y 都扩大4倍,则该分式的值( ) A .不变B .扩大4倍C .缩小4倍D .扩大16倍【答案】A 【分析】当分式3425x y x y +-中x 和y 同时扩大4倍,得到1216820x y x y+-,根据分式的基本性质得到12164343482042525x y x y x y x y x y x y+++=⨯=---,则得到分式的值不变. 【详解】分式3425x y x y+-中x 和y 同时扩大4倍, 则原分式变形为12164343482042525x y x y x y x y x y x y+++=⨯=---, 故分式的值不变.故选A .【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于的整式,分式的值不变.解题的关键是抓住分子,分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.函数14y x =-的自变量x 的取值范围是( ) A .3x ≤B .4x ≠C .3x ≥且4x ≠D .3x ≤或4x ≠ 【答案】A【详解】要使函数14y x =-有意义, 则30{-40x x -≥≠所以3x ≤,故选A .考点:函数自变量的取值范围.7.如图,在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )A .365B .1225C .94D .334【答案】A【分析】首先根据勾股定理求出斜边AB 的长,再根据三角形等面积法求出则点C 到AB 的距离即可.【详解】设点C 到AB 距离为h .在Rt ABC ∆中,90C ∠=︒,∴222AC BC AB +=∵9AC =,12BC = ∴2215AB AC BC =+= ∵1122∆==ABC S AC BC AB h ∴12936==155⨯h . 故选:A .【点睛】本题考查勾股定理应用,抓住三角形面积为定值这个等量关系是解题关键.8.已知直角三角形的两边长分别为2,3,则第三边长可以为( ) A 7B .3C 11D 13【答案】D【分析】分3是直角边和斜边两种情况讨论求解.【详解】解:若3是直角边, 则第三边2223+13若3是斜边, 则第三边2232-5故选D.【点睛】本题考查了勾股定理,是基础题,难点在于要分情况讨论.9.下列图形中,已知12∠=∠,则可得到//AB CD 的是( )A .B .C .D .【答案】B【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行. 【详解】解:A .1∠和2∠的是对顶角,不能判断//AB CD ,此选项不正确;B .1∠和2∠的对顶角是同位角,且相等,所以//AB CD ,此选项正确;C .1∠和2∠的是内错角,且相等,故//AC BD ,不是//AB CD ,此选项错误;D .1∠和2∠互为同旁内角,同旁内角相等,两直线不一定平行,此选项错误.故选B .【点睛】本题考查平行线的判定,熟练掌握平行线的判定定理是解题关键.10.点P(-2,3)到x 轴的距离是( )A .2B .3C .D .5【答案】B【解析】直接利用点的坐标性质得出答案.【详解】点P (-2,1)到x 轴的距离是:1.故选B .【点睛】此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.二、填空题11.已知11x x -=,则式子221x x +=__________________.【答案】1【分析】将已知的式子两边平方,进一步即可得出答案. 【详解】解:∵11x x -=,∴211x x ⎛⎫-= ⎪⎝⎭,即22121x x -+=,∴221x x +=1.故答案为:1.【点睛】本题考查了完全平方公式和代数式求值,属于常考题型,熟练掌握完全平方公式和整体的思想是解题的关键.12.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.【答案】1.5【分析】设x=n+a ,其中n 为整数,0≤a <1,则[x]=n ,{x}=x-[x]=a ,由此可得出2a=n ,进而得出a=12n ,结合a 的取值范围即可得出n 的取值范围,结合n 为整数即可得出n 的值,将n 的值代入a=12n 中可求出a 的值,再根据x=n+a 即可得出结论.【详解】设x n a =+,其中n 为整数,01a ≤<,则[]x n =,{}[]x x x a =-=,原方程化为:2a n =, 12a n ∴=. 01a ≤<,即1012n ≤<, 02n ∴≤<, n 为整数,0n ∴=、1.当0n =时,1002a =⨯=,此时0x =, x 为非零实数,0x ∴=舍去;当1n =时,110.52a =⨯=此时 1.5x =. 故答案为:1.1.【点睛】本题考查了新定义运算,以及解一元一次不等式,读懂题意熟练掌握新定义是解题的关键.13.如图,已知直线y=3x+b 与y=ax ﹣2的交点的横坐标为﹣2,则关于x 的方程3x+b=ax ﹣2的解为x=_____.。
16.2二次根式的乘除二次根式的乘法一、学习目标理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简二、学习重点、难点重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
三、课前准备1. 什么是二次根式?2. 填空:(1)×=____,=____;×__(2)×=____,=___;×__(3)×=___,=___.×__四、法则及性质运用1、计算(1)×(2)×2、化简(1)(2)(3)(4)(5)(6)3、拓展延伸(1)计算:①×②5×2③·五、当堂检测判断下列各式是否正确,不正确的请予以改正:(1)(2)×=4×=4=8课后训练1、选择题(1)等式成立的条件是()A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1(2)下列各等式成立的是().A.4×2=8 B.5×4=20C.4×3=7 D.5×4=20(3)二次根式的计算结果是()A.2 B.-2 C.6 D.122、化简:(1);(2);3、计算:(1);(2);4、选择题(1)若,则=() A.4 B.2 C.-2 D.1(2)下列各式的计算中,不正确的是()A.=(-2)×(-4)=8B.C.D.5、计算:(1)6×(-2);(2);(3(4((5(6(7(86、不改变式子的值,把根号外的非负因式适当变形后移入根号内。
(1) -3 (2)7,求这个长方形的面积。
二次根式的除法一、学习目标1、掌握二次根式的除法法则和商的算术平方根的性质。
2、能熟练进行二次根式的除法运算及化简。
二、学习重点、难点重点:掌握和应用二次根式的除法法则和商的算术平方根的性质。
16.2 二次根式的乘除(2)教学内容: b ab a =反之ba b a =(a ≥0,b >0),利用它就可以进行二次 教学目标1.知识技能:(1).会进行简单的二次根式的除法运算.(2).使学生能利用商的算术平方根的性质进行二次根式的化简与运算.2. 数学思考:在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.3. 解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题.4. 情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的.教学重难点关键重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算.难点:二次根式的除法与商的算术平方根的关系及应用. 教学方法 1. 讨论分析法. 2. 类比法. 3. 逆向思维法. 4. 练习法. 教学过程 二、课前复习1.请同学们回忆ab b a =⋅ (a ≥0,b ≥0)是如何得到的?2.计算:()()0,04912.12>>⨯y x x xy ()322112.2⨯⨯()()()6416.3-⨯- ()()0,0,09.4432>>>c b a c b a三、探索新知1.(学生活动)请同学们完成下列各题:计算下列各式,观察计算结果,你发现什么规律?(1=________;(2;32____32(3)52___522.例题讲评()()18123232414÷,:计算例()61521123÷3.请你动手试一试计算下列各式:a38a3413÷)(xyaby x b a 205)2(32÷xyx 33218)3(3÷a b ab 363)4(÷例5:化简1003)1(2775)2( ()29253y x 4.最简二次根式:(1).被开方数不含分母;(2).被开方数不含能开得尽方的因数或因式.例:指出下列各式中的最简二次根式xb )1(32)2(ab3.0)3(ab 5.0)4(()525a 23)6(22)7(b a +x x x 96)8(23++5.相信自己,你能行!化简下列各式:)0x 94.12>(x nm 389.2755.3a b 24918.4xy a6.大显身手应用拓展=,且x为偶数,求(1+x 的值.分析:,只有a ≥0,b>0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=(1+x )=(1+x )=(1+x )∴当x=8时,原式的值=6.四、归纳小结1.a ≥0,b>0a ≥0,b>0)及其运用.2.最简二次根式:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 五、布置作业 计算:(1)218; (2)102175÷; (3) a b a 2112532÷; (4) 31501000m m.。
