当前位置:文档之家› 城市间空气污染控制的马氏链模型

城市间空气污染控制的马氏链模型

城市间空气污染控制的马氏链模型
城市间空气污染控制的马氏链模型

第33卷第1期2008年1月环境科学与管理

ENV I RONMENTAL SCI ENCE AND MANAG E MENT Vol 133N o 11

J an .2008

收稿日期:2007-08-03

作者简介:唐家德(1970-),男,云南楚雄人,楚雄师范学院数学系讲

师,理学硕士,主要从事应用数学的教学和研究工作。

文章编号:1673-1212(2008)01-0038-03

城市间空气污染控制的马氏链模型

唐家德,梁林

(楚雄师范学院数学系,云南楚雄675000)

摘 要:根据城市间空气污染物相互扩散和无后效性的特点,应用马尔可夫随机过程理论,先建立各城市污染

物浓度状态转移方程,再由城市间污染物浓度状态形成一个吸收链,建立城市间污染物排放控制的马氏链模型。通过模型求解,得出了城市间空气污染物浓度达到国家排放标准的条件,最后应用数值计算软件M AT -LA B ,编写了一个城市间空气污染控制的通用程序,它能在保证城市空气质量的前提下,快速准确地计算出控制区内各污染源污染物的最大允许排放量,这对环保部门进行城市空气污染物排放量控制工作具有实际意义。关键词:城市;空气污染;控制;马氏链中图分类号:X 51 O 211.62

文献标识码:A

A M arkov Cha i n M odel o fU rban A i r Poll uti on Contro l

T ang Jiade ,L iang L i n

(D e part m en t ofM at he m atics Chux i ong Nor m alU n i ver s ity ,Chux i ong 675000,C hina)

A bstract :Th is paper first establishes state transitio n equati on of t he ur ban air pollutant concentrati on ,based o n t he ur ban air

poll utan tm utual d iffusio n and non-aftereffect property .Then establishes aM arkov chai n m odel to descri be the u r ba n air pollutant co n ce n tratio n cha nges ,through t he m odel soluti on sho w s t hat ur ban ai r po ll u tant conce n tration i n nati onal e m iss i on sta ndards .F-i nall y w rites a ge ner al progra m to co n trol u r ba n ai r polluti on used num eri cal calculati on soft w areMATL AB ,it c an r ap i d l y a nd ac -c u r atel y calc u late t he m axm i u m allo w a b le poll uta n t e m iss i ons i n the vari ous sou r ces of poll u ti on c on trol d i stric.t The m ethod is sig -n ificant for ur ban air poll u ti on con tr o.l

K ey words :ur ban ;air poll u ti on ;c on tro;l m arkov chai n

前言

若干个城市之间空气污染物每年按一定比例相互扩散,各个城市还有一部分空气污染物扩散到这些城市之外,并且不再回来。每年各城市的污染源都排出一定的污染物,按照环境管理条例的要求,从长时间看,要求各城市的空气污染物浓度要达到国家标准,本文建立一个数学模型来描述各城市空气污染物浓度的变化规律,讨论各城市排出的污染物浓度在什么条件约束下,可以使各城市的空气污染物浓度稳定在国家标准范围内。

1 背景

若一个受随机因素影响的动态系统在每个时期

所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性,或马尔可夫(M ar k -ov)性,通俗地说就是:已知现在,将来与历史无关。具有无后效性的,时间、状态均为离散的随机转移过程通常用马氏链(M ar kov Chai n )模型描述。

城市空气污染物浓度未来的状态只与该时刻所处状态有关,与前一时刻所处状态无关,即具有无后效性。同时引起城市空气污染物浓度变化的因素有两种,一是各城市内部空气污染物的相互扩散;二是各城市空气污染物的排放和退出(一部分空气污染物扩散到这些城市之外,并且不再回来)。各个城市空气污染物浓度每一时刻按一定的比例变化,本是一个确定性的问题,但是如果我们把这种比例视为各城市空气污染物增加、降低或退出的概率,就能利用处理随机转移的马氏链模型来描述空气污染浓度的变化。

#

38#

2 数学模型的建立

下面先定义若干基本量,建立基本方程,然后讨

论如何控制各城市排放的污染物,保持城市污染物浓度稳定在国家标准范围内。

基本量与基本方程:设一个社会系统由k 个城市组成,时间以年为单位离散化,即考虑每年各城市排放的污染物量。城市记作i =1,2,L,k,时间记作t =0,1,2,L 。引入以下的定义和记号:

污染物浓度按城市的分布向量c(t)=(c 1(t),c 2(t),,,,c k (t)),其中c i (t)为第t 年城市i 的污染物浓度,于是有c i (t)\0。

转移矩阵Q ={p ij }k @k ,其中p ij 为每年从城市i 扩散至城市j 的污染物(在城市i 中占的)比例。污染物排放向量d =(d 1,d 2,,,d k ),其中d i

为每年城市i 排出的污染物浓度。

为了导出污染物浓度按城市的分布向量c(t)的变化规律,先写出各个城市污染物浓度的转移方程

c j (t +1)=

E k

i=1

p

ij c i

(t)+d j ,j =1,2,L,k (1)

用向量,矩阵符号可将(1)式表示为

c(t +1)=c(t)Q +d (2)

经递推可得

c(t)=c(0)Q t

+d E t-1

s =0Q

s

(3)

下面来介绍一下吸收状态、吸收链的定义以及相关的一个定理。

定义1[1]

