(完整word版)清华老师绝密高考数学压轴题完全解析
- 格式:doc
- 大小:416.01 KB
- 文档页数:8
THUSSAT北京市清华大学中学2025届高三压轴卷语文试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
1、下列各句中,没有语病的一项是A.中国男足主教练里皮在赛后发布会上提出辞职,中国足协接受这一辞职请求,并表示接下来将深刻反思,重组男足国家队,打好接下来的比赛。
B.过去的几年,我们调动粮食种植积极性,稳步提升粮食生产能力,全面建立粮食科技创新,着力强化依法合规经营,大力发展粮食产业经济。
C.时间会湮没许多记忆,但有些记忆其实并未消失,只需一个密码就会被激活,对于中国人来说歌曲《我和我的祖国》就是一个“密码”激活集体记忆。
D.将安宁权正式纳入法律体系,对我国法律体系的发展有着积极作用,未来安宁权的适用空间很大,线上线下都可能成为维护公民安宁权的重要途径。
2、补写出下列句子中的空缺部分。
(1)白居易《琵琶行》中的“____________,____________”两句用设问句式和借景抒情手法,自叙谪居卧病的境况,流露出迁谪之意。
(2)《诗经·氓》中写女主人公起初对爱情充满了渴望,她“____________”,遥望复关,看不见就“____________”,看见了就有说有笑。
(3)在《岳阳楼记》中,作者写道“迁客骚人”的“览物之情”会因景而异,在阴雨连绵时“登斯楼”就会产生“________________________”的悲伤心情。
3、下列各句中,没有错别字且加点字的注音全部正确的一项是A.传统节目形态已经玩不出花,综艺节目亟.(jí)须引入第三视角,以弥补、调和纪实内容的单薄.(báo),真人选秀+演播室观察的万能公式被证明奏效后,各大视频网站像抓住稻草一般蜂涌而上。
B.扬州火车站建在扬州古城西北,这里山岗迤.(yǐ)逦花木葱翠,扬州火车站就好像建在一片原始森林中,尤其是在三月,葳.(wēi)蕤花木掩映着现代化站房,就像书卷打开在这座历史文化名城的一角,给人以美感和遐思。
2017北京(19)(本小题13分)已知函数f (x )=e x cos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程;(Ⅱ)求函数f (x )在区间[0,2π]上的最大值和最小值.2017江苏20.(本小题满分16分)已知函数()321(0,)fx =x ax bx a b +++>∈R 有极值,且导函数()f x ,的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1) 求b 关于a 的函数关系式,并写出定义域;(2) 证明:b ²>3a ;(3) 若()f x ,()fx , 这两个函数的所有极值之和不小于7-2,求a 的取值范围.2017全国Ⅰ卷(理)21.(12分)已知函数()f x =a e 2x +(a ﹣2)e x ﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.2017全国Ⅱ卷(理)21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230e()2f x --<<.2017全国Ⅲ卷(理)21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值.2017山东理科(20)(本小题满分13分) 已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中 2.71828e =L 是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f x π处的切线方程;(Ⅱ)令()()()()h x g x af x a =-∈R ,讨论()h x 的单调性并判断有无极值,有极值时求出极值.2017天津(20)(本小题满分14分)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈U ,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],p x x q∈U 满足041||p x q Aq -≥.2017浙江理科20.(本题满分15分)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;(Ⅱ)求f(x)在区间1[+)2,上的取值范围.。
学科教学目标课堂教学过程WORD 格式整理版个性化教学辅导教案数学学生年级任课授课姓名七年级2021 年 11 月 9 日老师时间教学内容:期中复习考点:有理数、有理数的运算、实数、代数式能力:方法:课前作业完成情况:优□良□中□差□检查建议 :一、1、( 2 )2021( 0 . 5 ) 2021=、: (a2) 25│=0,a b2│ b3、小明在求一个多式减去222x —3x+5,加上 x—3x+5,得到的答案是 5x —2x+4,正确的答案是 _______________34、如果 x+y=5, 3-x-y=;如果x-y=4,8y-8x=5 、察以下式: x,-3x 2,5x 3 ,-7x 4,9x 5 , ⋯按此律,可以得到第2021 个式是______. 第 n 个式是 ________6、a,b,c在数上表示的点如所示, 化 |b|+|a+b|-|a-c|=_____________过程a c o b7、算20212021的果是 __________118、一个三位数的个位数字是a,十位数字是b,百位数字是c,那么这个三位数是__________9、2021年 5 月 5日,奥运火炬手携着象征“和平、友、步〞的奥运圣火火种,离开海拔 5200 米的“珠峰大本〞,向山攀登.他在海拔每上升 100 米,气温就下降0.6 ℃的低温和缺氧的情况下,于 5 月 8 日 917 分,成功登上海拔米的地球最高点.而此“ 珠峰大本〞的温度 -4 ℃,峰的温度〔果保留整数〕WORD 格式整理版m2210 、多 式3xy(m2) x y1是四次三 式, m 的11、如 所示的运算程序中,假设开始 入的 x48,我 第一次 出的 果24,第二次 出的 果12,⋯, 第 2021 次 出的 果x 为偶数1 x2输入 x输出x 为奇数x + 3(第 11 题)12、数学学科中有 多奇妙而有趣的 象,很多秘密等待我 去探索,比方, 于每一个大于 100 的 3的倍数,求 个数每一个数位的数字的立方和,将所得的和重复上述操作, 一直 下去, 果最 得到一个固定不 的数R ,它会掉入一个数字“陷阱〞,那么最 掉入“陷阱〞的 个固定不 的数R=____________13、 两个同样大小的正方体积木,每个正方体上相对两个面上写的数字之和都等于3,现将两个这样的正方体重叠放置〔如图〕 ,且看得见的五个面上的数如下图,问看不见的七个面上所写的数之和是54123二、1、以下 法不正确的有 ( )第 13①1 是 最小的数② 3a -2 的相反数是- 3a+2③ 5 R 2 的系数是 5④ 一个有理数不是整数就是分数⑤ 34 x 3 是 7 次 式 A.1 个个个个2 、当 x 2 , 整 式 px 3qx 1 的 等于2002,那么当 x2 , 整 式px 3qx1 的 〔〕A 、2001B、-2001C、 2000D 、 -20003、有理数 x 的近似 是 5.4 , x 的取 范 是〔〕B.5.35<x≤≤≤x ≤4、x 2 +ax-2y+7- (bx2-2x+9y-1) 的 与 x 的取 无关 , a+b 的 ( )WORD 格式整理版A.-1;B.1;215、假设 0<m<1, m、m、m的大小关系是 ()21211212A.m<m< m ;<m<m; C.m<m<m; D.m <m<m6、下面的说法中,正确的个数是〔〕①假设 a+b=0, 那么|a|=|b|②假设|a|=a,那么 a>0③假设|a|=|b|, 那么a=b ④假设 a 为有理数,那么a =aA.1 个个个个7、有理数 a, b 满足 a>0 ,b<0 ,|a|<|b|,那么a,b, -a, -b的大小顺序是〔〕A. -a< b< a< -bB. b< -a<a<-bC. -a<-b<b<aD. b<-a<-b<a8、在数轴上 A 点和 B 点所表示的数分别为2 和 1,假设使 A 点表示的数是 B 点表示的数的3倍,那么应将A点()A.向左移动 5 个单位长度 B .向右移动 5 个单位长度C.向右移动 4 个单位长度D.向左移动 1 个单位长度或向右移动 5 个单位长度9、对近似数0.08 万,下面的说法正确的选项是A .精确到 0.01 ,有三个有效数字B.精确到 0.01 ,有两个有效数字C.精确到百位,有一个有效数字D.精确到百位,有两个有效数字10、假设 a,b 互为相反数,m,n 互为倒数,k 的算术平方根为 2 ,那么100a99b mnb k 2的值为A.-4B. 4C. -96D.10411、假设 a3 , b 2 ,且 a b <0,那么a b 的值等于〔〕WORD 格式整理版12、察以下各式:121123012323123412333413452343⋯⋯算: 3×(1 ×2+2×3+3×4+⋯+99×=100)A .97×98×99 B.98×99×100C .99×100×101 D.100×101×102二、解答题1、堂上李老出了一道整式求的目,李老把要求的整式〔7 a 3-6 a 3b +3 a 2b〕-〔- 3 a 3- 6 a 3b+ 3 a 2b+10 a 3-3〕写完后,王同学便出一a、b 的,老自己答案,当王完:“a=65, b=- 2005〞后,李老不假思索,立刻就出答案“ 3〞. 同学莫名其妙,得不可思,但李老用定的口吻:“ 个答案准确无〞,的同学你相信?你能出其中的道理?2、数学生活践如果今天是星期天,你知道再2100天是星期几?WORD 格式整理版大家都知道,一个星期有 7 天,要解决个,我只需知道2100被 7 除的余数是多少,假余数是1,因今天是星期天,那么再么多天就是星期一;假余数是 2,那么再么多天就是星期二;假余数是3,那么再么多天就是星期三⋯⋯因此,我就用下面的践来解决个。
上册数学压轴题优质(提高,Word版含解析)汇编经典一、压轴题1.如图,数轴上点A、B表示的点分别为-6和3(1)若数轴上有一点P,它到A和点B的距离相等,则点P对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q从点P出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q点与B点的距离等于 Q点与A点的距离的2倍?若存在,求出点Q运动的时间,若不存在,说明理由.2.如图9,点O是数轴的原点,点A表示的数是a、点B表示的数是b,且数a、b满足()2-++=.a b6120(1)求线段AB的长;(2)点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动.设点A、B同时出发,运动时间为t秒,若点A、B能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A和点B都向同一个方向运动时,直接写出经过多少秒后,点A、B两点间的距离为20个单位.-,3,点P是射线AB上的一个动点3.如图,数轴上点A,B表示的有理数分别为6(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.4.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C是线段AB上的一点,M是AC的中点,N是BC的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)5.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?6.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.7.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .8.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 9.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.10.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQ AB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.11.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24+ BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值12.设A、B、C是数轴上的三个点,且点C在A、B之间,它们对应的数分别为x A、x B、x C.(1)若AC=CB,则点C叫做线段AB的中点,已知C是AB的中点.①若x A=1,x B=5,则x c=;②若x A=﹣1,x B=﹣5,则x C=;③一般的,将x C用x A和x B表示出来为x C=;④若x C=1,将点A向右平移5个单位,恰好与点B重合,则x A=;(2)若AC=λCB(其中λ>0).