《16.2 二次根式的乘除》教案(第一课时)a b,如《16.2 二次根式的乘除》教案(第二课时)《16.2二次根式的乘除法》导学案二次根式的乘法一、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
二、学习重点、难点重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
三、学习过程(一)复习回顾1、计算:(1)4×9=______ 94⨯=_______16⨯=_______(2)16×25 =_______ 25100⨯=_______(3)100×36 =_______ 362、根据上题计算结果,用“>”、“<”或“=”填空:4⨯(1)4×9_____916⨯(2)16×25____25100⨯(3)100×36__36(二)提出问题1、二次根式的乘法法则是什么?如何归纳出这一法则的?2、如何二次根式的乘法法则进行计算?3、积的算术平方根有什么性质?4、如何运用积的算术平方根的性质进行二次根式的化简。
(三)自主学习自学课本第5—6页“积的算术平方根”前的内容,完成下面的题目:1、用计算器填空:(1)2×3____6 (2)5×6____30(3)2×5____10 (4)4×5____202、由上题并结合知识回顾中的结论,你发现了什么规律? 能用数学表达式表示发现的规律吗?3、二次根式的乘法法则是:(四)合作交流1、自学课本6页例1后,依照例题进行计算:(1)9×27 (2)25×32(3)a 5·ab 51 (4)5·a 3·b 312、自学课本第6—7页内容,完成下列问题:(1)用式子表示积的算术平方根的性质:(2)化简: ①54 ②2212b a③4925⨯ ④64100⨯(五)展示反馈展示学习成果后,请大家讨论:对于9×27的运算中不必把它变成243后再进行计算,你有什么好办法?(六)精讲点拨1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
k a b k⋅⋅=⋅⋅⋅⋅(1⎛⎫(n b mn=比较大小(一题多解3;(2)--A. D.22.下面计算结果正确的是 ( )A.==C. ==3.=_________.探究点2:积的算术平方根的性质一般的()0,0≥≥=⋅baabba,反过来可写为()______0,0_a b=吵算术平方根的积等于各个被开方数积的算术平方根.P7例2变式题)化简:(12()00x y,≥≥.2.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若长为,求出它的面积.二、课堂小结 二次根式的乘法内容二次根式的乘法法则 算术平方根的积等于各个被开方数积的算术平方根.即()0,0≥≥=⋅b a ab b a积的算术平方根的性质 积的算术平方根,等于积中各因式的算术平方根的积.即()0,0ab a b a b =壮?二次根式的乘法法则拓展①多个二次根式相乘时此法则也适用,即()0,0,00a bc n abc n a b c n ⋅⋅⋅=⋅⋅⋅≥≥≥⋅⋅⋅⋅⋅⋅≥②()()0,0m a n b mn ab a b =≥≥1.若()66x x x x -=⋅-,则( )A .x ≥6B .x ≥0C .0≤x ≤6D .x 为一切实数 2.下列运算正确的是 ( )A.21835680⨯=B.22225353532-=-=-=C.(4)(16)416(2)(4)8-⨯-=-⨯-=-⨯-=D.222253535315⨯=⨯=⨯= 3.计算: (1)315 ⨯ =______ ;(2)612 ⨯ =_______ ;(3)322_____. ⨯= 4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):1544524227.();()--5. 计算:( 1 ) 23 521⨯; ;)(⎪⎪⎭⎫⎝⎛-⨯418332 (3)322105; ⨯⨯ 21(4)600.3ab a b a b (,)⋅>>6.设长方形的面积为S ,相邻两边分别为a,b . (1)已知8a =,12b =,求S ;(2)已知250a =,332b =,求S .能力提升7.已知7,70,a b ==试着用a,b 表示 4.9.当堂检测教学备注 配套PPT 讲授5.当堂检测 (见幻灯片23-28)。
八年级数学下册16.2二次根式的乘除导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册16.2 二次根式的乘除导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册16.2二次根式的乘除导学案(新版)新人教版的全部内容。
16.1二次根式预习案一、学习目标1、理解二次根式的乘法法则,并利用性质对二次根式进行化简.2、理解二次根式的除法法则。
3、理解最简二次根式的含义。
二、预习内容预习课本第二节内容。
1、二次根式的乘法法则: 。
2、二次根式的除法法则: 。
3、最简二次根式的条件: .三、预习检测1、对于任意实数x,下列各式中一定成立的是( )A.=•B.=x+1C.=•D.=6x22、计算•的结果是( )A.B. C.2D.33、计算÷×结果为()A.3B.4C.5D.6探究案一、合作探究(15min)【探究】二次根式的乘法看一下课本的探究内容,填写下列空格,研究二次根式的乘法。
1、×= ;= .2、×=; = 。
3、×=;= 。
从刚刚的结果中,大家能用字母表示你所发现的规律吗?二次根式的乘法法则是什么?这个乘法法则中,我们需要注意什么?例1:计算(1) ×;(2)×大家思考这样一个问题,= ×成立吗?为什么?例2:计算(1);(2)从这个例题中,你可以总结出化简二次根式的一般步骤吗?例3:计算(1)×(2)3×2 ;(3)×【探究】二次根式的除法1、= ;= .2、=;= .3、= ; =你能用字母表示你所发现的规律吗?你知道二次根式的除法法则是什么了吗?二次根式的除法法则要注意什么?例4 计算: (1) ; (2) .最简二次根式:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式。
16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。
《16.2 二次根式的乘除(第1课时)》教学设计《16.2 二次根式的乘除(第1课时)》教学设计一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1); (2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1); (2); (3)师生活动学生计算,教师检验.(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.B.C.D.【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简______________________________。