转移概率p ij =1的状态i 称为吸收状态。如果马氏链至少包含一个吸收状态,并且从每一个非吸收状态出发,能以正的概率经有限次转移到达某个吸收状态,那么这个马氏链称为吸收链。吸收链的转移矩阵可以写成简单的标准形式,若有r 个吸收状态,k -r 个非吸收状态,则转移矩阵P 可表为

P =

E r @r

R Q

(4)其中k -r 阶子方阵Q 的特征值K 满足|K |<1。这要求子阵R (k-r )@r 中必含有非零元素,以满足从任一非吸收状态出发经有限次转移可到达某吸收状态的条件。这样Q 就不是随机矩阵,它至少存在一个小于1的行和,且如下定理成立。

定理1 对于吸收链P 的标准形式(4),(E -Q )可逆

M =(E -Q )

-1

=

E ]

s=0

Q

s

(5)

记元素全为1的列向量e =(1,1,,,,1)T

,则y =M e (6)的第i 分量是从第i 个非吸收状态出发,被某个吸收状态吸收的平均转移次数。

如果k 个城市的空气污染物浓度视为系统的k 个状态,并增加一个状态0表示污染物流出这个系统。暂不考虑污染物排放,污染物在k +1个状态间的转移矩阵可表示为

P =10R Q

(7)

其中第一行对应于状态0,因污染物一旦流出系统,就不再回来,所以状态0是一个吸收状态,不妨假定各城市均对应于非吸收状态,并且从这些状态出发可以到达状态0,即形成一个吸收链。于是由转移矩阵P 的标准形式(4)式和定理1可知,(E -Q )可逆,且(E -Q )

-1

=

E ]

s=0

Q s

这隐含着Q cy 0(t y ])。这样对(3)式令t y ]就有

c(])=d (E -Q )

-1

(8)

当我们希望系统中各城市空气污染物浓度趋向

于并稳定在国家污染物浓度标准c *

,只要在(8)式

中令c(])=c *

就可以得到

d =c *(E -Q )=c *-c *

Q (9)(9)式即为对k 个城市的污染物排放控制的基本方程。也就是说,对于给定的国家污染物浓度标准c *

和转移矩阵Q,按(9)式计算出的污染物排放向量d =(d 1,d 2,,,,d k )可以使各城市污染物浓度趋于国家污染物浓度标准c *

,似乎所讨论的问题已经成功解决了,但我们必须要注意到将(9)式代入到(3)式后得到的

c(t)=c(0)Q t

+(c *

-c *

Q )E t-1

s=0Q

s

(10)

是否对于t =1,2,,,都有c(t)E 0(指每个c i (t)E 0)

分两种情况讨论上述问题。

因为c(0)E 0,Q E 0(指每个元素不小于零),若

c *

E c *

Q (11)则由(10)式可知,对于任意的初始分布c(0)都有c(t)E 0。这时由(9)式给出的d 就是使c(t)y c *(t y ])的各城市空气污染物排放量,不妨称c *是可达到的。

当(11)式不成立时,将(10)式化为

c(t)=c(0)Q t +c *(E -Q )(E +Q +,+Q t-1

)

=c(0)Q t +c *(E -Q t

)=c *-[c *-c(0)]Q t (12)

#

39#

记h(t)=[c*-c(0)]Q t(13)由(13)式可得c(t)E0的充要条件为:

c*E h(t),t=1,2,,(14)为了判断(14)式是否成立,下面不加证明地引述一个定理。

定理2设c*>0,h(s)由(13)式定义,记

h(s)=E k i=1|h1(s)|,

h(s)=(h1(s),h2(s),,,,h k(s))(15)若存在某个s(s=0,1,2,,)使

M in

i

c*1E h(s)(16)成立,则(14)对t E s均成立。

根据以上的分析,由(11))(16),对于给定的c*,Q和c(0),可以利用MATLAB编写M)脚本文件来判断c*能否达到[2][3]。

%air_po ll u ti o n空气污染控制;

c=input(c'=)';%输入城市空气污染物浓度初始分布;

C=i n put(C'=)';%输入国家空气污染物浓度标准;

Q=i n put(Q'=)';%输入城市间空气污染物转移矩阵;

if C>=C*Q

d=C-C*Q

d isp('国家空气污染物浓度标准C可达到)'

else

h=C-c;H=sum(abs(h));n=1

w hile m i n(C)

h=h*Q;H=sum(abs(h));

if C

n=0

break

end

if n==0

d isp('国家空气污染物浓度标准C无法达到)';

break

end

d isp('国家空气污染物浓度标准C可达到)';

d=C-C*Q

end

end

以a ir_po ll u ti o n为文件名保存。3模型的具体应用

下面举一个例子来说明该模型的具体应用。

例3个城市间的空气污染物转移矩阵为

Q=

1

3

1

3

1

3

2

3

1

3

1

3

1

3

三个城市初始污染物浓度为c(0)=(30,40, 55)给出,国家空气污染物浓度标准为c*i=25(i= 1,2,3),判断空气污染物稳定分布c*=(25,25, 25)能否达到,若能达到,问如何控制各城市每年排放的空气污染物d i的范围。

分析:首先判断空气污染物稳定分布c*=(25, 25,25)能否达到,在MATLAB命令窗口中输入以下指令:

>>a ir_po ll u ti o n%调用判别稳定分布能否达到的M-脚本文件;

c=[30,40,55];%给定三个城市初始空气污染物浓度;

C=[25,25,25];%给定国家空气污染物浓度标准;

Q=[1/3,1/3,0;0,1/3,2/3;1/3,1/3,1/3];%给定三个城市间空气污染物转移矩阵;