①当x A=﹣2,x B=4,λ=13时,x C=.②一般的,将x C用x A、x B和λ表示出来为x C=.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)-1.5;(2)存在这样的时刻,点Q运动的时间为0.5秒或4.5秒.【解析】【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q在A的左侧或在A的右侧时,根据Q点与B点的距离等于Q点与A点的距离的2倍可得结论;【详解】解:(1)数轴上点A表示的数为-6;点B表示的数为3;∴AB=9;∵P到A和点B的距离相等,∴点P对应的数字为-1.5.(2)由题意得:设Q点运动得时间为t,则QB=4.5+3t,QA=4.53t-分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -,t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -,t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.2.(1)18;(2)6或18秒;(3)2或38秒【解析】【分析】(1)根据偶次方以及绝对值的非负性求出a 、b 的值,可得点A 表示的数,点B 表示的数,再根据两点间的距离公式可求线段AB 的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A 、B 两点间的距离为20个单位分别列出方程即可求解.【详解】解:(1)∵|a ﹣6|+(b +12)2=0,∴a ﹣6=0,b +12=0,∴a =6,b =﹣12,∴AB =6﹣(﹣12)=18;(2)设点A 、B 同时出发,运动时间为t 秒,点A 、B 能够重合时,可分两种情况: ①若相向而行,则2t+t =18,解得t =6;②若同时向右而行,则2t ﹣t =18,解得t =18.综上所述,经过6或18秒后,点A 、B 重合;(3)在(2)的条件下,即点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动,设点A 、B 同时出发,运动时间为t 秒,点A 、B 两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t )-(-12-2t )=20,解得:t=2;②若两点均向右,则(-12+2t )-(6+t )=20,解得:t=38;综上,经过2或38秒时,A 、B 相距20个单位.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用.3.(1)6;6;(2)不发生改变,MN 为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP、NP的长度;(2)分-6<a <3及a >3两种情况找出MP 、NP 的长度(用含字母a 的代数式表示).4.(1)①3;②12a ;(2)③40︒;④40;(3)12n 【解析】【分析】(1)①先求出BC ,再根据中点求出AM 、BN ,即可求出MN 的长;②利用①的方法求MN 即可;(2)③先求出∠BOC ,再利用角平分线的性质求出∠AOM ,∠BON ,即可求出∠MON ; ④利用③的方法求出∠MON 的度数;(3)先求出∠BOC ,利用角平分线的性质分别求出∠AOM ,∠BON ,再根据角度的关系求出答案即可.【详解】(1)①∵6AB =,2AC =,∴BC=AB-AC=4,∵M 是AC 的中点,N 是BC 的中点. ∴112AM AC ==, 122BN BC ==, ∴MN=AB-AM-BN=6-1-2=3; ②∵AB a ,AC b =,∴BC=AB-AC=a-b ,∵M 是AC 的中点,N 是BC 的中点. ∴12AM b =,1()2BN a b =-, ∴MN=AB-AM-BN=11()22a b a b ---=12a , 故答案为:12a ; (2)③∵80AOB ∠=︒,30AOC ∠=︒,∴∠BOC=∠AOB-∠AOC=50︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=15︒,∠BON=25︒,∴∠MON=∠AOB-∠AOM-∠BON=40︒;④∵80AOB ∠=︒,AOC m ∠=︒,∴∠BOC=(80-m)︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=12m ,∠BON=(40-12m )︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒,故答案为:40;(3)∵AOB n ∠=︒,AOC m ∠=︒,∴∠BOC=∠AOC-∠AOB=(m-n)︒,∵AOC ∠和BOC ∠的角平分线分别是OM ,ON ,∴∠AOM=12m ,∠CON=1()2m n -, ∴∠MON=∠AOC-∠AOM-∠CON=111()222m m m n n ---=, 故答案为:12n . 【点睛】此题考查线段的和差计算,角度的和差计算,线段中点的性质,角平分线的性质,解题中注意规律性解题思想的总结和运用.5.(1)2;(2)52x MC =+;(3)当25x =-或6x =时,有2AP CM PC -=成立. 【解析】【分析】(1)根据中点的定义,即可求出点C 的坐标;(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值.【详解】解:(1)点A 表示的数为10-,点B 表示的数为14,∴线段AB=14(10)24--=,∴点C 表示的数为:142422-÷=; (2)根据题意,点M 表示的数为:142x +, ∴线段MC 的长度为:142522x x +-=+; (3)根据题意,线段AP 的长度为:10x +,线段MC 的长度为:52x +, 线段PC 的长度为:2x -,∵2AP CM PC -=,∴10(5)222xx x +-+=-,整理得:15242x x -=+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242x x -=+, 解得:25x =-; ②当点P 与点C 重合时,2x =, ∴15042x +=, 解得:10x =-(不符合题意,舍去);③当点P 在点C 的右边时,2x >,则20x -<, ∴15242x x -=+, 解得:6x =. ∴当25x =-或6x =时,有2AP CM PC -=成立. 【点睛】本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离.6.(1)17cm EF =;(2)EF 的长度不变,17cm EF =;(3)()12EOF AOB COD ∠=∠+∠. 【解析】【分析】 (1)根据已知条件求出BD=18cm ,再利用E 、F 分别是AC 、BD 的中点, 分别求出AE 、BF 的长度,即可得到EF ;(2)根据中点得到12EC AC =,12DF DB =,由EF EC CD DF =++推导得出EF=()12AB CD +,将AB 、CD 的值代入即可求出结果; (3)由OE 、OF 分别平分AOC ∠和BOD ∠得到12COE AOC ∠=∠, 12DOF BOD ∠=∠,即可列得EOF COE COD DOF ∠=∠+∠+∠,通过推导得出()12EOF AOB COD ∠=∠+∠. 【详解】 (1)∵30cm AB =,4cm CD =,8cm AC ,∴308418BD AB AC CD =--=--=cm ,∵E 、F 分别是AC 、BD 的中点, ∴142AE AC ==cm , 192BF BD ==cm , ∴304917EF AB AE BF =--=--=cm ,故17cm EF =;(2)EF 的长度不变. 17cm EF =∵E 、F 分别是AC 、BD 的中点, ∴12EC AC =,12DF DB = ∴EF EC CD DF =++1122AC CD BD =++ 1()2AC BD CD =++ ()12AB CD CD =-+ ()117cm 2AB CD =+= (3)∵OE 、OF 分别平分AOC ∠和BOD ∠, ∴12COE AOC ∠=∠, 12DOF BOD ∠=∠, ∴EOF COE COD DOF ∠=∠+∠+∠,1122AOC COD BOD =∠+∠+∠, 1()2AOC BOD COD =∠+∠+∠, 1()2AOB COD COD =∠-∠+∠, ()12AOB COD =∠+∠, ∴()12EOF AOB COD ∠=∠+∠. 【点睛】 此题考查线段的和差、角的和差计算,解题中会看图形,根据图中线段或角的大小关系得到和差关系,由此即可正确解题.7.(1)经过30s ,P 、Q 两点相遇(2)答案不唯一,具体见解析(3)10【解析】【分析】(1)设经过t 秒时间P 、Q 两点相遇,根据OP+CQ=OA+AB+AC 列出方程即可解决问题; (2)分两种情形求解即可; (3)用t 表示AP 、EF 的长,代入化简即可解决问题;【详解】(1)设运动时间为t ,则290t t +=,30t =;所以经过30s ,P 、Q 两点相遇 (2)当点P 在线段AB 上时,如下图,AP+PB=60,∴AP=40,OP=50,∴P 用时50s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为56/cm s ;当点P 在线段AB 的延长线上时,如下图,AP=2PB,∴AP=120,OP=140,∴P 用时140s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为514/cm s ;(3)如下图,由题可知,OC=90,AP=x-20,EF=OF-OE=OF-12OP=50-12x, ∴2OC AP EF --=90-(x-20)-2(50-12x)=10 【点睛】 本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,找到等量关系,注意分类讨论是解题关键.8.(1)∠MON的度数为80°;(2)∠MON的度数为70°或90°;(3)t的值为21.【解析】【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t的式子表示角度,再根据已知条件即可求解.【详解】解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=12∠AOB,∠BON=12∠BOD,即∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠BON=12∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×180°﹣20°②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=12∠AOC+12∠BOD+∠BOC=12(∠AOC+∠BOD)+∠BOC=12(∠AOD﹣∠BOC)+∠BOC=12×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=12∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=12∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t的值为21.【点睛】本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.9.(1)40º;(2)84º;(3)7.5或15或45【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.10.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.11.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM =12PA =.N 为PB 的三等分点且靠近于P 点,∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变). ②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.12.(1)①3;②-3;③2A B x x +;④-1.5;(2)①421λλ-+;②11λ+x A +1+λλx B . 【解析】【分析】(1)①②分别按所给的关系式及点在数轴上的位置,计算即可;③根据①②即可得到答案;④根据平移关系用x A +5表示出x B ,再按③中关系式计算即可;(2)①根据AC =λCB ,将x A =﹣2,x B =4,λ=13代入计算即可; ②根据AC =λCB ,变形计算即可.【详解】(1)C 是AB 的中点,①∵x A =1,x B =5, ∴x c =512+=3, 故答案为:3; ②∵x A =﹣1,x B =﹣5,∴x C =512--=﹣3 故答案为:﹣3;③ x C =2AB x x +, 故答案为:2A B x x +;④∵将点A 向右平移5个单位,恰好与点B 重合,∴x B =x A +5,∴x C =2A B x x +=52A A x x ++=1, ∴x A =﹣1.5 故答案为:﹣1.5;(2)①∵AC =λCB ,x A =﹣2,x B =4,λ=13, ∴x C ﹣(﹣2)=λ(4﹣x C )∴(1+λ)x C =4λ﹣2,∴x C =421λλ-+, 故答案为:421λλ-+; ②∵AC =λCB ∴x C ﹣x A =λ(x B ﹣x C )∴(1+λ)x C =x A +λx B∴x C =11λ+x A +1λλ+x B 故答案为:11λ+x A +1λλ+x B . 【点睛】此题考查是线段类规律题,通过探究得出数轴上两点间的任意点的坐标的规律,正确理解题意是解题的关键.。