16.2二次根式的乘除 第二课时一、教学目标1.核心素养:通过对最简二次根式和二次根式除法法则的学习,培养学生逻辑推理和运算能力.2.学习目标(1)理解)0,0(>≥=b a b a b a 和)0,0(>≥=b a b a b a ,并能利用它们进行计算;(2)理解最简二次根式的定义,知道二次根式运算的结果必须是最简二次根式.3.学习重点 理解)0,0(>≥=b a b a b a 和)0,0(>≥=b a b a b a ,并能利用它们进行计算和化简.4.学习难点 利用)0,0(>≥=b a b a b a 和)0,0(>≥=b a b a b a 进行计算和化简.二、教学设计(一)课前设计1.预习任务任务1 二次根式的除法法则是怎样的?任务2 什么叫最简二次根式?2.预习自测1.式子55-=-a a a a 成立的条件是( )A .5≥aB .5>aC .50≤≤aD .50<≤a2. 下列根式中不是最简二次根式的是( ) A.10 B.8 C.6 D.33. 计算6482÷的值为( ) A. 82 B. 24 C. 224 D.334 预习自测1.B2. B3.B(二)课堂设计1.知识回顾(1)二次根式的乘法法则:)0,0(≥≥=•b a ab b a ;(2)积的算数平方根的性质:)0,0(≥≥•=b a b a ab .2.问题探究问题探究一 二次根式的除法法则是怎样的?▲活动一 从特殊到一般探究法则计算下列各式:(1)=94,=94 ; (2)=2516 ,=2516 ; (3)=3625 ,=3625 ; 观察上面的计算结果,你的发现的规律是 (文字表达);总结二次根式的除法法则: (用字母表达).活动二 反思法则 巩固提升 为什么)0,0(>≥=b a ba b a中要对b a ,的取值进行限制?与二次根式的乘法法则进行比较,b a ,的取值有什么变化?(因为既要考虑二次根式本身有意义,还得考虑整个式子是否有意义,因此0,0>≥b a ,与二次根式的乘法法则比较,b a ,的取值变化是这里的0≠b ,所以0>b )活动三 逆向思维 类比迁移 如何对二次根式ba 的化简? 类比积的算术平方根的性质我们可以得到商的算术平方根的性质论:=ba )0,0(>≥b a . 结论:商的算术平方根的性质)0,0(>≥=b a b a b a 例1 计算:(1)324; (2)18123÷【知识点:二次根式的除法】详解:(1)222283243242=⨯===; (2)3393182318123=⨯=⨯=÷ 【点拨】按照二次根式的除法法则)0,0(>≥=b a b a b a运算即可. 例2 化简:(1)==10031003 ; (2)=2775 ==⨯⨯333522 ; (3)==910911 = ; (4)==100303.0 = .【知识点:二次根式的除法】详解:(1)10310031003==; (2)35352775277522===;(3)310910910911===; (4)1031003100303.0===. 【点拨】如果被开方数是带分数,则先将带分数化为假分数,再利用商的算术平方根的性质进行计算,如果被开方数是小数,则可先将小数化为分数,再直接利用商的算术平方根的性质)0,0(>≥=b a b a b a 计算即可.问题探究二 什么样的式子是最简二次根式?▲观察与思考 下列各式中的被开方数有何共同特点?2,5,)0(2>a a a ,43 特点:(1)被开方数不含 ;(2)被开方数不含 ;结论:我们把满足以上两个条件的二次根式叫做最简二次根式.温馨提示:在二次根式的运算中,一般要把二次根式化为最简二次根式.例3 化简(1)81312311÷⨯ ;(2)5232232⨯÷. 【知识点:二次根式的除法】详解:(1)14343144837348131231122=⨯=⨯⨯=÷⨯ ; (2)101010101011015283325232232=⨯⨯==⨯⨯=⨯÷. 【点拨】被开方数是带分数的要先化成假分数后,再进行乘除,计算的结果含有分母时,要乘以分母的有理化因式,使其被开方数不含分母和开得尽方的因数或因式,达到最后结果是最简二次根式的目的.3.课堂小结【知识梳理】(1)二次根式的除法法则:)0,0(>≥=b a ba b a(2)最简二次根式的条件:①被开方数不含分母;②被开方数不含能开得尽方的因数或因式.【重难点突破】(1)在运用二次根式除法法则时,注意被开方数的取值范围,即a 0,b 0,要特别注意0>b ,因为当0=b 时,分式没有意义;当被开方数是带分数时,应先化成假分数,如321必须先化成35,避免出现321=321⨯这样的错误. (2)只有当a 0,b 0时,b a b a=才能成立. (3)二次根式的运算结果都必须是最简二次根式,把二次根式化成最简二次根式需满足以下两个条件:①被开方数不含分母;②被开方数不含能开得尽方的因数或因式.(4)当二次根式的被开方数是不能再约分的分数(包括小数)或分式时,化简方法一,利用商的算术平方根的性质化简:①“化”,将根号下的数化成分数形式,如果是带分数,则将其化为假分数的形式; ②“写”,利用商的算术平方根的性质将b a 写成)0,0(>≥b a ba 的形式;③“乘”,分子、分母都同时乘以一个适当的数,化去分母中的根号;④“约”,即约去分子、分母中的公因式,如:31533353535321=⨯⨯===.方法二,先直接去分母再化简:①将根号下的数化成分数形式,如果是带分数,则将其化为假分数的形式;②将分子、分母都同时乘以一个适当的数或式,使分母变成一个数的平方数;③将分母进行开方,直接作为化简后的分母,再对分子利用积的算术平方根的性质进行化简.如:315915915333535321===⨯⨯==. 4.随堂检测1. 设一个长方形的面积为64,一边长为32,则另一边长为( )A .32B .22C .2D .3【知识点:二次根式的除法】【答案】B【思路点拨】长方形的面积除以其中一边长就等于另一边长.2.下列二次根式中,是最简二次根式的是 ( )A .12B .2xC .22y x +D .31【知识点:最简二次根式】【答案】C【思路点拨】3. 等式22-=-x x x x 成立的条件是 ( )A. 2≠xB. 0≥xC. 2>xD. ,0≥x 且2≠x【知识点:二次根式的除法】【答案】C【思路点拨】由题意可得020x x ≥⎧⎨->⎩,所以2>x . 4. 化简:3271x = _________. 【知识点:二次根式除法】 【答案】293x x【思路点拨】3271x 中,被开方数的分子、分母同时乘以x 3就可实现分母有理化.。
第4课时 16.2 二次根式的乘除导学案(1)【学习目标】(a ≥0,b ≥0)a ≥0,b ≥0),并利用它们进行计算和 化简【学习重点】灵活运用法则进行计算、化简【学习难点】a ≥0,b ≥0)化简二次根式 一、学前准备1、什么叫二次根式?2、二次根式学了哪些性质?二、探索思考(一)探究1:填空:(1=____;(2=____;(3.你发现什么规律练习一、计算(1= = (2= =三、典例分析 例1 化简(1(2(3(4(5练习二、 化简:;例3、计算: ①②练习三、计算(1)123⨯ (2)184362⨯ (3)xy y 3127⋅四、当堂反馈 1、化简2、判断下列各式是否正确,不正确的请予以改正:(1(23、下列计算结果正确的是( )A .122-=-B .2235x x x += C,0)x o y ≥≥ Dx y +4)A .1x ≥B .1x ≥-C .11x -≤≤D .1x ≥或1x ≥-5n 为( ) A .5 B .4 C .3 D .2 6、化简(1)12149⨯ (2)328c ab (3)224y x x +7、计算8、(1)一个长方形的长和宽分别是10和22,求这个长方形的面积。
(2)一个正方形的面积为242,求这个正方形的边长。