输出结果为:

d=81333300

国家空气污染物浓度标准C可达到

从输出结果中可以看出,只要三城市每年排放的污染物d=(8.3333,0,0),长时间以后,三城市空气污染物浓度就可稳定在国家标准范围内,事实上,由(8)式,在t充分大时,要求d(E-Q)-1F c*,c* =(c*1,c*2,,,,c*k)。d的限制范围由此式确定,对于所给定的Q和c*,上式为

(d1,d2,d3)(E-Q)-1F(c*1,c*2,c*3)

(d1,d2,d3)

333

366

34.56

F(25,25,25)

于是有

3d1+3d2+3d3F25

3d1+6d2+6d3F25

3d

1

+9

2

d

2

+6d

3

F25

可以看出,对于d1,d2,d3,只要3d1+6d2+6d3 F25即可。(下转第45页)

# 40 #

第33卷第1期2008年1月张明浩#机立窑水泥生产废气类污染物排放量核定

Vol133N o11

J an.2008

4.3烘干

4.3.1工艺尾气

按90%的除尘效率和表4数据计算,烘干的粉尘排放量最少为112Kg/(t物料)。

4.3.2燃烧废气

烘干1吨物料至少需22Kg煤,采用均值参数可以计算得出:

烟尘排放量:22@012@012@(1-019)/(1-0125)=01352Kg/(t物料)

SO2排放量:22@116@0102=01704Kg/(t物料)

NO X排放量:22@1163@(01015@013+01000 938)=01195Kg/(t物料)

4.4水泥粉磨

粉磨1吨水泥产生16Kg粉尘,布袋除尘器除尘效率为90%,粉尘排放量为116Kg/t。

4.5矿粉粉磨

粉磨1吨矿粉产生2125Kg的粉尘,布袋除尘后排放量为01225Kg/t。

5结论

根据上述核算数据,整理后得到水泥生产的各个工段的单位产品废气类污染物排放量(见表8、表9),并可形成机立窑水泥生产的排污系数。

表8石料开采、加工和输送及各粉磨工段排污系数

污染物

石料开采、

加工和输送

(Kg/t物料)

水泥粉磨

(Kg/t水泥)

矿粉粉磨

(Kg/t物料)

粉尘113511601225

表9烘干和生料研磨及煅烧工段排污系数

污染物

烘干

(Kg/t物料)

生料研磨和煅烧

排放量

(Kg/t熟料)

折算系数

折算成的水

泥排污量

(Kg/t水泥)粉尘11201844

烟尘0135201015

SO201704014890168*

NO X0119511554

F-0108

01574

01010

01333

11057

01054 *注:生产1吨水泥约需消耗0168吨(表5)的熟料,为方便换算,将1吨熟料的污染物排放量折算成1吨水泥的排放量。

参考文献:

[1]国家环保总局科技标准司1环保新标准实施将促进水泥企业加强环保,2005,1,14.

[2]白和金.统筹兼顾发展当走新路,2007,2,27.

[3]燔积信.水泥质量研究[M].武汉工业大学出版社, 1994,9.

[4]国家环境保护总局.排污申报登记实用手册[M].中国环境科学出版社,2004,1.

[5]孔祥忠,何宏涛,袁文献.新型干法水泥技术代替立窑的减排效应[J].中国水泥,2005,11.

[6]水泥厂大气污染物排放标准修订组1水泥工业大气污染物排放标准编制说明,2003,12.

[7]李松炳,李明高,张奕.水泥新型干法窑与机立窑清洁生产水平之比较.

(上接第40页)

4小结

城市空气污染物排放量控制的马氏链模型法,是一种用微观调控法去实现宏观调控的方法。它能在保证城市空气质量的前提下,给出控制区内各污染源污染物的最大允许排放范围,能对各污染源污染物的排放量进行具体控制,有利于环保管理。

把本文所建立的模型用于计算3个城市间的污染物排放量的控制范围,结果表明该模型可以为空气污染控制决策提供一种方法。当然,本文只是从数学建模的角度进行了一些分析,要实现真正意义上的空气污染控制,还需要确定很多具体的参数。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2003(8):345-357.

[2]王向东,戎海武,文翰.数学实验[M].北京:高等教育出版社,2004(5):34-36.

[3]郑阿奇,曹戈,赵阳.M ATLAB实用教程[M].北京:电子工业出版社,2004(5):172-182.