清华大学附中2025届高考冲刺押题(最后一卷)数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.36πB.64πC.144πD.256π2.函数()3sin 3xf x xπ=+的图象的大致形状是()A.B.C.D.3.231+=-ii()A.15i22-+B.1522i--C.5522i+D.5122i-4.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的1a,2a,3a,,50a为茎叶图中的学生成绩,则输出的m,n分别是()A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n =5.执行如图所示的程序框图,若输入ln10a =,lg b e =,则输出的值为( )A .0B .1C .2lg eD .2lg106.设复数z 满足|3|2z -=,z 在复平面内对应的点为(,)M a b ,则M 不可能为( ) A .(2,3) B .(3,2)C .(5,0)D .(4,1)7.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( )A .2B .3C .7D .88.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( )A .甲班的数学成绩平均分的平均水平高于乙班B .甲班的数学成绩的平均分比乙班稳定C .甲班的数学成绩平均分的中位数高于乙班D .甲、乙两班这5次数学测试的总平均分是103 9.i 是虚数单位,21iz i=-则||z =( )A .1B .2C .2D .2210.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2c ,过左焦点1F 作斜率为1的直线交双曲线C 的右支于点P ,若线段1PF 的中点在圆222:O x y c +=上,则该双曲线的离心率为( ) A .2B .22C .21+D .221+11.已知函数3sin ()(1)()x xx xf x x m x e e-+=+-++为奇函数,则m =( ) A .12B .1C .2D .312.已知向量()22cos ,3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 二、填空题:本题共4小题,每小题5分,共20分。
3.若变量 x, y 满足约束条件 ⎨x ≥ 1, ,则 z = 2 x + y 的最大值为()⎪ y ≥ 0北京市 2020 年高考文科数学压轴卷(含解析)一、选择题共 8 小题,每小题 5 分,共 40 分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知 (1+ b i)i = -1 + i(b ∈ R) ,则 b 的值为()A. 1B. -1C. iD. -i2.下列函数中,值域为 R 的偶函数是( )A .y=x 2+1B .y=e x ﹣e ﹣xC .y=lg|x|D . y = x 2⎧x + y ≤ 2, ⎪⎩A . 0B . 2C . 3D . 44. 某程序框图如图所示,执行该程序,若输入的a 值为 1,则输出的 a 值为()开始输入否是输出结束A. 1B. 2C. 3D. 55.某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A .27B .30C .32D .3613.若 0 < a < b < 1 , x = a b , y = b a , z = log a ,则 x , y , z 有小到大排列为.6 ) + 1 的最小正周期是,最小值是.10.已知 cos α = , α ∈ 0, ⎪ ,则 cos + α ⎪ = ______.6. “ ab = 4 ”是直线 2x + ay -1 = 0 与直线 bx + 2 y - 2 = 0 平行的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.已知点 Q (2 2,0) 及抛物线 x 2 = 4 y 上一动点 P( x , y) ,则 y + | PQ | 的最小值是()A .1B .1C .2D . 328. 设 函 数 f ( x ) 的 定 义 域 D , 如 果 存 在 正 实 数 m , 使 得 对 任 意 x ∈ D , 都 有f ( x + m ) > f ( x ) ,则称 f ( x ) 为 D 上的“ m 型增函数”,已知函数 f ( x ) 是定义在 R 上的奇函数,且当 x > 0 时, f ( x ) = x - a - a ( a ∈ R ).若 f ( x ) 为 R 上的“20 型增函数”,则实数 a 的取值范围是()A . a > 0B . a < 5C . a < 10D . a < 20二、填空题(本大题共 6 个小题,每小题 5 分,满分 30 分.把答案填在题中的横线上.)9.函数 y = 2sin(2 x +π3 ⎛ π ⎫ ⎛ π ⎫ 5 ⎝ 2 ⎭ ⎝ 3 ⎭11. 如果平面直角坐标系中的两点 A(a - 1,a + 1) , B(a, a ) 关于直线 l 对称,那么直线 l 的方程为_.12.在平面向量 a,b 中,已知 a = (1,3) , b = (2,y) ,.如果 a ⋅ b = 5 ,那么 y = _____;如果a +b = a -b ,那么 y = ______b1 = 1 , a + + L + <2 . , ⎥ ,都有 f (x ) ≥ -3 .(Ⅱ)求证:对于任意的 x ∈ ⎢- 14.数列{a } 满足: ann -1+ an +1> 2a (n > 1,n ∈ N * ) ,给出下述命题:n①若数列{a } 满足: a > a ,则 a > an21n n -1(n > 1, n ∈ N * ) 成立;②存在常数 c ,使得 a > c (n ∈ N * ) 成立;n③若 p + q > m + n (其中p , q , m , n ∈ N *) ,则 a + a > a + a ;p qmn④存在常数 d ,使得 a > a + (n - 1)d (n ∈ N * ) 都成立.n1上述命题正确的是____.(写出所有正确结论的序号)三、解答题共 6 小题,共 80 分。
高中数学《双曲线》大题50题高中数学《双曲线》大题50题及答案解析1.在①m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,②C的焦距为6,③C上一点到两焦点距离之差的绝对值为4.这三个条件中任选一个,补充在下面的问题中.问题:已知双曲线C:﹣=1,_____,求C的方程.2.已知双曲线C的右焦点F,半焦距c=2,点F到直线的距离为,过点F作双曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求双曲线C的标准方程;(2)证明:直线MN必过定点,并求出此定点的坐标.3.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.4.在平面直角坐标系中,已知双曲线I:,A,B分别为I的左,右顶点.(1)以A为圆心的圆与I恰有三个不同的公共点,写出此圆的方程;(2)直线L过点A,与I在第一象限有公共点P,线段AP的垂直平分线过点B,求直线L的方程;(3)I上是否存在异于A、B点M、N,使+2=成立,若存在,求出所有M、N的坐标,若不存在说明理由.5.(Ⅰ)已知中心在原点的双曲线C的焦点坐标为,,且渐近线方程为,求双曲线C的标准方程;(Ⅱ)在圆x2+y2=3上任取一点P,过点P作y轴的垂线段PD,D为垂足,当点P在该圆上运动时,求线段PD的中点M的轨迹方程.6.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.7.2018年世界人工智能大会已于2018年9月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏,如图:A、B两个信号源相距10米,O是AB的中点,过O点的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足:接收到A点的信号比接收到B点的信号晚秒(注:信号每秒传播v0米).在时刻t0时,测得机器鼠距离O点为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时刻t0时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?8.已知离心率为2的双曲线C的一个焦点F(c,0)到一条渐近线的距离为.(1)求双曲线C的方程;(2)设A1,A2分别为C的左右顶点,P为C异于A1,A2一点,直线A1P与A2P分别交y 轴于M,N两点,求证:以线段MN为直径的圆D经过两个定点.9.已知F1,F2为双曲线的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.10.已知双曲线的一条渐近线方程为,点在双曲线上,抛物线y2=2px(p>0)的焦点F与双曲线的右焦点重合.(Ⅰ)求双曲线和抛物线的标准方程;(Ⅱ)过点F做互相垂直的直线l1,l2,设l1与抛物线的交点为A,B,l2与抛物线的交点为D,E,求|AB|+|DE|的最小值.高中数学资料共享群734924357每天都有更新!11.已知椭圆=1(a>b>0}),点A、点B分别是椭圆上关于原点对称的两点,点P是椭圆上不同于点A和点B的任意一点.(1)求证:直线PA的斜率与直线PB的斜率之积为定值,并求出定值;(2)试对双曲线=1写出具有类似特点的正确结论,并加以证明.12.如图,若F1,F2是双曲线﹣=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.13.已知双曲线过点(3,﹣2)且与椭圆4x2+9y2=36有相同的焦点.(1)求双曲线标准方程;(2)若点M在双曲线上,F1,F2分别是双曲线的左、右焦点,且|MF1|=2|MF2|,求△MF1F2的面积.14.设双曲线=1,其虚轴长为2,且离心率为.(1)求双曲线C的方程;(2)过点P(3,1)的动直线与双曲线的左右两只曲线分别交于点A、B,在线段AB上取点M使得=,证明:点M落在某一定直线上;(3)在(2)的条件下,且点M不在直线OP上,求△OPM面积的取值范围.15.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;高中数学资料共享群734924357每天都有更新!(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.16.已知双曲线=1(b>a>0)渐近线方程为y=±x,O为坐标原点,点在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知P,Q为双曲线上不同两点,点O在以PQ为直径的圆上,求的值.17.设双曲线﹣=1的两个焦点分别为F1、F2,离心率为2.(1)若A、B分别为此双曲线的渐近线l1、l2上的动点,且2|AB|=5|F1F2|,求线段AB 的中点M的轨迹方程,并说明轨迹是什么曲线;(2)过点N(1,0)能否作出直线l,使l交双曲线于P、Q两点,且•=0,若存在,求出直线l的方程;若不存在,说明理由.18.已知双曲线,(1)求以双曲线的顶点为焦点,焦点为顶点的椭圆E的方程.(2)点P在椭圆E上,点C(2,1)关于坐标原点的对称点为D,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由.19.已知双曲线C:﹣=1(a>0,b>0)的两个焦点分别为(﹣2,0)和(2,0),点P(3,)在双曲线C上.(Ⅰ)求双曲线C的方程;高中数学资料共享群734924357每天都有更新!(Ⅱ)过点A(0,2)的直线与双曲线C交于不同的两点E、F,若坐标原点O与E、F构成的三角形面积为2,求直线l的方程.20.已知双曲线的左右两个顶点是A1,A2,曲线C上的动点P,Q关于x轴对称,直线A1P与A2Q交于点M,(1)求动点M的轨迹D的方程;(2)点E(0,2),轨迹D上的点A,B满足,求实数λ的取值范围.21.已知圆M:(x+1)2+y2=,圆N:(x﹣1)2+y2=,动圆D与圆M外切并与圆N内切,圆心D的轨迹为曲线E.(1)求曲线E的方程;(2)若双曲线C的右焦点即为曲线E的右顶点,直线y=x为C的一条渐近线.