五、学习反思====⨯============345200)3(11214)2(____300____75_____72____48____45____32____27____24_____20____18____12____8)1(c b a ==+==-32232284)5(1620)4(n m n m 314)1(x yxy ••183)32(276)2(⨯-⨯第5课时 16.2 二次根式的乘除导学案(2)【学习目标】a≥0,b>0a≥0,b>0)及利用它们进行运算【学习重点】二次根式的除法及化简【学习难点】二次根式化简一、学前准备1.写出二次根式的乘法法则及逆向等式:,.二、探索思考(一)探究1:填空(1;(2;(3;规律:一般地,二次根式的除法法则是练习一、1、计算:(1(2(3(4三、典例分析例1、化简:(1(2(3)2748练习二、化简:((2(3)1850例2、计算(1(2(3练习三、计算(1)65(2)3232(3)x318例3.,且x为偶数,求(1+x四、当堂反馈1、).A.27B.27C D2、计算:(1(2)aa62÷(3(43、若x、y为实数,且x y-的值.五、学习反思第6课时 16.2 二次根式的乘除导学案(3)【学习目标】理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【学习重点】把不是最简二次根式的化成最简二次根式 【学习难点】把不是最简二次根式的化成最简二次根式 一、学前准备 1、=ab )0,0(≥≥b a ;=ab)0,0(≥>b a 2、计算:(1)10453⨯ (2)540 (3)15254二、探索思考1、思考:观察上面计算的最后结果,可以发现这些式子中的二次根式什么特点? 特点:满足上述特点的二次根式,叫做最简二次根式.2、在二次根式的运算中,一般要把最后结果化为 ,并且分母中不含练习一、1、指出下列各式中的最简二次根式: (填序号)2、把 下列二次根式的化成最简二次根式(1)32 (2)40 (3)5.1 (4)34三、典例分析例1、把下列各式化简(分母有理化):(4练习二、把下列各式化简(分母有理化):例2、电视塔越高,从塔顶发射的电磁波传播得越远,从而能收看到电视节目的区域就越大.如果电视塔高hkm,电视节目信号的传播半径为r km,则它们之间存在近似关系 ,其中R 是地球半径,R≈6400km.如果两个电视塔的高分别是h 1km ,h 2 km,那么它们的传播半径的比是 .你能将这个式子化简吗?例3、长方形的面积为S ,相邻两边长分别为a ,b. ,已知S=53,11=b ,求a 。
16.2二次根式的乘除(第1课时)学习目标1.能够利用积的算术平方根的性质进行二次根式的化简与运算;2. 会进行简单的二次根式的乘法运算. 重点难点 重点:ab b a =⋅(a ≥0,b ≥0),b a ab ⋅=(a ≥0,b ≥0)的推导及它们的运用.难点:二次根式的化简 学习过程 一、预习内容 问题1计算下列各式,观察计算结果,你发现什么规律 (1) =⨯94____,=⨯94______; (2)2516⨯=_____, 2516⨯=_______; (3)25×36=____,3625⨯=_____. 问题21.参考上面的结果,用“>、<或=”填空. 4×9_____49⨯;2516⨯________2516⨯;3625⨯________3625⨯.2.总结归纳:你能找出二次根式怎样进行乘法运算吗?字母表达式怎样? 结论: . 问题3把ab b a =⋅(a ≥0,b ≥0)反过来,仍然成立吗?积的算术平方根的性质: . 二、数学概念及性质1.二次根式的乘法法则:_____________________________.2.积的算术平方根的性质:____________________________. 三、例题讲解 例1.计算(1)3×5 (2)13×27例2 化简(1)1681⨯ (2)324b a例3 计算(1)714⨯; (2)10253⨯; (3)xy x 313•四、总结反思1.说说这节课你的收获;2.你还有什么问题? 五、反馈练习 1、计算(1927(2126 2、化简(1916⨯(281100⨯(3(4六、能力提高3.判断下列各式是否正确,不正确的请予以改正:(1=(2×七、布置作业习题16.2 第1题、第3题参考答案:问题1、(1)6,6(2)20,20(3)30,30发现他们的运算结果相等问题2、1、=,=,= ;2(a≥0,b≥0)问题3、b a ab ⋅=(a ≥0,b ≥0)例1、分析:直接利用a ·b =ab (a≥0,b≥0)计算即可. 解:(1)53⨯=53⨯=15(2)13×27=2731⨯=9=3例2、分析:利用ab =a ·b (a≥0,b≥0)直接化简即可. (1)1681⨯=16×81=4×9=36(2)324b a =324b a ••=b b a b b a •=•••2222=b ab 2 例3解:(1)714⨯=714⨯=272⨯=272⨯=27(2)10253⨯=10523⨯⨯=2562⨯=2562⨯=256⨯=230 反馈练习:1、(1)9×27=292793⨯=⨯=93 (2)12×6=162⨯=32、解:(1)916⨯=9×16=3×4=12 (2)81100⨯=81×100=9×10=90 (3)54=96⨯=23×6=36 (4)34212x y z =223xy z x 能力提高: 解:(1)不正确.改正:(4)(9)-⨯-=49⨯=4×9=2×3=6(2)不正确.1242525=2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.一个射手连续射靶10次,其中3次射中10环,3次射中9环,4次射中8环.则该射手射中环数的中位数和众数分别为( ) A .8,9B .9,8C .8.5,8D .8.5,92.如图,直线y kx b =+经过()3,1A 和()6,0B 两点,则不等式1kx b +<的解集为( )A .3x <B .3x >C .6x <D .1x <3.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( )A .B .C .D .4.计算8×2的结果是( ) A .10B .8C .4D .±45.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第( )秒A .80B .105C .120D .1506.若代数式12x x --有意义,则实数x 的取值范围是( ) A .2x ≥B .1x ≥且2x ≠C .1x >且2x ≠D .1x ≥7.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )A .10B .16C .18D .208.直线y=x+1与y=–2x –4交点在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是 ( ) A .19%B .20%C .21%D .22%10.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且OA=OB ,若AD=4,AOD 60∠=︒,则AB 的长为( )A .43B .23C .8D . 83二、填空题11.将一副三角尺如图所示叠放在一起,若AB=8cm ,则阴影部分的面积是_____cm 1.12.若△ABC 的三边长分别为5、13、12,则△ABC 的形状是 . 13.已知2,4xy x y =+=xyy x= ___________ . 14.如图,A 、B 两点分别位于一个池塘的两端,小聪想用绳子测量A 、B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A 、B 的点C ,找到AC 、BC 的中点D 、E ,并且测出DE的长为13m,则A、B间的距离为______m.15.若某人沿坡度1:1i=在的斜坡前进300m则他在水平方向上走了_____m16.如图,△ABC中,E为BC的中点,AD平分∠BAC,BD⊥AD,若AB=10,AC=16,则DE= ___________.17.一组数据3,4,6,8,x的中位数是x,且x是满足不等式组x30{5x>0-≥-的整数,则这组数据的平均数是.三、解答题18.某直销公司现有30名推销员,5月份每个人完成销售额(单位:万元),数据如下:171822102417282615172217222624 232213172613242317101328262317整理上面的数据得到如下统计表:销售额10131517182223242628人数2a171433b2(1)统计表中的a=;b=;(2)销售额的平均数是;众数是;中位数是.(3)6月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按2%抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.19.(6分)如图,将一个三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.(1)当点Q 在DC 边上时,过点P 作//MN AD 分别交AB ,DC 于点M ,N ,证明:PQ BP =; (2)当点Q 在线段DC 的延长线上时,设A 、P 两点间的距离为x ,CQ 的长为y . ①直接写出y 与x 之间的函数关系,并写出函数自变量x 的取值范围;②PCQ ∆能否为等腰三角形?