#

45

#

马尔科夫链在传染病预测中的应用

马尔科夫链在传染病预测中的应用 作者:付长贺, 邓甦, FU Chang-he, DENG Su 作者单位:沈阳师范大学数学与系统科学学院,辽宁,沈阳,110034 刊名: 沈阳师范大学学报(自然科学版) 英文刊名:JOURNAL OF SHENYANG NORMAL UNIVERSITY(NATURAL SCIENCE EDITION) 年,卷(期):2009,27(1) 被引用次数:2次 参考文献(8条) 1.施海龙.曲波.郭海强干旱地区呼吸道传染病气象因素及发病预测[期刊论文]-中国公共卫生 2006(04) 2.巴剑波.方旭东.徐雄利马尔科夫链在海军疟疾疫情预测中的应用[期刊论文]-解放军预防医学杂志 2001(02) 3.何江宏.陈启明基于Markov链的最优化预测模型及其应用研究[期刊论文]-合肥学院学报(自然科学版) 2006(01) 4.杨玉华传染病模型的研究及应用[期刊论文]-数学的实践与认识 2007(14) 5.邓甦.付长贺四种贝叶斯分类器及其比较[期刊论文]-沈阳师范大学学报(自然科学版) 2008(01) 6.余雷.薛惠锋.李刚传染病传播模型研究[期刊论文]-计算机仿真 2007(04) 7.王春平.王志锋.单杰随机时间序列分析法在传染病预测中的应用[期刊论文]-中国医院统计 2006(03) 8.吴家兵.叶临湘.尤尔科时间序列模型在传染病发病率预测中的应用[期刊论文]-中国卫生统计 2006(03) 相似文献(3条) 1.期刊论文孟胜利.徐葛林.程满荣.舒祥.雷勇良.朱风才.周敦金.王定明.明贺田.吴杰.严家新.杨晓明中国狂犬病病毒遗传多样性分析-中国生物制品学杂志2010,23(5) 目的 分析中国狂犬病病毒(RV)的遗传多样性,为我国狂犬病的预防提供理论依据.方法 采用RT-PCR技术扩增26株RV N基因,并进行测序,与GenBank登录的序列进行比对,构建进化树,分析RV的基因分型和分组情况以及时间和空间的动态进化.结果 中国RV分为2个大的进化分支(8组),分支Ⅰ包括1~4组,分支Ⅱ包括5~8组,组内核苷酸同源性≥93.2%,氨基酸同源性≥94.3%;组间核苷酸差异性≥8.0%,氨基酸差异性≥1.7%;运用贝叶斯中的马尔科夫链的蒙特卡洛方法,估计中国RV N基因核苷酸的平均碱基替代率为1.408 9×10-4取代/位点·年,共同祖先出现在公元968年.结论 中国狂犬病病毒株均属于基因1型狂犬病病毒,存在跨地域、跨宿主传播;我国分支Ⅰ狂犬病病毒株与泰国、越南、菲律宾、印度尼西亚、马来西亚等东南亚国家分离的狂犬病病毒株起源相同;分支Ⅱ的毒株在全球分布. 2.会议论文孟胜利.严家新.徐葛林.程满荣.吴杰.雷勇良.朱风才.周敦金.王定明.杨晓明中国狂犬病毒遗传多样性研究2009 在1969-2008年间,我们从全国各地共分离到60株街毒株,其中从犬脑中分离到41株,鼬獾中分离5株, 人脑中分离到4株,鹿脑中1株,我们对这61株狂犬病毒株的N基因的进行了序列测定,初步分析后选取26株代 表株与GenBank得到42株中国毒株N基因序列共计68株序列进行全面的进化分析。以探讨中国狂犬病毒株的基 因分型和分组情况、时间和空间的动态进化。结果表明:我们发现目前分离的中国毒株都属于基因1型狂犬病毒,可以分为2个大的进化分支共计8个组,分支I包括1-4组,分支Ⅱ包括5-8组,组内核苷酸同源性≥93.2%,氨基 酸同源性94.3%;组间核苷酸差异性至少是8.0%,氨基酸差异至少是1.7%;选择压力分析表明中国狂犬病毒处 于较强的净化选择约束下,狂犬病毒N蛋白中的核苷酸突变主要是同义突变;运用贝叶斯中的马尔科夫链的蒙特 卡洛方法估计中国狂犬病毒N基因核苷酸的平均喊基替代率为1.4089×10-4取代/位点/年,共同祖先出现在公元 1040年前;同一毒株或者核苷酸同源性很高的毒株在不同地点、不同宿主中出现表明中国狂犬病毒株存在跨地域、 跨宿主传播;我国狂犬病高发区流行的毒株(分 3.学位论文王家赠接触振子系统与接触粒子系统中的几类合作行为2008 本文主要研究非线性系统中的一些时空动力学与合作行为,分为连续系统和离散系统两个部分. 在第一部分中,我们研究时间连续、空间分立的接触振子系统的一些动力学行为.以 Josephson节方程作为基本振子,也就是经典力学中的单摆方程.依照循序渐进的原则,分别研究了:周期驱动下的振子、两个耦合振子、一维耦合多振子链.揭示了新的非线性动力学和合作行为. 在直流驱动的Josephson振子上加入周期驱动,形成两个相互竞争的频率.频率的竞争导致各种同步解.分别大阻尼和小阻尼两种情况,我们介绍了Poincaré映射在相平面上的不变曲线以及它的性质;利用Arnold舌头显示了参数空间上的分支特征.在小阻尼情况下,研究了混沌产生的特点. 对于两个具有不同自然频率的Josephson振子,在线性扩散耦合和正弦耦合两种情况下,研究了这些系统的不同状态之间的相变特征.同时在正弦耦合的系统中发现了混沌解的存在. 在一维耦合多振子链模型,取周期边界条件.在一定条件下,系统中会产生一类特殊的解.只要一点非常小的驱动力,整条链中的粒子就会同步地转动.这种解被命名为“超-旋转”态.我们揭示了这种解产生的机制. 在第二部分中,我们研究了复杂网络上的传染病动力学.主要使用了易感者一感染者一移除者(Susceptible-infected-removed;记为SIR,下同)模型.对于这种类型的传染病在任意网络上的传播,首先在亚宏观水平建立了一个马尔科夫链模型,得到了一些性质.到目前为止,我们对几类特殊结构的网络进行了解析处理.对于大量与实际更加接近的网络,我们还是用宏观的方法,建立了不同的平均场率方程模型,并分析传播的阈值条件. 对于任意网络上的SIR型传播,我们首先建立了一个时间齐次的马氏链模型,利用转移概率矩阵证明了马氏链的收敛性.利用这个模型,可以对几种特殊的网络结构进行解析求解. 实际问题中,各个节点传播疾病的能力往往是不一致的,所以不同的接触过程,它们传播疾病的概率是不一样的.体现在网络上,就是通过连线的传播率不是定常系数,而是有一个分布.在第六章中,我们研究了这个因素对于传播带来的影响. 节点和节点之间的连接并不总是完全随机的,有的带有一定的选择性。形成了相关性网络。关于相关性网络上的传播问题,已经有了一些理论结果.但是我们觉得有些地方值得进一步的商榷与提高.在第七章中,我们给出了求解SIR模型的新方法.基于连接矩阵,我们定义了计算相关性的方法. 在第八章中建立了有向网络上的传播模型,并进行了求解.得到了有向网络上传播阈值的约束条件.最后讨论了在有向网络上如何进行连接相关性度量的问题. 第九章是对本文中所做研究的总结与展望.