①求双曲线C的方程;②过点P(0,4)的直线l,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合),当,且λ1+λ2=﹣时,求Q点的坐标.22.已知双曲线的离心率为e,经过第一、三象限的渐近线的斜率为k,且e≥k.(1)求m的取值范围;高中数学资料共享群734924357每天都有更新!(2)设条件p:e≥k;条件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分条件,求a的取值范围.23.已知F1,F2分别是双曲线的左右焦点,点P是双曲线上任一点,且||PF1|﹣|PF2||=2,顶点在原点且以双曲线的右顶点为焦点的抛物线为L.(Ⅰ)求双曲线C的渐近线方程和抛物线L的标准方程;(Ⅱ)过抛物线L的准线与x轴的交点作直线,交抛物线于M、N两点,问直线的斜率等于多少时,以线段MN为直径的圆经过抛物线L的焦点?24.若抛物线的顶点是双曲线x2﹣y2=1的中心,焦点是双曲线的右顶点(1)求抛物线的标准方程;(2)若直线l过点C(2,1)交抛物线于M,N两点,是否存在直线l,使得C恰为弦MN 的中点?若存在,求出直线l方程;若不存在,请说明理由.25.已知双曲线过点A(1,1),它的焦点F在其渐近线上的射影记为M,且△OFM(O为原点)的面积为.(Ⅰ)求双曲线的方程;(Ⅱ)过点A作双曲线的两条动弦AB,AC,设直线AB,直线AC的斜率分别为k1,k2,且(k1+1)(k2+1)=﹣1恒成立,证明:直线BC的斜率为定值.26.已知双曲线C:﹣=1(a>0,b>0)的一条渐近线与直线x=交于点M,双曲线C的离心率e=,F是其右焦点,且|MF|=1.(Ⅰ)求双曲线C的方程;(Ⅱ)过点A(0,1)的直线l与双曲线C的右支交于不同两点P、Q,且P在A、Q之间,若=λ且,求直线l斜率k的取值范围.27.已知双曲线C:﹣=1 的离心率是,其一条准线方程为x=.(Ⅰ)求双曲线C的方程;(Ⅱ)设双曲线C的左右焦点分别为A,B,点D为该双曲线右支上一点,直线AD与其左支交于点E,若=λ,求实数λ的取值范围.28.双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(a,0),B(0,﹣b).(1)求双曲线的方程;高中数学资料共享群734924357每天都有更新!(2)若B1是双曲线虚轴在y轴正半轴上的端点,过B作直线与双曲线交于M,N两点,求B1M⊥B1N时,直线MN的方程.29.已知椭圆C与双曲线﹣=1有公共焦点,且离心率e=,(1)求椭圆的标准方程;(2)已知点P是椭圆C上的一动点,过点P作x轴的垂线段PD,D为垂足,当点P在椭圆上运动时,线段PD的中点M的轨迹是什么?30.已知两点A(0,﹣1),B(0,1),P(x,y)是曲线C上一动点,直线PA、PB斜率的平方差为1.(1)求曲线C的方程;(2)E(x1,y1),F(x2,y2)是曲线C上不同的两点,Q(2,3)是线段EF的中点,线段EF的垂直平分线交曲线C于G,H两点,问E,F,G,H是否共圆?若共圆,求圆的标准方程;若不共圆,说明理由.31.双曲线S的中心在原点,焦点在x轴上,离心率e=,直线x﹣3y+5=0上的点与双曲线S的右焦点的距离的最小值等于.(1)求双曲线S的方程;(2)设经过点(﹣2,0),斜率等于k的直线与双曲线S交于A,B两点,且以A,B,P (0,1)为顶点的三角形ABP是以AB为底的等腰三角形,求k的值.32.已知双曲线=1(a>0,b>0)的两条渐近线与抛物线C:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为(1)求抛物线C的方程;(2)过点D(﹣1,0)的直线l与抛物线C交于不同的两点E,F,若在x轴上存在一点P(x0,0)使得△PEF是等边三角形,求x0的值.33.在平面直角坐标系xoy中,已知双曲线﹣y2=1的左、右顶点分别为A1,A2,点P(x0,y0),Q(x0,﹣y0)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)过坐标原点O作一条直线交轨迹E于A,B两点,过点B作x轴的垂线,垂足为点C,连AC交轨迹E于点D,求证:AB⊥BD.34.已知双曲线C:=1(a>0,b>0)的离心率为,实轴长为2 (Ⅰ)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C 交于不同的两点A,B,证明∠AOB的大小为定值.35.已知曲线Γ上的点到F(1,0)的距离比它到直线x=﹣3的距离小2,过F的直线交曲线Γ于A,B两点.(1)求曲线Γ的方程;(2)若,求直线AB的斜率;(3)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.36.已知点在双曲线上,且双曲线的一条渐近线的方程是.(1)求双曲线C的方程;(2)过点(0,1)且斜率为k的直线l与双曲线C交于A、B两个不同点,若以线段AB 为直径的圆恰好经过坐标原点,求实数k的值.37.已知点是椭圆C:的一个顶点,椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P(x0,y0)是定点,直线交椭圆C于不同的两点A、B,记直线PA、PB的斜率分别为k1、k2,求点P的坐标,使得k1+k2=0恒成立.38.已知双曲线C:的离心率为,点(4,2)在C上.(Ⅰ)求双曲线C的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,且直线l与双曲线C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.39.已知命题P“双曲线﹣=1上任意一点Q到直线l1:bx+ay=0,l2:bx﹣ay=0的距离分别记作d1,d2则d1,d2为定值”是真命题(1)求出d1•d2的值(2)已知直线l1,l2关于y轴对称且使得椭圆C:+=1上任意点到l1,l2的距离d1,d2满足为定值,求l1,l2的方程(3)已知直线m与(2)中某一条直线平行(或重合)且与椭圆C交于M,N两点,求|OM|+|ON|的最大值.40.椭圆与双曲线有许多优美的对称性质.对于椭圆+=1(a>b>0)有如下命题:AB是椭圆+=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM•k AB=﹣,为定值.那么对于双曲线﹣=1(a>0,b>0)则有命题:AB 是双曲线﹣=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM•k AB=定值.(在横线上填上正确的结论)并证明你的结论.41.如图,已知双曲线,过点P(0,﹣1)的直线l分别交双曲线C的左、右两支于点A,B,交双曲线C的两条渐近线于点D,E(点D在y轴的左侧).(1)若,求直线l的方程;(2)求的取值范围.42.已知双曲线C1:x2﹣=1(b>0),A(x A,b2)是C1上位于第二象限内的一点,曲线C2是以点C(0,b2+1)为圆心过点A的圆上满足y>b2的部分.曲线Γ由C1上满足y≤b2的部分和C2组成.记F1,F2为C1的左、右焦点.(1)若△CF1F2为等边三角形,求x A;(2)若直线AC与Γ恰有两个公共点,求b的最小值;(3)设b=1,过A的直线l与Γ相交于另外两点P、Q,求l的倾斜角的取值范围.43.如图,在平面直角坐标系xOy中,已知等轴双曲线E:(a>0,b>0)的左顶点A,过右焦点F且垂直于x轴的直线与E交于B,C两点,若△ABC的面积为.(1)求双曲线E的方程;(2)若直线l:y=kx﹣1与双曲线E的左,右两支分别交于M,N两点,与双曲线E的两条渐近线分别交于P,Q两点,求的取值范围.44.已知曲线,Q为曲线C上一动点,过Q作两条渐近线的垂线,垂足分别是P1和P2.(1)当Q运动到时,求的值;(2)设直线l(不与x轴垂直)与曲线C交于M、N两点,与x轴正半轴交于T点,与y 轴交于S点,若,,且λ+μ=1,求证T为定点.45.设双曲线的左顶点为D,且以点D为圆心的圆D:(x+2)2+y2=r2(r>0)与双曲线C分别相交于点A,B,如图所示.(1)求双曲线C的方程;(2)求的最小值,并求出此时圆D的方程;(3)设点P为双曲线C上异于点A,B的任意一点,且直线PA,PB分别与x轴相交于点M,N,求证:|OM|•|ON|为定值(其中O为坐标原点).46.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.47.已知双曲线C的一个焦点为,且过点.如图,F1,F2为双曲线的左、右焦点,动点P(x0,y0)(y0≥1)在C的右支上,且∠F1PF2的平分线与x轴、y 轴分别交于点M(m,0)(﹣<m<)、N,设过点F1,N的直线l与C交于D,E两点.(Ⅰ)求C的标准方程;(Ⅱ)求△F2DE的面积最大值.48.直线上的动点P到点T1(9,0)的距离是它到点T(1,0)的距离的3倍.(1)求点P的坐标;(2)设双曲线的右焦点是F,双曲线经过动点P,且,求双曲线的方程;(3)点T(1,0)关于直线x+y=0的对称点为Q,试问能否找到一条斜率为k(k≠0)的直线L与(2)中的双曲线交于不同的两点M、N,且满足|QM|=|QN|,若存在,求出斜率k的取值范围,若不存在,请说明理由.49.已知双曲线C1:的渐近线方程为y=±x,且过点,其离心率为e,抛物线C2的顶点为坐标原点,焦点为.(I)求抛物线C2的方程;(II)O为坐标原点,设A,B是抛物线上分别位于x轴两侧的两个动点,且=12.(i)求证:直线AB必过定点,并求出该定点P的坐标;(ii)过点P作AB的垂线与抛物线交于C,D两点,求四边形ACBD面积的最小值.50.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型建筑物.建在水源不十分充分的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.图1)(1)图2为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径.已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m,俯视图为三个同心圆,其半径分别为40m,m,30m,试根据上述尺寸计算主视图中该双曲线的标准方程(m为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,y=0,y=h,绕y轴旋转形成的旋转体的体积为(用a,b,h表示)(用积分计算不得分,图3、图4)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m(底部),最薄处厚度为0.3m(喉部,即左右顶点处).试计算该冷却塔内壳所在的双曲线标准方程是,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是m3(计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加.现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元)高中数学《双曲线》大题50题答案解析1.在①m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,②C的焦距为6,③C上一点到两焦点距离之差的绝对值为4.这三个条件中任选一个,补充在下面的问题中.问题:已知双曲线C:﹣=1,_____,求C的方程.【解析】选①.因为m>0,所以a2=m,b2=2m,c2=3m,所以a=,c=,因为C的左支上任意一点到右焦点的距离的最小值为a+c,所以a+c=+=3+,解得m=3,故C的方程为﹣=1;选②.若m>0,则a2=m,b2=2m,c2=3m,所以a=,c=,所以C的焦距为2c=2=6,解得m=3,则故C的方程为﹣=1;若m<0,则a2=﹣2m,b2=﹣m,c2=﹣3m,所以c=,所以C的焦距为2c=2=6,解得m=﹣3,则C的方程为﹣=1;选③.若m>0,则a2=m,所以a=,因为C上一点到两个焦点的距离之差的绝对值为4,所以2a=2=4,解得m=4,则C的方程为﹣=1;若m<0,则a2=﹣2m,所以a=,因为C上一点到两个焦点的距离之差的绝对值为4,所以2a=2=4,解得m=﹣2,则C的方程为﹣=1.2.已知双曲线C的右焦点F,半焦距c=2,点F到直线的距离为,过点F作双曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求双曲线C的标准方程;(2)证明:直线MN必过定点,并求出此定点的坐标.【解析】(1)由题意可得c=2,c﹣=,b2=c2﹣a2,解得:a2=3,b2=1,所以双曲线的方程为:﹣y2=1;(2)证明:设F(2,0)设过F的弦AB所在的直线方程为:x=ky+2,A(x1,y1),B(x2,y2),则有中点M(+2,),联立直线AB与双曲线的方程:整理可得:(k2﹣3)y2+4ky+1=0,因为弦AB与双曲线有两个交点,所以k2﹣3≠0,y1+y2=,所以x1+x2=k(y1+y2)+4=,所以M(,);(i)当k=0时,M点即是F,此时直线MN为x轴;(ii)当k≠0时,将M的坐标中的k换成﹣,同理可得N的坐标(,﹣),①当直线MN不垂直于x轴时,直线MN的斜率k MN==,将M代入方程可得直线MN:y﹣=(x﹣),化简可得y=(x﹣3),所以直线MN恒过定点P(3,0);②当直线MN垂直于x轴时,=可得k=±1,直线也过定点P(3,0);综上所述直线MN恒过定点P(3,0).3.