如果能,直接写出相应的x 值;如果不能,说明理由. 20.(6分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表: 平均成绩/环中位数/环 众数/环 方差 甲 a77 1.2乙7b8c(1)求a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?21.(6分)若b 2﹣4ac≥0,计算:224422b b ac b b ac a a----- 22.(8分)如图,在平面直角坐标系中有△ABC ,其中A (﹣3,4),B (﹣4,2),C (﹣2,1).把△ABC 绕原点顺时针旋转90°,得到△A 1B 1C 1.再把△A 1B 1C 1向左平移2个单位,向下平移5个单位得到△A 2B 2C 2. (1)画出△A 1B 1C 1和△A 2B 2C 2. (2)直接写出点B 1、B 2坐标.(3)P (a ,b )是△ABC 的AC 边上任意一点,△ABC 经旋转平移后P 对应的点分别为P 1、P 2,请直接写出点P 1、P 2的坐标.23.(8分)已知:等腰三角形ABC 的一个角B α∠=,求其余两角A ∠与C ∠的度数. 24.(10分)已知y +2与3x 成正比例,当x =1时,y 的值为4. (1)求y 与x 之间的函数表达式;(2)若点(-1,a),(2,b)是该函数图象上的两点,请利用一次函数的性质比较a ,b 的大小.25.(10分)如图,矩形ABCD 中,AB=6cm ,BC=8cm ,E 、F 是对角线AC 上的两个动点,分别从A 、C 同时出发,相向而行,速度均为2cm/s ,运动时间为t (0≤t≤5)秒.(1)若G 、H 分别是AB 、DC 的中点,且t≠2.5s ,求证:以E 、G 、F 、H 为顶点的四边形始终是平行四边形;(2)在(1)的条件下,当t 为何值时?以E 、G 、F 、H 为顶点的四边形是矩形;(3)若G 、H 分别是折线A-B-C ,C-D-A 上的动点,分别从A 、C 开始,与E .F 相同的速度同时出发,当t 为何值时,以E 、G 、F 、H 为顶点的四边形是菱形,请直接写出t 的值.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据中位数和众数的定义求解.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8;这10个数按大小顺序排列后中间两个数是1和1,所以这组数据的中位数是1.故选:B.【点睛】本题考查众数和中位数.掌握中位数和众数的定义是关键.2.B【解析】【分析】从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在直线y=1上(或下)方部分所有的点的横坐标所构成的集合.【详解】∵线y=kx+b经过A(1,1)和B(6,0)两点,不等式kx+b<1的解集为x>1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系,正确理解一次函数与一元一次不等式的关系是解题的关键.3.C【解析】【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235xx+≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.4.C【解析】【分析】根据二次根式乘法法则进行计算即可.【详解】原式82⨯16=4,故选C.【点睛】本题考查了二次根式的乘法,正确把握二次根式乘法的运算法则是解题的关键.5.C【解析】【分析】如图,分别求出OA 、BC 的解析式,然后联立方程,解方程就可以求出第一次相遇时间.【详解】设直线OA 的解析式为y=kx ,代入A (200,800)得800=200k ,解得k=4,故直线OA 的解析式为y=4x ,设BC 的解析式为y 1=k 1x+b ,由题意,得1136060540150k bk b =+⎧⎨=+⎩,解得:12240k b =⎧⎨=⎩, ∴BC 的解析式为y 1=2x+240,当y=y1时,4x=2x+240,解得:x=120,则她们第一次相遇的时间是起跑后的第120秒,故选C.【点睛】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.6.B【解析】【分析】直接利用二次根式的定义结合分式有意义的条件得出答案.【详解】x-1x﹣1≥0,且x﹣1≠0,解得:x≥1且x≠1.故选B.【点睛】本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题的关键.7.A【解析】【分析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=12AB×BC=12×4×5=10故选A.【点睛】本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC和CD的长,再用矩形面积公式求出矩形的面积.8.C【解析】试题分析:直线y=x+1的图象经过一、二、三象限,y=–2x–4的图象经过二、三、四象限,所以两直线的交点在第三象限.故答案选C.考点:一次函数的图象.9.B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.10.A【解析】【分析】由平行四边形ABCD中,OA=OB得到平行四边形ABCD是矩形,又AOD60∠=︒,得到三角形AOD 为等边三角形,再利用勾股定理得到AB的长.【详解】解:∵四边形ABCD为平行四边形,对角线AC、BD相交于点O,∴OA=OC,OB=OD,又∵OA=OB,∴OA=OD=OB=OC,∴平行四边形ABCD为矩形,∠DAB=90°,而AOD60∠=︒,∴AOD∆为等边三角形,∴AD=OD=OA=OB=4,在Rt ADB∆中,AD=4,DB=2OD=8,∴AB===故选:A.【点睛】本题利用了矩形的判定和性质,等边三角形的判定及性质,勾股定理定理的应用求解.属于基础题. 二、填空题11.2【解析】【分析】根据含30度角的直角三角形的性质求出AC的长,然后证明∠AFC=45°,得到CF的长,再利用三角形面积公式计算即可.【详解】解:∵∠B=30°,∠ACB=90°,∠E=90°,AB=2cm,∴AC=4cm,BC∥ED,∴∠AFC=∠D=45°,∴AC=CF=4cm,∴阴影部分的面积=12×4×4=2(cm1),故答案为:2.【点睛】本题考查了含30度角的直角三角形的性质,求出AC=CF=4cm是解答此题的关键.12.直角三角形【解析】【分析】熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.即可得出. 【详解】22251213+=∴△ABC是直角三角形.【点睛】本题考查了勾股定理的逆定理,熟练掌握定理是解题的关键.13.【解析】【分析】将二次根式化简代值即可.【详解】=====故答案为:【点睛】本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.14.1【解析】【分析】D、E是AC和BC的中点,则DE是△ABC的中位线,则依据三角形的中位线定理即可求解.【详解】解:∵D,E分别是AC,BC的中点,∴AB=2DE=1m.故答案为:1.【点睛】本题考查了三角形的中位线定理,正确理解定理是解题的关键.15.【解析】【分析】根据坡度的概念得到∠A=45°,根据正弦的概念计算即可.【详解】如图,斜坡AB 的坡度 1 : 1i =,45A ∴∠=︒,sin 1502()BC AB A m ∴=•=,故答案为:1502.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解坡度及坡角的定义,熟练勾股定理的表达式. 16.1【解析】【分析】延长BD 交AC 于H ,证明△ADB ≌△ADH ,根据全等三角形的性质得到AH=AB=10,BD=DH ,根据三角形中位线定理计算即可.【详解】 延长BD 交AC 于H ,在△ADB 和△ADH 中,BAD HAD AD ADADB ADH ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ADB ≌△ADH(ASA)∴AH=AB=10,BD=DH ,∴HC=AC-AH=6,∵BD=DH ,BE=EC ,∴DE=12HC=1, 故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.1.