M-G-1马氏链模型的讨论_935705333

讲义中例题对M/G/1马尔可夫链模型的讨论: 令X n 为第n 个顾客到达系统时系统中的顾客数,这一时刻记为T n . 设在(T n , T n +1]内离开服务台的顾客数为Y n ,则X n +1=X n +1-Y n . 显然 0≤Y n ≤X n . 先证{X n }为马氏链. 表述方法一:事实上,P {X n +1=i +1-j | X n =i , X n -1=i n -1,…,X 0=i 0} = {Y n =j | X n =i , X n -1=i n -1,…, X 0=i 0} = P {Y n =j }。这是因为Y n 与{X n , X n -1,…, X 0}独立,且P {X n +1=i +1-j | X n =i }=P {Y n =j }。故{X n }是一个马氏链。 再求P {X n +1=i +1-j | X n =i }=P {Y n =j }. 1)若01j i ≤≤?,则系统不会出现空闲。故 110 {}{()()|}() ()(())()().! n n n n n j t P Y j N T N T j T T t dG t t N t j g t dt e dG t j μμ∞ ++∞∞ ?==?=?====∫∫∫ 2) 若j i =,此时系统可能出现空闲,故 1100 {}{()()|}()()(())()().!n n n n n k t k i P Y j N T N T j T T t dG t t N t j dG t e dG t k μμ∞ ++∞∞ ∞?=== ?≥?== ≥=∫∑∫ ∫ 表述方法二:在上述求一步转移概率的过程中,若记将一步转移概率记成1()n n P X j X i +==,则 从1()(1)n n n P X j X i P Y i j +====+?,利用0,n n Y X ≤≤则有 1 1.i j +≥≥ (1) 当1j >时,即2,j ≥ 此时系统不会出现空闲,其一步转移概率为: (1)10 ()()(1)()(1)! i j t n n n t P X j X i P Y i j e dG t i j μμ+?∞?+====+?= +?∫ ; (2) 当1j =时,此时系统可能出现空闲,其一步转移概率为: ()10 1()()(1)().!k t n n n k i j t P X j X i P Y i j e dG t k μμ∞ ∞?+=+?====+?=∑∫

数学建模之马尔可夫预测

马尔可夫预测 马尔可夫过程是一种常见的比较简单的随机过程。该过程是研究一个系统的 状况及其转移的理论。它通过对不同状态的初始概率以及状态之间的转移概率的研究,来确定状态的变化趋势,从而达到对未来进行预测的目的。 三大特点: (1)无后效性 一事物的将来是什么状态,其概率有多大,只取决于该事物现在所处的状态如何,而与以前的状态无关。也就是说,事物第n 期的状态,只与第n 期内的变化和第n-1期状态有关,而与第n-1期以前的状态无关。 (2)遍历性 不管事物现在所处的状态如何,在较长的时间内马尔可夫过程逐渐趋于稳定状态,而与初始状态无关。 (3)过程的随机性。 该系统内部从一个状态转移到另一个状态是,转变的可能性由系统内部的原先历史情况的概率值表示。 1.模型的应用, ①水文预测, ②气象预测, ③地震预测, ④基金投资绩效评估的实证分析, ⑤混合动力车工作情况预测, ⑥产品的市场占有情况预测。 2.步骤 ①确定系统状态 有的系统状态很确定。如:机床工作的状态可划分为正常和故障,动物繁殖后代可以划分为雄性和雌性两种状态等。但很多预测中,状态需要人为确定。如:根据某种产品的市场销售量划分成滞销、正常、畅销等状态。这些状态的划分是依据不同产品、生产能力的大小以及企业的经营策略来确定的,一般没有什么统一的标准。在天气预报中,可以把降水量划分为旱、正常和涝等状态。 ②计算初始概率()0i S 用i M 表示实验中状态i E 出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L ③计算一步转移概率矩阵

令由状态i E 转移到状态j E 的概率为()|ij j i P P E E =,则得到一步转移概率矩阵为: 1112121 2221 2n n n n nn p p p p p p P p p p ??????=??????L L M M M M L ④计算K 步转移概率矩阵 若系统的状态经过了多次转移,则就要计算K 步转移概率与K 步转移概率矩阵。 K 步转移概率矩阵为: 11121212221 2()k n n k n n nn p p p p p p P k p p p p ??????==??????L L M M M M L ⑤预测及分析 根据转移概率矩阵对系统未来所处状态进行预测,即: () ()111210212221 2K n K n n n nn p p p p p p S S p p p ??????=??????L L M M M M L 例题: 设某企业生产洗涤剂为A 型,市场除A 型外,还有B 型、C 型两种。为了生产经营管理上的需要,某企业要了解本厂生产的A 型洗涤剂在未来三年的市场占有倩况。为此,进行了两项工作,一是进行市场调查,二是利用模型进行预测。 市场调查首先全面了解各型洗涤剂在市场占有情况。年终调查结果:市场洗涤剂目前总容量为100万件,其中A 型占40万,B 型和C 型各占30万。 再者,要调杏顾客购买各型洗涤剂的变动情况。调查发现去年购买A 型产品的顾客,今年仍购A 型产品24万件,转购B 型和C 型产品备占8万件,去年购买B 型产品顾客,今年仍购B 型产品9万件,转购A 型15万件,转购C 型6万件,去年购买C 型产品的顾客,今年仍购C 型产品9万件,转购A 型15万件,转购B 型6万件。计算各型产品保留和转购变动率。 模型的建立: ①计算初始概率 用i M 表示i E 型产品出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L (1) ②计算各类产品保留和转购变动率