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.【解析】(1)①当直线l斜率不存在时,方程为x=1,显然与双曲线Γ相切,只有一个交点,符合题意,②当直线l的斜率存在且与双曲线Γ相切时,设斜率为k,则直线l的方程为y﹣1=k(x﹣1),即y=kx﹣k+1联立方程,消去y得:(4﹣k2)x2﹣2k(1﹣k)x﹣[(1﹣k)2+4]=0,∵直线l和双曲线Γ有且仅有一个公共点,∴△=4k2(1﹣k)2+4(4﹣k2)[(1﹣k)2+4]=0,化简得:80﹣32k=0,∴,∴直线l的方程为:y=,即5x﹣2y﹣3=0,③当直线l与双曲线Γ的渐近线平行时,也与双曲线Γ有且仅有一个公共点,∵双曲线Γ的渐近线方程为:y=±2x,∴直线l的斜率为±2,∴直线l的方程为y﹣1=2(x﹣1)或y﹣1=﹣2(x﹣1),即2x﹣y﹣1=0或2x+y﹣3=0,综上所述,直线l的方程为:x=1或5x﹣2y﹣3=0或2x﹣y﹣1=0或2x+y﹣3=0;(2)假设点R在双曲线Γ上,不妨设直线l1方程为:y=2x,设点A(x1,2x1),B(x2,2x2),点P(x0,y0),∵P关于点A的对称点记为Q,∴点Q(2x1﹣x0,4x1﹣y0),∵Q关于点B的对称点记为R.∴点R(2x2﹣2x1+x0,4x2﹣4x1+y0),∵点R在双曲线Γ上,∴,∴﹣=1,∴,又∵点P(x0,y0)在双曲线Γ:x2﹣=1上,∴x02﹣=1,∴上式化为:4(x2﹣x1)•x0﹣2(x2﹣x1)•y0=0,又∵x1≠x2,∴4x0=2y0,∴y0=2x0,又∵x02﹣=1,∴,∴0=1,此式显然不成立,故假设不成立,所以点R不可能在双曲线Γ上.4.在平面直角坐标系中,已知双曲线I:,A,B分别为I的左,右顶点.(1)以A为圆心的圆与I恰有三个不同的公共点,写出此圆的方程;(2)直线L过点A,与I在第一象限有公共点P,线段AP的垂直平分线过点B,求直线L的方程;(3)I上是否存在异于A、B点M、N,使+2=成立,若存在,求出所有M、N的坐标,若不存在说明理由.【解析】(1)双曲线I:,A(﹣2,0),B(2,0),由题意可得以A为圆心的圆经过B,则圆的半径r=4,圆的方程为(x+2)2+y2=16;(2)直线L过点A(﹣2,0),且直线的斜率存在,设直线L的方程为y=k(x+2),(k >0),联立双曲线方程消去y,可得(5﹣4k2)x2﹣16k2x﹣16k2﹣20=0,可得x A+x P=,可得x P=,y P=k(x+2)=,可得AP的中点T坐标为(,),由题意可得k TB=﹣,即为=﹣,解得k=(负的舍去),则直线L的方程为y=(x+2);(3)假设I上存在异于A、B点M、N,使+2=成立.设M(x1,y1),N(x2,y2),由+2=,可得x2=2﹣2x1,y2=﹣2y1,将M,N的坐标代入双曲线的方程可得﹣=1,即﹣=1,又﹣=1,解得x1=2,y1=0,与B重合,故不存在.5.(Ⅰ)已知中心在原点的双曲线C的焦点坐标为,,且渐近线方程为,求双曲线C的标准方程;(Ⅱ)在圆x2+y2=3上任取一点P,过点P作y轴的垂线段PD,D为垂足,当点P在该圆上运动时,求线段PD的中点M的轨迹方程.【解析】(Ⅰ)依题可知双曲线的焦点在y轴上,设其方程为:,且①,双曲线的渐近线方程为,即②.又∵a2+b2=c2…③,由①②③可得.得双曲线方程为:;(Ⅱ)设轨迹上任一点M的坐标为(x,y),点P的坐标为(x0,y0),则依题意可知D点坐标为(0,y0),∵PD的中点为M,∴,即,∵点P在圆x2+y2=3上运动,,得4x2+y2=3,经检验所求方程符合题意,∴点M的轨迹方程为.6.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.【解析】(I)离心率为3,实轴长为1,即e==3,a=,可得c=,F(﹣,0),可设抛物线的方程为y2=2px,p>0,可得=,即p=3,可得抛物线的方程为y2=6x;(Ⅱ)设直线l的方程为x=my+t,设点M(x1,y1)、N(x2,y2),则x1=,x2=,将直线l的方程与抛物线C的方程联立,得y2﹣6my﹣6t=0,由韦达定理得y1+y2=6m,y1y2=﹣6t,∵OM⊥ON,∴k OM•k ON=•=﹣=﹣1,即t=6,由△=36m2+24×6>0恒成立,则|MN|==•=6≥12,当且仅当m=0时,|MN|取得最小值12.7.2018年世界人工智能大会已于2018年9月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏,如图:A、B两个信号源相距10米,O是AB的中点,过O点的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足:接收到A点的信号比接收到B点的信号晚秒(注:信号每秒传播v0米).在时刻t0时,测得机器鼠距离O点为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时刻t0时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?【解析】(1)设机器鼠位置为点P,由题意可得﹣=,即|PA|﹣|PB|=8<10,可得P的轨迹为双曲线的右支,且2c=10,2a=8,即有c=5,a=4,b=3,则P的轨迹方程为﹣=1(x≥4),时刻t0时,|OP|=4,即P(4,0),可得机器鼠所在位置的坐标为(4,0);(2)设直线l的平行线l1的方程为y=x+m,联立双曲线方程﹣=1(x≥4),可得7x2+32mx+16m2+144=0,即有△=(32m)2﹣28(16m2+144)=0,且x1+x2=﹣>0,可得m=﹣,即l1:y=x﹣与双曲线的右支相切,切点即为双曲线右支上距离l最近的点,此时l与l1的距离为d==,即机器鼠距离l最小的距离为>1.5,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.8.已知离心率为2的双曲线C的一个焦点F(c,0)到一条渐近线的距离为.(1)求双曲线C的方程;(2)设A1,A2分别为C的左右顶点,P为C异于A1,A2一点,直线A1P与A2P分别交y 轴于M,N两点,求证:以线段MN为直径的圆D经过两个定点.【解析】(1)设C:,因为离心率为2,所以c=2a,.所以C的渐近线为,由,得c=2.于是a=1,,故C的方程为.(2)方法一、设P(x0,y0)(x0≠±1),因为A1(﹣1,0),A2(1,0),可得直线A1P与A2P方程为,.由题设,所以,,,MN中点坐标,于是圆D的方程为.因为,所以圆D的方程可化为.当y=0时,,因此D经过两个定点和.方法二、设P(x0,y0)(x0≠±1),因为A1(﹣1,0),A2(1,0),可得直线A1P与A2P方程为,,由题设,所以,.设P(x,y)是圆D上点,则,即,于是圆D的方程为.因为,所以圆D的方程可化为.当y=0时,,因此D经过两个定点和.9.已知F1,F2为双曲线的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.【解析】(1)双曲线的a=1,c=,可令x=c,解得y=b=b2,设M(c,b2),由∠MF1F2=30°,可得b2=2c tan30°=,解得b=,则双曲线的方程为x2﹣=1,可得双曲线的方程为y=±x,即有tanθ=||=2,可得夹角θ=arctan2;(2)当直线AB的斜率不存在,可得A(,2),B(,﹣2),可得△AF1B的面积为×2×4=4;直线AB的斜率存在,设过点F2的直线l设为y=k(x﹣),联立双曲线方程2x2﹣y2=2,可得(2﹣k2)x2+2k2x﹣3k2﹣2=0,设A(x1,y1),B(x2,y2),又x1+x2=﹣>0,x1x2=﹣>0,可得k2>2,可得△AF1B的面积为S=•2c•|y1﹣y2|=•|k(x1﹣x2)|=•|k|•=|k|•,设t=k2﹣2(t>0),可得S=4•=4•>4,综上可得△AF1B的面积的最小值为4;(3)设Q(m,n),可得2m2﹣n2=2,双曲线的渐近线方程为y=±x,Q到直线y=x的距离为d=,由平行于直线y=﹣x的直线y=﹣(x﹣m)+n,联立直线y=x,可得Q2(,),|OQ2|=|n+m|,。
北京市2021年高考数学压轴卷(含解析)本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{(1)(2)0}M x x x =-+<|,{1}N x x =-|,则M N =( )A .(2,1)-B .[1,1)-C .[1,)-+∞D .(1,1)-2.设复数z 满足(1)1i z i -=+,则z 等于( ) A .i -B .iC .2i -D .2i3.在61x ⎫⎪⎭的展开式中,常数项为( )A .15B .30C .20D .404.已知两条直线m ,n 和平面α,且//n α,则“m n ⊥”是“m α⊥”的( ) A .充分必要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件5.在平面直角坐标系xOy 中,直线l 的方程为(1)3y k x =++,以点(1,1)为圆心且与直线l 相切的所有圆中,半径最大的圆的半径为( ) A .2B.C .4D .86.在ABC 中,90,4,3C AC BC =︒==,点P 是AB 的中点,则CB CP ⋅=( ) A .94B .4C .92D .67.已知函数211,0,()221,0,x x f x x x x ⎧+≤⎪=⎨⎪-++>⎩则不等式()20x f x ->的解集是( )A .(1,0)(0,1)- B .(1,1)- C .(0,1) D .(1,)-+∞8.将函数()sin f x x ω=(0>ω)的图象向左平移2π个单位长度后得到函数()g x 的图象,且()01g =,下列说法错误..的是( ) A .()g x 为偶函数 B .02g π-=⎛⎫⎪⎝⎭C .当5ω=时,()g x 在0,2π⎡⎤⎢⎥⎣⎦上有3个零点D .若()g x 在0,5π⎡⎤⎢⎥⎣⎦上单调递减,则ω的最大值为9 9.数列{}n a 是等差数列,{}n b 是各项均为正数的等比数列,公比1q >,且44a b =,则( ) A .2635a a b b +>+ B .2635a a b b +=+C .2635a a b b +<+D .26a a +与35b b +大小不确定10.形状、节奏、声音或轨迹,这些现象都可以分解成自复制的结构.即相同的形式会按比例逐渐缩小,并无限重复下去,也就是说,在前一个形式中重复出现被缩小的相同形式,依此类推,如图所示,将图1的正三角形的各边都三等分,以每条边中间一段为边再向外做一个正三角形,去掉中间一段得到图2,称为“一次分形”;用同样的方法把图2中的每条线段重复上述操作,得到图3,称为“二次分形”;依次进行“n 次分形”,得到一个周长不小于初始三角形周长100倍的分形图,则n 最小值是( )(取lg30.4771,lg 20.3010≈≈)A .15B .16C .17D .18第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
上册数学压轴题试题(Word版含答案)汇编经典一、压轴题1.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。
[ 问题应用 ]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.2.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n²−32n+247,1⩽n<16,n为整数。
(1)例如,当n=2时,a2=2²−32×2+247=187,则a5=___,a6=___;(2)第n层比第(n+1)层多堆放多少个仪器箱;(用含n的代数式表示)(3)假设堆放时上层仪器箱的总重量会对下一层仪器箱产生同样大小的压力,压力单位是牛顿,设每个仪器箱重54 牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。
高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数。