【解析】解不等式组x 30{5x>0-≥-得,3≤x <1,∵x 是整数,∴x=3或2.当x=3时,3,2,6,8,x 的中位数是2(不合题意舍去);当x=2时,3,2,6,8,x 的中位数是2,符合题意.∴这组数据的平均数可能是(3+2+6+8+2)÷1=1.三、解答题18.(1)3a =,4b =;(2)平均数:20,众数:17,中位数:22;(3)基本销售额定为22万元,理由详见解析.【解析】【分析】(1)根据题干中的数据可得出a,b 的值;(2)按照平均数,中位数,众数的定义分别求得;(3)根据平均数,中位数,众数的意义回答.【详解】解:(1)3a =,4b =;(2)平均数=(10×2+13×3+15+17×7+18+22×4+23×3+24×3+26×4+28×2)÷30=20(万元); 出现次数最多的是17万元,所以众数是17(万元);把销售额按从小到大顺序排列后,第15,16位都是22万元,所以中位数是22(万元).故答案为:20;17;22.(3)基本销售额定为22万元.理由:作为数据的代表,本组数据的平均数、众数、中位数三个量作为基本额都具有合理性.其中中位数为22万最大,选择中位数对公司最有利,付出成本最低,对员工来说,这只是个中等水平,可以接受,所以选择中位数作为基本额.【点睛】考查学生对平均数、中位数、众数的计算及运用其进行分析的能力.19.(1)见解析;(2)①12y x ⎛=-<< ⎝.②PCQ ∆能为等腰三角形,1x =.【解析】【分析】(1)根据正方形的性质证明MBP NPQ ∆∆≌,即可求解;(2)①根据题意作图,由正方形的性质可知当2x <<时,点Q 在线段DC 的延长线上,同理可得MBP NPQ ∆∆≌,得到MP=NQ ,利用等腰直角三角形的性质可知MP=2x ,NC=CD-DN=1-2x ,CQ=y ,代入MP=NQ 化简即可求解;②由PCQ ∆是等腰三角形,∠PCQ=135°,CP=CQ 成立,代入解方程即可求解 ,【详解】(1)证明:∵在正方形ABCD 中,AC 为对角线,∴AB AD =,45MAP DAC ∠=∠=︒,∵//MN AD ,∴45MAP APM ∠=∠=︒,90BMP QNP ∠=∠=︒,∴AM PM =,又∵AB AD MN ==,∴MB PN =.∵90BPQ ∠=︒,∴90BPM NPQ ∠+∠=︒.又∵90BMP ∠=︒,∴90MBP BPM ∠+∠=︒,∴MBP NPQ ∠=∠,在MBP NPQ ∆∆≌中,∵90,,,PMB QNP BM PN MBP NPQ ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴MBP NPQ ∆∆≌,∴BP PQ =.(2)①如图,点Q 在线段DC 的延长线上,同(1)可证MBP NPQ ∆∆≌,∴MP=NQ ,在等腰直角三角形AMP 中,=x∴MP=22x=AM, ∴NC=BM=AB-AM=1-22x 故NQ=NC+CQ=1-2x+y ∴2x=1-2x+y 化简得21y x =-当P 点位于AC 中点时,Q 点恰好在C 点,又AP <AC=2∴22x << ∴y 与x 之间的函数关系是21y x =-(222x <<) ②当1x =时,PCQ ∆能为等腰三角形,理由:当点Q 在DC 的延长线上,CQ=21y x =-,CQ=AC-AP=2x -,由PCQ ∆是等腰三角形,∠PCQ=∠PCB+∠BCQ=45°+90°=135°,∴CP=CQ 成立,即221x x -=-时,解得1x =.【点睛】此题主要考查正方形的性质综合,解题的关键是熟知全等三角形的判定与性质、等腰三角形的性质与判定. 20.(1)a=7,b=7.5,c=4.2;(2)见解析.【解析】【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可; (2)结合平均数和中位数、众数、方差三方面的特点进行分析. 【详解】(1)甲的平均成绩a=516274829112421⨯+⨯+⨯+⨯+⨯++++=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b=7+82=7.5(环), 其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2] =110×(16+9+1+3+4+9) =4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定; 综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大. 【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析. 21.c a【解析】 【分析】利用平方差公式化简,然后去括号合并后约分即可; 【详解】 解:原式=()2224b a --=()22244b b ac a--=244aca =c a; 【点睛】本题主要考查了二次根式的化简求值,掌握二次根式的化简求值是解题的关键.22.(1)见解析;(2)B 1(2,4)、B 2(0,﹣1);(3)P 1(b ,﹣a ),P 2(b ﹣2,﹣a ﹣5).【解析】 【分析】(1)根据△ABC 绕原点顺时针旋转90°,得到△A 1B 1C 1,△A 1B 1C 1向左平移2个单位,再向下平移5个单位得到△A 2B 2C 2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P 的位置,即可得出点P 1、P 2的坐标. 【详解】解:(1)如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求:(2)点B 1坐标为(2,4)、B 2坐标为(0,﹣1);(3)由题意知点P 1坐标为(b ,﹣a ),点P 2的坐标为(b ﹣2,﹣a ﹣5). 【点睛】考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心. 23.见解析. 【解析】 【分析】根据∠α的情况进行分类讨论求解即可. 【详解】当90α︒≥时,由三角形内角和180︒,B 是顶角,所以1802A C α︒-∠=∠=当90α︒≤时,①B 是顶角,所以1802A C α︒-∠=∠=②B 是底角,A α∠=、1802C α︒∠=-或C α∠=、1802A α︒∠=- 【点睛】本题考查了等腰三角形的性质;等腰三角形中,已知没有明确具体名称时要分类讨论,这是解答本题的关键.24.(1)y =6x -2;(2)a<b. 【解析】试题分析:(1)由y+2与3x 成正比例,设y+2=3kx (k≠0).将x=1,y=4代入求出k 的值,确定出y 与x 的函数关系式;(2)由函数图象的性质来比较a 、b 的大小. 试题解析:(1)根据题意设y+2=3kx(k≠0). 将x=1,y=4代入,得4+2=3k , 解得:k=2. 所以,y+2=6x , 所以y=6x−2; (2)a<b.理由如下:由(1)知,y 与x 的函数关系式为y=6x−2. ∴该函数图象是直线,且y 随x 的增大而增大, ∵−1<2, ∴a<b.25.(1)证明见解析;(2)当t 为4.5秒或0.5秒时,四边形EGFH 是矩形;(3)t 为318秒时,四边形EGFH 是菱形. 【解析】 【分析】(1)根据勾股定理求出AC ,证明△AFG ≌△CEH ,根据全等三角形的性质得到GF=HE ,利用内错角相等得GF ∥HE ,根据平行四边形的判定可得结论;(2)如图1,连接GH ,分AC-AE-CF=1.AE+CF-AC=1两种情况,列方程计算即可;(3)连接AG .CH ,判定四边形AGCH 是菱形,得到AG=CG ,根据勾股定理求出BG ,得到AB+BG 的长,根据题意解答. 