马尔可夫链模型

马尔可夫链模型 马尔可夫链模型(Markov Chain Model) 目录 [隐藏] ? 1 马尔可夫链模型概述 ? 2 马尔可夫链模型的性质 ? 3 离散状态空间中的马尔可夫链 模型 ? 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 ? 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建 立 o 5.2 马尔可夫模型的应 用 ? 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能 取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。对于任意i∈s,有 。 3)是系统的初始概率分布,q i是系统在初始时刻处于状态i的概率, 满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X n + 1 | X n) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

数学建模笔记

数学模型按照不同的分类标准有许多种类: 1.按照模型的数学方法分,有几何模型,图论模型,微分方程模型。概率模型,最优控制模型,规划论模型,马氏链模型。 2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型。 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 1.蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 7.网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。) 10.图像处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab来处理问题。) 数学建模方法 统计:1.预测与预报2.评价与决策3.分类与判别4.关联与因果 优化:5.优化与控制 1.预测与预报 ①灰色预测模型(必须掌握) 满足两个条件可用: a数据样本点个数少,6-15个

5马尔可夫链模型

马尔可夫链模型 在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性或马尔可夫性。通俗的说就是已知现在,将来与历史无关。 具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。 马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。 马氏链简介: 马氏链及其基本方程:按照系统的发展,时间离散化为 0,1,2,n = ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以 取k 个离散值1,2,,n X k = ,且n X i =的概率记作() i a n ,称为状态概 率,从n X i =到1 n X j +=的概率记作ij p ,称为转移概率。如果1 n X +的 取值只取决于n X 的取值及转移概率,而与1 2,,n n X X -- 的取值无关, 那么这种离散状态按照离散时间的随机转移过程称为马氏链。 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为 1 (1)()1,2,,k i j ij j a n a n p i k =+= =∑

并且() i a n 和ij p 应满足 1 1 ()10,1,2,;0 ;1 1,2,,k k j ij ij j j a n n p p i k ====≥==∑∑ 引入状态概率向量和转移概率矩阵 12()((),(),,()) {}k ij k a n a n a n a n P p == 则基本方程可以表为1 (1)()(0)n a n a n P a P ++== 例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。 解:商店的经营状况是随机的,每月转变一次。用随机变量n X 表示第n 个月的经营状况,称为经营系统的状态.1,2 n X =分别表示 好与不好,0,1,n = 。用() i a n 表示第n 月处于状态i 的概率(1,2i =) 即()()i n a n P X i ==,ij p 表示本月处于状态i ,下月转为状态j 的概率。 这里1 n X +无后效性,只取决于n X 和ij p 。 112112220.5,0.4,0.5,0.6p p p p ==∴== 根据全概率公式可以得到: 11112212112222 (1)()()0.50.5(1)()(1)()()0.4 0.6a n a n p a n p a n a n P P a n a n p a n p +=+??? ?+==? ?+=+?? ? 假设这个递推公式存在极限w ,有w w P = ,即()0w P E -=。于 是当经营状况好或孬时,经计算可以得到下面的结果

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

数学建模马氏链模型

马氏链模型 教学目的: 通过教学,使学生掌握马尔可夫链的基本知识,掌握建立马氏链模型的基本方法,能用马氏链模型解决一些简单的实际问题。 教学重点和难点: 建立马氏链模型的基本思想和基本步骤。 教学内容: 马尔可夫预测法是应用概率论中马尔可夫链(Markov chain)的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术.这种技术已在市场预测分析和市场管理决策中得到广泛应用,近年来逐步被应用于卫生事业管理和卫生经济研究中.下面扼要介绍马尔可夫链的基本原理以及运用原理去进行市场预测的基本方法. (1)马尔可夫链的基本原理 我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n季度是畅销还是滞销,用一个随机变量X n便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X1,X2,…,X n,….称{ X t,t∈T ,T是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n}的参数为非负整数, X n 为离散随机变量,且{ X n}具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n}的参数n看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关. 对具有N个状态的马氏链,描述它的概率性质,最重要的是它在n时刻处于状态i下一时刻转移到状态j的一步转移概率: 若假定上式与n无关,即,则可记为(此时,称过程是平稳的),并记 (1)称为转移概率矩阵. 例1 设某抗病毒药销售情况分为“畅销”和“滞销”两种,