压轴题型11 圆锥曲线压轴解答题的处理策略命题预测解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题;(3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大考向展开. 高频考法(1)直线交点的轨迹问题(2)向量搭桥进行翻译(3)弦长、面积范围与最值问题(4)斜率之和差商积问题(5)定点定值问题01 直线交点的轨迹问题交轨法解决.【典例1-1】(2024·陕西安康·模拟预测)已知双曲线22:13y C x −=的左、右顶点分别是12,A A ,直线l 与C 交于,M N 两点(不与2A 重合),设直线22,,A M A N l 的斜率分别为12,,k k k ,且()126k k k +=−.(1)判断直线l 是否过x 轴上的定点.若过,求出该定点;若不过,请说明理由.(2)若,M N 分别在第一和第四象限内,证明:直线1MA 与2NA 的交点P 在定直线上.【解析】(1)由题意可知12(1,0),(1,0),0A A k −≠,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+.2024届高考数学专项练习由2213y x y kx m ⎧−=⎪⎨⎪=+⎩消去y ,可得222(3)230k x kmx m −−−−=, 则23k ≠,2212(3)0m k ∆=+−>,即223k m <+,212122223,33km m x x x x k k ++==−−−. 因为()121212*********()()211()1kx m kx m kx x m k x x m k k k k k x x x x x x ⎛⎫⎡⎤+++−+−+=+= ⎪⎢⎥−−−++⎝⎭⎣⎦222222322()2336632133m kmk m k m k k k km kmm k k k ⎡⎤⎛⎫+−+−−⎢⎥ ⎪−−⎝⎭⎢⎥===−⎢⎥++−−+⎢⎥−−⎣⎦, 所以2m k =−,故直线l 的方程为(2)y k x =−,恒过点(2,0). (2)由题可知,直线1MA 的方程为11(1)1y y x x =++,直线2NA 的方程为22(1)1yy x x =−−,因为2121121212121212(1)(2)(1)2211(1)(2)(1)22y x x x x x x x x x y x x x x x x x +−+−+−+===−−−−−−+ 1212112121()322()2x x x x x x x x x x ++−−=−+++21221269333233k x k k x k −−−−==−++− 所以12x =,故点P 在定直线12x =上.【典例1-2】(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅,PA PC⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=− ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上. 【解析】(1)由题意可得(1,)PA x y =−−,(,1)PB x y =−−,(1,1)PC x y =−−, 则22(1)()()(1)PA PB x x y y x y x y ⋅=−⋅−+−⋅−=+−−,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=−⋅−+−⋅−=+−−+, 又2y 是PA PB ⋅,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+−−++−−+=,整理得点(,)P x y 的轨迹方程为23122y x x =−+.(2)由(1)知2131:22C y x x =−+,又31,416a ⎛⎫=− ⎪⎝⎭,∴平移公式为34116x x y y ⎧=−⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=−'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫−=+−++ ⎪ ⎪⎝⎭⎝⎭',即2yx .曲线2C 的方程为2yx .如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b −−=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b+=⎧⎨=−⎩, ()()21111,,OM x y x x ∴==,()()22222,,ON x y x x ==,又MON ∠为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅, 2212120x x x x ∴+>,又12x x b =−,2()0b b ∴−+−>,得0b <或1b >.(3)当2b =时,由(2)可得12122x x k x x b +=⎧⎨=−=−⎩,对2yx 求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x −=−,()2222:2N l y x x x x −=−, 由()()()211112222222y x x x x x x y x x x x ⎧−=−⎪≠⎨−=−⎪⎩,解得交点R 的坐标(,)x y . 满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=−⎩,R ∴点在定直线=2y −上. 【变式1-1】(2024·高三·全国·专题练习)已知椭圆C :22221x y a b +=(0a b >>)过点2,3P,且离2. (1)求椭圆C 的方程;(2)记椭圆C 的上下顶点分别为,A B ,过点()0,4斜率为k 的直线与椭圆C 交于,M N 两点,证明:直线BM 与AN 的交点G 在定直线上,并求出该定直线的方程.【解析】(1)由椭圆过点2,3P,且离心率为22,所以2222223122a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得2284a b ⎧=⎨=⎩,故所求的椭圆方程为22184x y +=.(2)由题意得()0,2A ,()0,2B −,直线MN 的方程4y kx =+,设()()1122,,,M x y N x y ,联立224184y kx x y =+⎧⎪⎨+=⎪⎩,整理得()221216240k x kx +++=,由()22Δ25696120k k =−+>,即232k >,所以1221612kx x k −+=+,1222412x x k =+. 由求根公式可知,不妨设218246k k x −−−,228246k k x −+−= 直线AN 的方程为2222y y x x −−=,直线BM 的方程为1122y y x x ++=, 联立22112222y y x x y y xx −⎧−=⎪⎪⎨+⎪+=⎪⎩,得()()()()2121121121212222222266y x kx x kx x x y y y x kx x kx x x −++−===++++, 代入12,x x ,得222222241644628446112122324481246241246k k k y k k k k y k k k k k −−−−−−++===−+−+−−+−+, 解得1y =,即直线BM 与AN 的交点G 在定直线1y =上.【变式1-2】(2024·全国·模拟预测)已知双曲线C 的中心为坐标原点O ,C 的一个焦点坐标为()10,3F ,离3 (1)求C 的方程;(2)设C 的上、下顶点分别为1A ,2A ,若直线l 交C 于()11,M x y ,()22,N x y ,且点N 在第一象限,120y y >,直线1A M 与直线2A N 的交点P 在直线35y =上,证明:直线MN 过定点. 【解析】(1)由题意得3c =,3ca3a =2226b c a =−=, 故C 的方程为22136y x −=;(2)证明:由已知条件得直线MN 的斜率存在,设直线MN :y kx t =+,联立2226y kx t y x =+⎧⎨−=⎩,消去y 整理得,()222214260k x ktx t −++−=, 由题设条件得2210k −≠,()()2222Δ16421260k t k t =−−−>,则122412kt x x k +=−,21222621t x x k −=−.由(1)得(13A ,(20,3A −, 则直线1A M :1133y y −,直线2A N :2233y y x +=, 11223333y y y y −−=++ 因为直线1A M 与直线2A N 的交点P 在直线35y =上,所以112233353335y y −=++因为2222136y x−=2222222233312y y y x −+−==,即()2222323y y x +=−所以(11211212122233323333523335y y y y y x x y −−−===+.又((()(221212123333y y k x x k t x x t =+++,(((2222222326433212121t t ktk k t t k k k −−=⨯−+=−−−,所以33353335t t −=+,解得5t =,所以直线MN 过定点()0,5.02 向量搭桥进行翻译将向量转化为韦达定理形式求解.【典例2-1】(2024·上海普陀·二模)设椭圆222:1(1)x y a a Γ+=>,Γ2倍,直线l 交Γ于A 、B 两点,C 是Γ上异于A 、B 的一点,O 是坐标原点. (1)求椭圆Γ的方程;(2)若直线l 过Γ的右焦点F ,且CO OB =,0CF AB ⋅=,求CBFS的值;(3)设直线l 的方程为(,R)y kx m k m =+∈,且OA OB CO +=,求||AB 的取值范围. 【解析】(1)由Γ24倍,得212a −22(1)a a −=, 又1a >,则2a =故椭圆Γ的方程为2212x y +=.(2)设Γ的左焦点为1F ,连接1CF , 因为CO OB =,所以点B 、C 关于点O 对称, 又0CF AB ⋅=,则CF AB ⊥, 由椭圆Γ的对称性可得,1CF CF ⊥,且三角形1OCF 与三角形OBF 全等,则1112CBFCF FSSCF CF ==⋅,又122211224CF CF CF CF F F ⎧+=⎪⎨+==⎪⎩,化简整理得, 12CF CF ⋅=,则1CBFS=.(3)设11(,)A x y ,11(,)B x y ,00(,)C x y ,又 OA OB CO +=,则012()x x x =−+,012()y y y =−+, 由2212x y y kx m ⎧+=⎪⎨⎪=+⎩得,222(12)4220k x mkx m +++−=, 222222168(12)(1)8(21)m k k m k m ∆=−+−=−+,由韦达定理得,122412mk x x k −+=+,21222212m x x k −=+,又121222()212my y k x x m k +=++=+,则02412mkx k =+,02212m y k −=+, 因为点C 在椭圆Γ上,所以222242()2()21212mk m k k −+=++, 化简整理得,22412m k =+,此时,22222218(21)8(21)6(21)04k k m k k +∆=−+=+−=+>,则2222212121()()(1)()AB x x y y k x x =−+−=+−222224221()4()1212mk m k k k−−+−++ 226(21)1k k ++226612k k ++ 令212t k =+,即1t ≥,则(]2266333=33,612k t k t t ++=+∈+, 则AB 的取值范围是3,6.【典例2-2】(2024·贵州安顺·一模)已知双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线方程为3y x =,右焦点F 3 (1)求双曲线C 的标准方程;(2)过点F 的直线l 与双曲线C 交于,M N 两点,()1,0A −.求AM AN ⋅的值.【解析】(1)由双曲线2222:1x y C a b −=的渐近线方程为3y =,可得3b a =又由焦点(c,0)F 32233(3)1c d ==+2c =,又因为222c a b =+,可得1,3a b =2213y x −=.(2)由(1)知2c =,可得(2,0)F ,当直线l 的斜率不存在时,即:2l x =,将2x =代入2213y x −=,可得13y =或23y =−,不妨设(2,3),(2,3)M N −,又由(1,0)A −,可得(3,3),(3,3)AM AN ==−, 所以333(3)0AM AN ⋅=⨯+⨯−=; 当直线l 的斜率存在时,即:(2)l y k x =−,联立方程组22(2)13y k x y x =−⎧⎪⎨−=⎪⎩,整理得2222(3)4430k x k x k −+−−=,设1122(,),(,)M x y N x y ,则2222(4)4(3)(43)0k k k ∆=+−+>,且22121222443,33k k x x x x k k ++==−−, 则222212121212(2)(2)2()4y y k x x k x x k x x k =−−=−++,且1122(1,),(1,)AM x y AN x y =+=+,则1212121212(1)(1)()1AM AN x x y y x x x x y y ⋅=+++=++++ 22212121212()12()4x x x x k x x k x x k =++++−++2221212(12)(1)()41k x x k x x k =−+++++=2222222434(12)(1)4133k k k k k k k +=−⋅++⋅++−−242244222484343412303k k k k k k k k k −+++++−+−==−,综上可得:0AM AN ⋅=.【变式2-1】(2024·全国·模拟预测)如图,已知抛物线()2:20E y px p =>,其焦点为F ,其准线与x 轴交于点C ,以FC 为直径的圆交抛物线于点B ,连接BF 并延长交抛物线于点A ,且4AF BF −=.