【详解】解:(1)∵四边形ABCD 是矩形,∴AB=CD ,AB ∥CD ,AD ∥BC ,∠B=90°,∴∠BAC=∠DCA,∵AB=6cm,BC=1cm,∴AC=10cm,∵G、H分别是AB、DC的中点,∴AG=12AB,CH=12CD,∴AG=CH,∵E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,∴AE=CF,∴AF=CE,∴△AGF≌△CHE(SAS),∴GF=HE,∠AFG=∠CEH,∴GF∥HE,∴以E、G、F、H为顶点的四边形始终是平行四边形;(2)如图1,连接GH,由(1)可知四边形EGFH是平行四边形,∵G、H分别是AB.DC的中点,∴GH=BC=1cm,∴当EF=GH=1cm时,四边形EGFH是矩形,分两种情况:①若AE=CF=2t,则EF=10-4t=1,解得:t=0.5,②若AE=CF=2t,则EF=2t+2t-10=1,解得:t=4.5,即当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)如图2,连接AG、CH,∵四边形GEHF是菱形,∴GH⊥EF,OG=OH,OE=OF,∵AF=CE∴OA=OC,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=1-x,由勾股定理得:AB2+BG2=AG2,即62+(1-x)2=x2,解得:x=254,∴BG=1-254=74,∴AB+BG=6+74=314,t=314÷2=318,即t为318秒时,四边形EGFH是菱形.【点睛】本题是四边形的综合题,考查了矩形的性质.平行四边形的判定和菱形的判定,掌握矩形的性质定理.菱形的判定定理,灵活运用分情况讨论思想是解题的关键.2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确) 1.在函数24y x=的图象上的点是( ) A .(-2,12) B .(2,- 12)C .(-4,- 6)D .(4,- 6)2.解不等式22135x x +-<,解题依据错误的是( ) 解:①去分母,得5(x+2)<3(2x ﹣1) ②去括号,得5x+10<6x ﹣3 ③移项,得5x ﹣6x <﹣3﹣10 ④合并同类项,得﹣x <﹣13 ⑤系数化1,得x >13 A .②去括号法则 B .③不等式的基本性质1 C .④合并同类项法则D .⑤不等式的基本性质23.如图,在△ABC 中,AB =AC ,∠BAC =58°,∠BAC 的平分线与AB 的中垂线交于点O ,连接OC ,则∠AOC 的度数为( )A .151°B .122°C .118°D .120°4.若75与最简二次根式1m +是同类二次根式,则m 的值为( ) A .5B .6C .2D .45.如图,在正方形ABCD 中,点E 是边BC 上的一个动点(不与点B ,C 重合),AE 的垂直平分线分别交AB ,CD 于点G ,F 若6CF DF =,则BE EC :的值为( )A .63B .612C .1422D .61436.已知点1(1,)y -,2(1,)y ,3(2,)y -都在直线y x =-上,则1y ,2y ,3y 的大小关系是( ) A .123y y y >>B .123y y y <<C .312y y y >>D .312y y y <<7.如图,四边形ABCD 为矩形,依据尺规作图的痕迹,∠α与∠β的度数之间的关系为( )A .β= 180-αB .β=180°-1α2C .β=90°-αD .β=90°-1α28.为了了解某市八年级女生的体能情况,从某校八年级的甲、乙两班各抽取27名女生进行一分钟跳绳次数的测试,测试数据统计如下: 人数 中位数 平均数 甲班 27 104 97 乙班2710696如果每分钟跳绳次数大于或等于105为优秀,则甲、乙两班优秀率的大小关系是( ) A .甲优<乙优B .甲优>乙优C .甲优=乙优D .无法比较9.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能...是( ) A .正三角形B .正方形C .正五边形D .正六边形10.从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a ,使关于x 的分式方程26122-=--a x x x x有整数解,且使直线y =3x+8a ﹣17不经过第二象限,则符合条件的所有a 的和是( ) A .﹣4 B .﹣1C .0D .1二、填空题11.如图,在△ABC 中,∠BAC=60°,点D 在BC 上,AD=10,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,且DE=DF ,则DE 的长为______.12.乐乐参加了学校广播站招聘小记者的三项素质测试,成绩(百分制)如下:采访写作70分,计算机操作60分,创意设计80分.如果采访写作、计算机操作和创意设计的成绩按5:2:3计算,那么他的素质测试的最终成绩为__________________分.13.计算: 225-()=_________. 14.已知一次函数(0)y kx b k =+<,当02x 时,对应的函数y 的取值范围是24y -,b 的值为__. 15.已知关于x 函数224(5)1my m x m -=-++,若它是一次函数,则m =______.16.一组数据:2,﹣1,0,x ,1的平均数是0,则x =_____.17.如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为______或______.三、解答题18.为了了解全校2400名学生的阅读兴趣,从中随机抽查了部分同学,就“我最感兴趣的书籍”进行了调查:A .小说、B .散文、C .科普、D .其他(每个同学只能选择一项),进行了相关统计,整理并绘制出两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:(1)本次抽查中,样本容量为 ; (2)a = ,b = ;(3)扇形统计图中,其他类书籍所在扇形的圆心角是 °; (4)请根据样本数据,估计全校有多少名学生对散文感兴趣. 19.(6分)已知一次函数y =kx -4,当x =2时,y =-3. (1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x 轴交点的坐标.20.(6分)已知关于x 的一元二次方程2(3)20x m x m -+++=.(1)求证:方程总有两个实数根;(2)若方程两个根的绝对值相等,求此时m 的值.21.(6分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,//CE BD ,//DE AC .()1证明:四边形OCED 为菱形; ()2若4AC =,求四边形CODE 的周长.22.(8分)已知a+b =5,ab =6,求多项式a 3b+2a 2b 2+ab 3的值.23.(8分)先化简,再求值:2144(1)11x x x x -+-÷--,其中x 是不等式30x -≥的正整数解. 24.(10分)甲、乙两名队员参加射击训练,成绩分别被作成下列两个统计图:根据以上信息,整理分析数据如下: 平均成绩/环 中位数/环 众数/环 方差 甲 7 7 1.2 乙78(1)请计算甲的平均成绩,乙的训练成绩的中位数和方差;(列式解答)(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?25.(10分)在平面直角坐标系xOy 中,边长为5的正方形ABCD 的对角线AC 、BD 相交于点P,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O),顶点C .D 都在第一象限。
八年级数学下册 16.2 二次根式的乘除(第2课时)导学案(新版)新人教版第2课时学习目标:1、掌握二次根式的除法法则和商的算术平方根的性质。
2、能熟练进行二次根式的除法运算及化简。
学习重点:掌握和应用二次根式的除法法则和商的算术平方根的性质。
学习难点:正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。
学法指导:利用类比,由一般到特殊,再由特殊到一般的思维方式知识链接1、写出二次根式的乘法法则和积的算术平方根的性质2、计算:(1)3(-4)(2)自主学习填空:(1)=____,=____;规律:______;(2)=____,=____; ______;(3)=____,=____; _______;(4)=____,=___、 _______、一般地,对二次根式的除法规定:=(a≥0,b>0)反过来,=(a≥0,b>0)合作探究下面我们利用这个规定来计算和化简一些题目、(二)、巩固练习1、计算:(1)(2)(3)(4)2、化简:(1)(2)(3)(4)注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。