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

马氏链模型及matlab程序

一、用法,用来干什么,什么时候用 二、步骤,前因后果,算法得步骤,公式?三、程序 四、举例 五、前面国赛用到此算法得备注一下 马氏链模型 用来干什么 马尔可夫预测法就是应用概率论中马尔可夫链(Markov chain)得理论与方法来研究分析时间序列得变化规律,并由此预测其未来变化趋势得一种预测技术. 什么时候用 应用马尔可夫链得计算方法进行马尔可夫分析,主要目得就是根据某些变量现在得情?况及其变动趋向,来预测它在未来某特定区间可能产生得变动,作为提供某种决策得依 据. 马尔可夫链得基本原理 我们知道,要描述某种特定时期得随机现象如某种药品在未来某时期得销售情况,比如说第n季度就是畅销还就是滞销,用一个随机变量Xn便可以了,但要描述未来所有时期得情况,则需要一系列得随机变量X1,X2,…,X n,…。称{ Xt,t∈T,T就是参数集}为随机过程,{ Xt}得取值集合称为状态空间。若随机过程{X n}得参数为非负整数, X Xn }具有无后效性(或称马尔可夫性),则称这一随机过程为马尔n为离散随机变量,且{ 可夫链(简称马氏链)。所谓无后效性,直观地说,就就是如果把{ X n}得参数n瞧作时间得话,那么它在将来取什么值只与它现在得取值有关,而与过去取什么值无关。 对具有N个状态得马氏链,描述它得概率性质,最重要得就是它在n时刻处于状态i下一时刻转移到状态j得一步转移概率: 若假定上式与n无关,即,则可记为(此时,称过程就是平稳得),并记 (1) 称为转移概率矩阵. 转移概率矩阵具有下述性质: (1).即每个元素非负。 (2)。即矩阵每行得元素与等于1。 如果我们考虑状态多次转移得情况,则有过程在n时刻处于状态i,n+k时刻转移到状态j得k步转移概率: 同样由平稳性,上式概率与n无关,可写成。记

马氏链模型及matlab程序

马氏链模型及m a t l a b 程序 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

一、用法,用来干什么,什么时候用 二、步骤,前因后果,算法的步骤,公式 三、程序 四、举例 五、前面国赛用到此算法的备注一下 马氏链模型 用来干什么 马尔可夫预测法是应用概率论中马尔可夫链(Markov chain)的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术。 什么时候用 应用马尔可夫链的计算方法进行马尔可夫分析,主要目的是根据某些变量现在的情 况及其变动趋向,来预测它在未来某特定区间可能产生的变动,作为提供某种决策的依 据。 马尔可夫链的基本原理 我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n季度是畅销还是滞销,用一个随机变量X n便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量X1,X2,…,X n,….称{ X t,t∈T ,T是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n }的参数为非负整数, X n 为离散随机变量,且{ X n }具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n }的参数n看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关.

对具有N 个状态的马氏链,描述它的概率性质,最重要的是它在n 时刻处于状态i 下一时刻转移到状态j 的一步转移概率: 若假定上式与n 无关,即 ====)()1()0(n p p p j i j i j i ,则可记为j i p (此时,称过程是平稳的),并记 ?? ? ? ?? ? ? ?=N N N N N N p p p p p p p p p P 2 12222111211 (1) 称为转移概率矩阵. 转移概率矩阵具有下述性质: (1)N j i p j i ,,2,1,,0 =≥.即每个元素非负. (2)N i p N j j i ,,2,1,11 ==∑=.即矩阵每行的元素和等于1. 如果我们考虑状态多次转移的情况,则有过程在n 时刻处于状态i ,n +k 时刻转移到状态j 的k 步转移概率: 同样由平稳性,上式概率与n 无关,可写成) (k j i p .记 ???? ??? ??=)()(2 )(1 )(2)(22)(21)(1)(12) (11) (k N N k N k N k N k k k N k k k p p p p p p p p p P (2) 称为k 步转移概率矩阵.其中) (k j i p 具有性质: N j i p k j i ,,2,1,,0) ( =≥; N i p N j k j i ,,2,1,11 ) ( ==∑=. 一般地有,若P 为一步转移矩阵,则k 步转移矩阵 ???? ?? ? ??=)()(2 )(1 )(2)(22)(21)(1)(12) (11) (k N N k N k N k N k k k N k k k p p p p p p p p p P (3)

马氏链模型及matlab程序

一、用法,用来干什么,什么时候用 二、步骤,前因后果,算法的步骤,公式 三、程序 四、举例 五、前面国赛用到此算法的备注一下 马氏链模型 用来干什么 马尔可夫预测法是应用概率论中马尔可夫链(Markov chain)的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术。 什么时候用 应用马尔可夫链的计算方法进行马尔可夫分析,主要目的是根据某些变量现在的情 况及其变动趋向,来预测它在未来某特定区间可能产生的变动,作为提供某种决策的依 据。 马尔可夫链的基本原理 我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n季度是畅销还是滞销,用一个随机变量X n便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量X1,X2,…,X n,….称{ X t,t∈T ,T是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n }的参数为非负整数, X n为离散随机变量,且{X n}具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{X n}的参数n看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关. 对具有N个状态的马氏链,描述它的概率性质,最重要的是它在n时刻处于状态i下一时刻转移到状态j的一步转移概率:

若假定上式与n 无关,即 ====)()1()0(n p p p j i j i j i ,则可记为j i p (此时,称过程是平稳的),并记 ?? ? ? ??? ? ?=N N N N N N p p p p p p p p p P 2 12222111211 (1) 称为转移概率矩阵. 转移概率矩阵具有下述性质: (1)N j i p j i ,,2,1,,0 =≥.即每个元素非负. (2)N i p N j j i ,,2,1,11 ==∑=.即矩阵每行的元素和等于1. 如果我们考虑状态多次转移的情况,则有过程在n 时刻处于状态i ,n +k 时刻转移到状态j 的k 步转移概率: 同样由平稳性,上式概率与n 无关,可写成) (k j i p .记 ???? ?? ? ??=)()(2 )(1 )(2)(22)(21)(1)(12) (11) (k N N k N k N k N k k k N k k k p p p p p p p p p P (2) 称为k 步转移概率矩阵.其中) (k j i p 具有性质: N j i p k j i ,,2,1,,0) ( =≥; N i p N j k j i ,,2,1,11 ) ( ==∑=. 一般地有,若P 为一步转移矩阵,则k 步转移矩阵 ???? ?? ? ??=)()(2 )(1 )(2)(22)(21)(1)(12) (11) (k N N k N k N k N k k k N k k k p p p p p p p p p P (3) (2)状态转移概率的估算 在马尔可夫预测方法中,系统状态的转移概率的估算非常重要.估算的方法通常有两种:一是主观概率法,它是根据人们长期积累的经验以及对预测事件的了解,对事件发生的可能性大小的一种主观估计,这种方法一般是在缺乏历史统计资料或资料不全的情况下