(1)求E 的方程.(2)过点F 作x 轴的垂线与抛物线E 在第一象限交于点P ,若抛物线E 上存在点M ,N ,使得0MP NP ⋅=.求证:直线MN 过定点.【解析】(1)根据抛物线的性质可知CF p =.设直线AB 的倾斜角为θ,则在Rt CBF △中,cos BF p θ=. 由抛物线的定义知cos AF AF p θ=+,cos BF p BF θ=−, 所以1cos p AF θ=−,cos 1cos pBF p θθ==+,所以2sin cos θθ=. 所以222sin cos p p AB AF BF θθ=+==. 由24AF BF AB BF −=−=,得221cos 2cos 224cos cos p p p p θθθθ−−=⋅==,解得2p =. 所以E 的方程为24y x =.(2)由(1)知()1,2P .设直线MN 的方程为x my n =+,()11,M x y ,()22,N x y .联立抛物线方程,得2,4.x my n y x =+⎧⎨=⎩代入并整理,得2440y my n −−=.则124y y m +=,124y y n =−,且216160m n ∆=+>. 由0MP NP ⋅=,得()()11221,21,20x y x y −−⋅−−=,则()()()()()()()()12121212112211220x x y y my n my n y y ⎡⎤⎡⎤−−+−−=−+−++−−=⎣⎦⎣⎦,得()()()22121212250m y y mn m y y n n ++−−++−+=,所以()()()221424250m n mn m m n n +⨯−+−−⨯+−+=.整理得()()22341n m −=+.当()321n m −=−+,即21n m =−+时,直线MN 的方程为()21x m y =−+,则直线MN 恒过定点()1,2P ,不符合题意.当()321n m −=+,即25n m =+时,直线MN 的方程为()25x m y =++,则直线MN 恒过定点()5,2−.【变式2-2】(2024·山东聊城·二模)已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为26. (1)求C 的方程;(2)直线:(0,0)l y kx m k m =+>>与C 交于,M N 两点,与y 轴交于点A ,与x 轴交于点B ,且,AM BM AN BN λμ==. (ⅰ)当12μλ==时,求k 的值;(ⅱ)当3λμ+=时,求点(0,3到l 的距离的最大值.【解析】(1)由题意得222226b c a b a a =⎧⎪⎨−==⎪⎩13b a =⎧⎪⎨=⎪⎩ 所以C 的方程为2213x y +=.(2)(ⅰ)由题意得()0,,,0m A m B k ⎛⎫− ⎪⎝⎭,由12AM BM =,得2OM OA OB =−,即,2m M m k ⎛⎫⎪⎝⎭,由2AN BN =,得2ON OB OA =−,即2,m N m k ⎛⎫−− ⎪⎝⎭, 将,M N 的坐标分别代入C 的方程,得222413m m k +=和222413m m k+=,解得213k =,又0k >,所以3k =(ⅱ)由22,13y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,得()222316330k x kmx m +++−=, 其中()()()222222Δ361231112310k m k m k m =−+−=−+>,设()()1122,,,M x y N x y ,则2121222633,3131km m x x x x k k −−+==++,由(),,0,,,0m AM BM AN BN A m B k λμ⎛⎫==− ⎪⎝⎭,得1122,m m x x x x k k λμ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,所以121212112x x m m m m m k x x x x k k k k λμ⎛⎫ ⎪+=+=−+ ⎪ ⎪++++⎝⎭, 由3λμ+=,得()221212230k x x mk x x m +++=,即222222223312303131m k k m k m k k −−++=++, 所以222222223312930m k k m k m k m −−++=, 因此22k m =,又0,0k m >>,所以k m =. 所以l 的方程为()1y k x =+,即l 过定点()1,0−,所以点(0,3−到l 的最大距离为点(0,3−与点()1,0−的距离21(3)2d =+=, 即点(0,3−到l 的距离的最大值为2.03 弦长、面积范围与最值问题1、建立目标函数,使用函数的最值或取值范围求参数范围.2、建立目标函数,使用基本不等式求最值.【典例3-1】(2024·浙江台州·二模)已知椭圆C :229881x y +=,直线l :=1x −交椭圆于M ,N 两点,T 为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标; (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长.【解析】(1)椭圆的标准方程为2218198x y +=,因为819988−=,所以焦点坐标为320,⎛ ⎝⎭. (2)将=1x −代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M −,()1,3N −−, 直线MT 的方程为()3313y x =−−−,即3490x y +−=, 设圆Q 方程为()222x t y r −+=,由于内切圆Q 在TMN △的内部,所以1t >−, 则Q 到直线MN 和直线MT 的距离相等,即223409134t t r +⨯−+==+,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫−+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =−+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率.由圆Q 21132321k k ⎛⎫−+ ⎪⎝⎭=+,化简得:2812270k k +−=,则121232278k k k k ⎧+=−⎪⎪⎨⎪=−⎪⎩,由()122139881y k x x y ⎧=−+⎨+=⎩得()()222111119816384890k x k k x k k ++−+−−=, 可得21121848989A P A k k x x x k −−==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫−−−−+=−+=−+= ⎪++⎝⎭()()()111113271218271833271291232k k k k k −−−+−===−−+−.同理22222848989B k k x k −−=+,32B y =−,所以直线AB 的方程为32y =−, 所以AB 与圆Q 相切,将32y =−代入229881x y +=得7x =所以7AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB 的面积1319272222ABC S m =⨯=⨯△, 解得67m =.所以PAB 的周长为67.【典例3-2】(2024·高三·浙江金华·阶段练习)设抛物线()2:20C y px p =>,直线=1x −是抛物线C 的准线,且与x 轴交于点B ,过点B 的直线l 与抛物线C 交于不同的两点M ,N ,()1,A n 是不在直线l 上的一点,直线AM ,AN 分别与准线交于P ,Q 两点. (1)求抛物线C 的方程; (2)证明:BP BQ =:(3)记AMN △,APQ △的面积分别为1S ,2S ,若122S S =,求直线l 的方程. 【解析】(1)因为=1x −为抛物线的准线,所以12p=,即24p =, 故抛物线C 的方程为24y x = (2)如图,设l :1x ty =−,()()1122,,,M x y N x y , 联立24y x =,消去x 得2440y ty −+=,则()2Δ1610t =−>,且121244y y t y y +=⎧⎨=⎩,又AM :()1111y ny n x x −−=−−,令=1x −得()1121,1y n P n x ⎛⎫−−− ⎪−⎝⎭, 同理可得()2221,1y n Q n x ⎛⎫−−− ⎪−⎝⎭,所以()()()()12121212222221122P Q y n y n y n y n y y n n n x x ty ty ⎡⎤−−−−+=−+−=−+⎢⎥−−−−⎣⎦()()()()()()1221122222222y n ty y n ty n ty ty −−+−−=−−⋅−,()()()212122212124248882202444ty y nt y y nn nt n n t y y t y y t −−++−=−=−=−++−,故BP BQ =.(3)由(2)可得:()()1222122222221nt y n y n S PQ ty ty t −−−==−=−−−22212211141212221nt S MN d t t t nt t −==++=−−+,由122S S =,得:212t −=,解得3t = 所以直线l 的方程为310x +=.【变式3-1】(2024·上海闵行·二模)如图,已知椭圆221:14x C y +=和抛物线()22:20C x py p =>,2C 的焦点F 是1C 的上顶点,过F 的直线交2C 于M 、N 两点,连接NO 、MO 并延长之,分别交1C 于A 、B 两点,连接AB ,设OMN 、OAB 的面积分别为OMN S △、OABS.(1)求p 的值; (2)求OM ON ⋅的值; (3)求OMNOABS S 的取值范围. 【解析】(1)椭圆221:14x C y +=的上顶点坐标为()0,1,则抛物线2C 的焦点为()0,1F ,故2p =.(2)若直线MN 与y 轴重合,则该直线与抛物线2C 只有一个公共点,不符合题意, 所以直线MN 的斜率存在,设直线MN 的方程为1y kx =+,点()11,M x y 、()22,N x y ,联立214y kx x y=+⎧⎨=⎩可得2440x kx −−=,216160k ∆=+>恒成立,则124x x =−,221212121241344x x OM ON x x y y x x ⋅=+=+=−+=−.(3)设直线NO 、MO 的斜率分别为1k 、2k ,其中10k >,20k <,联立12244y k x x y =⎧⎨+=⎩可得()221414k x +=,解得2141x k =+ 点A 在第三象限,则2141A x k =+点B 在第四象限,同理可得2241B x k =+,且121212121164y y x x k k x x ===− 121222124141OMN OAB B AOM ONx x x x S S OB OA x x k k ⋅⋅⋅===⋅⋅++()()2221212114141424k k k k ++++2121124224k k ≥⋅+, 当且仅当112k =时,等号成立. OMNOABS S 的取值范围为[)2,+∞. 【变式3-2】(2024·辽宁·二模)已知点P 为双曲线22:14x E y −=上任意一点,过点P 的切线交双曲线E 的渐近线于,A B 两点. (1)证明:P 恰为AB 的中点;(2)过点P 分别作渐近线的平行线,与OA 、OB 分别交于M 、N 两点,判断PMON 的面积是否为定值,如果是,求出该定值;如果不是,请说明理由;【解析】(1)由切线不可能平行于x 轴,即切线的斜率不可能为0, 设切线方程为:l x ty m =+,联立方程组2214x ty m x y =+⎧⎪⎨−=⎪⎩,整理得222(4)240t y tmy m −−+=+, 所以()()222Δ24(4)40tm t m =−−−=,可得2240t m +−=,即224m t =−,所以22220m y tmy t −++=,即2()0my t −=,所以t y m =,则2t x m m=+,所以点2(,)t tP m m m+,又由双曲线22:14x E y −=的渐近线方程为12y x =±,联立方程组12y xx ty m⎧=⎪⎨⎪=+⎩,可得2,22m m x y t t ==−−,即2(,)22m m A t t −−, 联立方程组12y xx ty m⎧=−⎪⎨⎪=+⎩,可得2,22m m x y t t −==++,即2(,)22m m B t t −++,所以222222244422244m mm tm m tmm m t t t t m m+++−−+====−− 222224m mtm tm t t t t m m−+−+===−,所以AB 的中点坐标为4(,)t m m又因为2224t t m m m m m++==,所以4(,)t P m m ,所以点P 与AB 的中点重合.