2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式。
拓展延伸阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”。
利用上述方法化简:(1)=________ (2)=________(3)=_____ ___ (4)=___ ___达标检测A组1、选择题(1)计算的结果是()、A、B、C、D、(2)化简的结果是()A、-B、-C、-D、-2、计算:(1)(2)(3)(4) B组用两种方法计算:(1)(2)。
16.2 二次根式的乘除第1课时-初中八年级下册数学教学导学案(人教版)一、教学目标:1.了解二次根式的定义及性质;2.掌握二次根式的乘法、除法运算方法;3.熟练运用二次根式的乘法、除法计算解决实际问题。
二、教学内容:1.二次根式的定义及性质;2.二次根式的乘法运算;3.二次根式的除法运算。
三、教学重难点:1.二次根式的性质及计算方法;2.二次根式的运算特点及实际应用。
四、教学过程:1. 导入(5分钟)复习上节课所学的内容:二次根式的定义及性质,并且可以快速计算一些简单的二次根式。
2. 提出问题(10分钟)老师提问:如何计算二次根式的乘法与除法?为何要学习二次根式的乘除法?3. 讲解二次根式的乘法(30分钟)1.引入:讲述一个生活中的例子——一个正方形花园的面积如图所示(□代表花园,√2m代表边长),如何求正方形面积?求面积的公式是:S=a²∵ a=√2m∴ S=a²=(√2m)²=2m2.分析:上面在解决例题时,把根式看成一个整体,主要是运用二次根式的乘法之后进行化简。
如(√5)×(√2)=√10。
所以,我们在计算二次根式的时候,先考虑整根号、同类项总和再进行乘法运算,并进行相应的化简即可。
3.举例练习:让学生们尝试计算(4√10)×(2√5),并讲述课程的相关知识。
4. 讲解二次根式的除法(30分钟)1.引入:讲述一个生活中的例子,小明在煮鸡蛋,每六分钟翻一次,需要煮多久才能将鸡蛋煮熟?解题思路:因为要翻转多次,所以时间不得不采用分数形式表示。
第1次翻转需要3分钟,第2次翻转需要2分钟,两次翻转用时之和为5分钟,共需要20分钟。
2.分析:在上述例题中,如果只翻转一次,时间的长短就无法用纯数形式表示出来。
也就是说,如果需要遇到这种情况,我们就需要采用二次根式的除法进行运算。
3.举例练习:老师列一个类似的二次根式题目,如何进行除法运算并得出答案。
《16.2 二次根式的乘除》教案
(第一课时)
a b,如
《16.2 二次根式的乘除》教案
(第二课时)
《16.2二次根式的乘除法》导学案
二次根式的乘法
一、学习目标
1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
二、学习重点、难点
重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
三、学习过程
(一)复习回顾
1、计算:
(1)4×9=______ 9
4⨯=_______
16⨯=_______
(2)16×25 =_______ 25
100⨯=_______
(3)100×36 =_______ 36
2、根据上题计算结果,用“>”、“<”或“=”填空:
4⨯
(1)4×9_____9
16⨯
(2)16×25____25
100⨯
(3)100×36__36
(二)提出问题
1、二次根式的乘法法则是什么?如何归纳出这一法则的?
2、如何二次根式的乘法法则进行计算?
3、积的算术平方根有什么性质?
4、如何运用积的算术平方根的性质进行二次根式的化简。
(三)自主学习
自学课本第5—6页“积的算术平方根”前的内容,完成下面的题目:
1、用计算器填空:
(1)2×3____6 (2)5×6____30
(3)2×5____10 (4)4×5____20
2、由上题并结合知识回顾中的结论,你发现了什么规律? 能用数学表达式表示发现的规律吗?
3、二次根式的乘法法则是:
(四)合作交流
1、自学课本6页例1后,依照例题进行计算:
(1)9×27 (2)25×32
(3)a 5·
ab 51 (4)5·a 3·b 31
2、自学课本第6—7页内容,完成下列问题:
(1)用式子表示积的算术平方根的性质:
(2)化简: ①54 ②2212b a
③4925⨯ ④64100⨯
(五)展示反馈
展示学习成果后,请大家讨论:对于9×27的运算中不必把它变成243
后再进行计算,你有什么好办法?
(六)精讲点拨
1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。
2、化简二次根式达到的要求:
(1)被开方数进行因数或因式分解。
(2)分解后把能开尽方的开出来。
(七)拓展延伸
1、判断下列各式是否正确并说明理由。
(1))9()4(-⨯-=94-⨯-
(2)323b a =ab b 3
(3))=68)2(6⨯-⨯=4812-
(4)161694⨯ =1616
94⨯⨯=34⨯=12 2、不改变式子的值,把根号外的非负因式适当变形后移入根号内。
(1) -3
32 (2) a
a 212-
(八)达标测试:
A 组
1、选择题
(1)等式1112-=-•+x x x 成立的条件是( )
A .x ≥1
B .x ≥-1
C .-1≤x ≤1
D .x ≥1或x ≤-1
(2)下列各等式成立的是( ).
A .45×25=85
B .53×42=205
C .43×32=75
D .53×42=206
(3)二次根式6)2(2⨯-的计算结果是( )
A .26
B .-26
C .6
D .12
2、化简:
(1)360; (2)432x ;
3、计算:
(1)3018⨯; (2)75
23⨯
; B 组
1、选择题
(1)若04144222=+-++++-c c b b a ,则c a b ••2=( ) A .4 B .2 C .-2 D .1
(2)下列各式的计算中,不正确的是( )
A .64)6()4(-⨯-=-⨯-=(-2)×(-4)=8
B .2222442)(244a a a a =⨯=⨯=
C .5251694322==+=+
D .12512131213)1213)(1213(121322⨯=-⨯+=-+=-
2、计算:(1)68×(-26); (2;
二次根式的除法
一、学习目标
1、掌握二次根式的除法法则和商的算术平方根的性质。
2、能熟练进行二次根式的除法运算及化简。
二、学习重点、难点
重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质。
难点:正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。
三、学习过程
(一)复习回顾
1、写出二次根式的乘法法则和积的算术平方根的性质
2、计算:(1)38×(-46)(2)3
ab
6
12ab
=________
3、填空:(1
=________
(2
(3
=________
(二)提出问题:
1、二次根式的除法法则是什么?如何归纳出这一法则的?
2、如何二次根式的除法法则进行计算?
3、商的算术平方根有什么性质?
4、如何运用商的算术平方根的性质进行二次根式的化简?
(三)自主学习
自学课本第7页—第8页内容,完成下面的题目:
1、由“知识回顾3题”可得规律:
2、利用计算器计算填空:
(1=_________(2(3=______
3、根据大家的练习和解答,我们可以得到二次根式的除法法则:。
把这个法则反过来,得到商的算术平方根性质:
(四)合作交流
1、自学课本例3,仿照例题完成下面的题目:
计算:(1
(2
2、自学课本例4,仿照例题完成下面的题目:
化简:(1
(2
(五)精讲点拨
1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。
2、化简二次根式达到的要求:
(1)被开方数不含分母;
(2)分母中不含有二次根式。
(六)拓展延伸
阅读下列运算过程:
==
==
数学上将这种把分母的根号去掉的过程称作“分母有理化”。
利用上述方法化简:(1)
=_________ (3
=_____ ___ (4
=___ ___
(七)达标测试:
A组
1、选择题
(1 ).
A .27.27
C D .7
(2
的结果是( )
A .-
3 B ..-3. 2、计算:
(1)
482 (2) x x 823
(3)
16141÷ (4
B 组
用两种方法计算:
(1(2)3
46。