中天会计事务所马尔可夫模型例题(最完整的例题分析)

中天会计事务所马尔可夫模型例题一、问题分析 中天会计事务所由于公司业务日益繁忙,常造成公司事务工作应接不暇,解决该公司出现的这种问题的有效办法是要实施人力资源的供给预测技术。根据对该公司材料的深入分析,可采用马尔可夫模型这一供给预测方法对该事务所的人力资源状况进行预测。 马尔可夫分析法是一种统计方法,其方法的基本思想是:找出过去人力资源变动的规律,用以来推测未来人力变动的趋势。马尔可夫分析法适用于外在环境变化不大的情况下,如果外在环境变化较大的时候这种方法则难以用过去的经验情况预测未来。马尔可夫分析法的分析过程通常是分几个时期来收集数据,然后在得出平均值,利用这些数据代表每一种职位的人员变动频率,就可以推测出人员的变动情况。 二、项目策划 (一)第一步是编制人员变动概率矩阵表。 根据公司提供的内部资料:公司的各职位人员如下表1所示。 表1:各职位人员表 职位代号人数 合伙人P 40 经理M 80 高级会计师S 120 会计员 A 160 制作一个人员变动概率矩阵表,表中的每一个元素表示从一个时期到另一个时期(如从某一年到下一年)在两个工作之间调动的雇员数量的历年平均百分比(以小数表示)。(注:一般以3—5年为周期来估计年平均百分比。周期越长,根据过去人员变动所推测的未来人员变动就越准确。) 表2:历年平均百分比人员变动概率矩阵表 职位合伙人 P 经理M 高级会计师S 会计员A 职位年度离职升为 合伙 人 离职升为经 理 降为 会计 员 离职升为高级 会计师 离职 2005 0.20 0.08 0.13 0.07 0.05 0.11 0.12 0.11 2006 0.23 0.07 0.27 0.05 0.08 0.12 0.15 0.29 2007 0.17 0.13 0.20 0.08 0.03 0.10 0.17 0.20 2008 0.21 0.12 0.21 0.03 0.07 0.09 0.13 0.19 2009 0.19 0.10 0.19 0.02 0.02 0.08 0.18 0.21 平均0.20 0.10 0.20 0.05 0.05 0.10 0.15 0.20

马尔可夫链模型

马尔可夫链 在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。例如,微分方程的初值问题描述的物理系统属于这类随机性现象。随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。 在贝努利过程(){} ,1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。 在维纳过程(){} ,0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。 在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数 ()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进 入商店的顾客无关。 一、马尔可夫过程 定义:给定随机过程 (){},X t t T ∈。如果对任意正整数3n ≥,任意的 12,,1, ,n i t t t t T i n <<<∈=,任意的11, ,,n x x S -∈S 是()X t 的状态空间,总有 ()()()1111|,n n n n P X x X t x X t x --≤== ()() 11|,n n n n n P X x X t x x R --=≤=∈ 则称(){} ,X t t T ∈为马尔可夫过程。 在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12, ,n t t -是“过 去”。马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122, ,n n X t x X t x --==无关。这就体现了马尔可夫过程具有无后效性。 通常也把无后效性称为马尔可夫性。 从概率论的观点看,马尔可夫过程要求,给定()()1111,,n n X t x X t x --==时,() n X t 的条件分布仅与()11n n X t x --=有关,而与()()12, ,n X t X t -无关。

(完整版)马氏链模型及matlab程序

一、用法,用来干什么,什么时候用 二、步骤,前因后果,算法的步骤,公式 三、程序 四、举例 五、前面国赛用到此算法的备注一下 马氏链模型 用来干什么 马尔可夫预测法是应用概率论中马尔可夫链(Markov chain )的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术。 什么时候用 应用马尔可夫链的计算方法进行马尔可夫分析, 主要目的是根据某些变量现在的情 况及其变动趋向,来预测它在未来某特定区间可能产生的变动,作为提供某种决策的依 据。 马尔可夫链的基本原理 我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n 季度是畅销还是滞销,用一个随机变量X n 便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X 1,X 2,…,X n ,….称{ X t ,t ∈T ,T 是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n }的参数为非负整数, X n 为离散随机变量,且{ X n }具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n }的参数n 看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关. 对具有N 个状态的马氏链,描述它的概率性质,最重要的是它在n 时刻处于状态i 下一时刻转移到状态j 的一步转移概率: N j i n p i X j X P j i n n ,,2,1,) ()|(1 若假定上式与n 无关,即 )()1()0(n p p p j i j i j i ,则可记为j i p (此时,称过程是平稳的),并记 N N N N N N p p p p p p p p p P 212222111211 (1) 称为转移概率矩阵. 转移概率矩阵具有下述性质:

相关主题
文本预览
相关文档 最新文档