(2)由2(,)22m m A t t−−,2(,)22m mB t t −++, 可得2222225()()22(2)m m m OA t t t =+=−−−,2222225()()22(2)m m m OB t t t −=+=+++, 所以44422222425252525[(2)(2)](4)m m m OA OB t t t m ⋅====−+−,即5OA OB =, 又由22223322224m m m m m OA OB t t t t t−⋅=⨯+⨯==−+−+−,可得3cos 5OA OB AOB OA OB ⋅∠==, 所以24sin 1cos 5AOB AOB ∠=−∠=, 所以114sin 52225AOBSOA OB AOB =∠=⨯⨯=, 因为P 为AB 的中点,所以112122PMON AOBS S ==⨯=, 所以四边形PMON 的面积为定值1.04 斜率之和差商积问题1、已知00(,)P x y 是椭圆22221x y a b +=上的定点,直线l (不过P 点)与椭圆交于A ,B 两点,且0PA PBk k +=,则直线l 斜率为定值2020b x a y .2、已知00(,)P x y 是双曲线22221x y a b−=上的定点,直线l (不过P 点)与双曲线交于A ,B 两点,且0PA PBk k +=,直线l 斜率为定值2020b x a y −.3、已知00(,)P x y 是抛物线22y px =上的定点,直线l (不过P 点)与抛物线交于M ,N 两点,若0PA PB k k +=,则直线l 斜率为定值0p y −. 4、00(,)P x y 为椭圆222:x y a bΓ2+=1)0,0(a b >>上一定点,过点P 作斜率为1k ,2k 的两条直线分别与椭圆交于,M N 两点.(1)若12(0)k k λλ+=≠,则直线MN 过定点2000222(,)y b x x y aλλ−−−; (2)若2122()b k k a λλ⋅=≠,则直线MN 过定点2222002222(,)a b a b x y a b a b λλλλ++−−−.5、设00(,)P x y 是直角坐标平面内不同于原点的一定点,过P 作两条直线AB ,CD 交椭圆222:x y a b Γ2+=1)0,0(a b >>于A 、B 、C 、D ,直线AB ,CD 的斜率分别为1k ,2k ,弦AB ,CD 的中点记为M ,N .(1)若12(0)k k λλ+=≠,则直线MN 过定点2002(,)y b x x aλλ−−;(2)若2122()b k k a λλ⋅=≠,则直线MN 过定点22002222(,)a x b y a b a b λλλ−−.6、过抛物线22(0)y px p =>上任一点00(,)P x y 引两条弦PA ,PB ,直线PA ,PB 斜率存在,分别记为12,k k ,即12(0)k k λλ+=≠,则直线AB 经过定点00022(,)y px y λλ−−.【典例4-1】(2024·上海徐汇·二模)已知椭圆22:143x y C +=,12A A 、分别为椭圆C 的左、右顶点,12F F 、分别为左、右焦点,直线l 交椭圆C 于M N 、两点(l 不过点2A ).(1)若Q 为椭圆C 上(除12A A 、外)任意一点,求直线1QA 和2QA 的斜率之积; (2)若112NF F M =,求直线l 的方程;(3)若直线2MA 与直线2NA 的斜率分别是12k k 、,且1294k k =−,求证:直线l 过定点.【解析】(1)在椭圆 22:143x y C +=中,左、右顶点分别为12(2,0)(2,0)A A −、,设点()000,(2)Q x y x ≠±,则12202000220000314322444QA QA x y y y k k x x x x ⎛⎫− ⎪⎝⎭⋅=⋅===−+−−−. (2)设()()1122,,,M x y N x y ,由已知可得1(1,0)F −,122111(1,)(+1,)NF x y F M x y =−−−=,,由112NF F M =得2211(1,)2(+1,)−−−=x y x y ,化简得2121=322x x y y −−⎧⎨=−⎩代入2222143x y +=可得22114(32)(32)1−−−+=x y ,联立2211143x y +=解得117=435=x y ⎧−⎪⎪⎨⎪⎪⎩由112NF F M =得直线l 过点1(1,0)F −,73(,5)48−N , 所以,所求直线方程为5=1)y x ±+.(3)设()()3344,,,M x y N x y ,易知直线l 的斜率不为0,设其方程为x my t =+(2t ≠),联立22143x my t x y =+⎧⎪⎨+=⎪⎩,可得()2223463120m y mty t +++−=,由2222364(34)(312)0m t m t ∆=−+−>,得2234t m <+.由韦达定理,得234342263123434,−+=−=++mt t y y y y m m .1294k k =−,34349224∴⋅=−−−y y x x . 可化为()()343449220y y my t my t ++−+−=, 整理即得()()223434499(2)9(2)0my ym t y y t ++−++−=,()222223126499(2)9(2)03434t mt m m t t m m −⎛⎫∴+⨯+−−+−= ⎪++⎝⎭,由20t −≠,进一步得2222(49)(2)183(2)03434m t m tt m m ++−+−=++,化简可得16160t −=,解得1t =, 直线MN 的方程为1x my =+,恒过定点(1,0).【典例4-2】(2024·全国·模拟预测)已知椭圆2222:1(0)x y E a b a b+=>>的左、右顶点分别为()(),,2,2A B C a b D a b −,直线AC 的斜率为12,直线AC 与椭圆E 交于另一点G ,且点G 到x 轴的距离为43. (1)求椭圆E 的方程.(2)若点P 是E 上与点,A B 不重合的任意一点,直线,PC PD 与x 轴分别交于点,M N . ①设直线,PM PN 的斜率分别为12,k k ,求2112k k k k −的取值范围. ②判断22||AM BN +是否为定值.若为定值,求出该定值;若不为定值,说明理由.【解析】(1)由题意知,(),0A a −.由直线AC 的斜率为12()2012b a −=,所以2a b =. 直线AC 的方程为()12y x a =+. 设(),G s t ,则0,0s t >>.由点G 到x 轴的距离为43,得43t =. 由点G 在直线AC 上,得()4132s a =+,所以83s a =−.由点G 在椭圆E 上,得2222843312a a a⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭+=,解得2a =.所以2b =.所以椭圆E 的方程为22142x y+=.(2)①设()00,P x y (020y ≤<或002y < 由(1)知,()()2,2,2,2C D −, 则00120022,22PC PD y y k k k k x x −−====−+, 所以0021121200002211442222x x k k k k k k y y y y −+−−=−=−==−−−−. 由020y −<或002y <≤得02222y −<或02222y <−≤ 所以0442222y −<−或0424222y <≤+− 故2112k k k k −的取值范围是)(422,22,422⎡−⋃+⎣. ②由①知2200142x y +=,即2220004x y y +=−.设()()12,0,,0M x N x . 因为,,P C M 三点共线, 所以00120222y x x −−=−−,得0001002422222x y x x y y −+−=+=−−.因为,,P D N 三点共线,所以00220222y x x −−=++, 得0002002422222x x y x y y −−−−=−=−−.所以()()222222000012002222222222y x x y AM BN x x y y ⎛⎫⎛⎫−−−+=++−=++−= ⎪ ⎪−−⎝⎭⎝⎭()220002008816822x y y y y +++=−−()()()()()2000220000848221616882222y y y yy y y y y −+−++=++=−−−−()0000821681622y y y y −+++=−−.故22||AM BN +为定值16.【变式4-1】(2024·高三·上海闵行·期中)已知双曲线C :()222210,0x y a b a b −=>>2()3,1−在双曲线C 上.过C 的左焦点F 作直线l 交C 的左支于A 、B 两点. (1)求双曲线C 的方程;(2)若()2,0M −,试问:是否存在直线l ,使得点M 在以AB 为直径的圆上?请说明理由.(3)点()4,2P −,直线AP 交直线2x =−于点Q .设直线QA 、QB 的斜率分别1k 、2k ,求证:12k k −为定值.【解析】(1)由双曲线2222y :1x C a b −=2,且()3,1M −在双曲线C 上,可得222229112a b c e a c a b ⎧−=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得228,8a b ==,∴双曲线的方程为22188x y −=.(2)双曲线C 的左焦点为()4,0F −,当直线l 的斜率为0时,此时直线为0y =,与双曲线C 左支只有一个交点,舍去; 当直线l 的斜率不为0时,设:4l x my =−,联立方程组2248x my x y =−⎧⎨−=⎩,消x 得()221880m y my −−+=,易得Δ0>, 设()()1122,,,A x y B x y ,则12122288,011m y y y y m m +==<−−,可得11m −<<, ∵()()11222,,2,MA x y MB x y =+=+,则()()()()211212122222MA MB x x y y my my y y ⋅=+++=−−+()()()22212122281161244411m mm y y m y y m m +=+−++=−+=−−−,即0MA MB ⋅≠,可得MA 与MB 不垂直,∴不存在直线l ,使得点M 在以AB 为直径的圆上. (3)由直线()1:24AP y k x −=+,得(12,22)Q k −+, ∴2121222222222y k y k k x my −−−−==+−,又11111224PAy y k k x my −−===+,∴()()()()12121121121212222222222y my my y k y y k k k my my my my −−−−−−−−−=−=−− ()2111112224222my y my mk y my my −−+++=−,∵1112y k my −=,∴1112k my y =−,且1212y y my y +=, ∴()()()1212121212122222m y y y y k k my my y y y −−−===−−+−,即12k k −为定值.【变式4-2】(2024·全国·模拟预测)已知双曲线2222:1(0,0)x y C a b a b−=>>的左、右焦点分别为12,F F ,从下面3个条件中选出2个作为已知条件,并回答下面的问题:①点()32,1P −在双曲线C 上;②点Q 在双曲线C 上,1290QF F ∠=︒,且113QF =;③双曲线C 的一条渐近线与直线33y x =−垂直. (1)求双曲线C 的方程;(2)设,A B 分别为双曲线C 的左、右顶点,过点()0,1−的直线l 与双曲线C 交于,M N 两点,若AMBNk a k =−,求直线l 的斜率.【解析】(1)选①②,因为点()32,1P −在双曲线C 上,所以221811a b −=, 由题意可设()1(,0),,Q F c Q c y −−,因为点Q 在双曲线C 上,所以22221Q y ca b−=,所以2Q b y a =±,又113QF =,所以213b a =,联立222181113a b b a ⎧−=⎪⎪⎨⎪=⎪⎩,所以3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=;选①③, 由①,得221811a b −=,由③,得31ba−⨯=−, 联立22181131a b b a⎧−=⎪⎪⎨⎪−⨯=−⎪⎩,解得3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=,选②③,由题意可设()1(,0),,Q F c Q c y −−,因为点Q 在双曲线C 上,所以22221Q y ca b−=,所以2Q b y a =±,又113QF =,所以213b a =,又由③,得31ba−⨯=−,联立21331b a b a⎧=⎪⎪⎨⎪−⨯=−⎪⎩,解得3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=.(2)依题意可知()()3,0,3,0A B −,易知直线l 的斜率存在,设直线l 的方程为1y kx =−,()()1122,,,M x y N x y ,联立22119y kx x y =−⎧⎪⎨−=⎪⎩,消去y 并整理,得()221918180k x kx −+−=, 由()()()222Δ(18)4191836290k k k =−−⨯−=−>,且2190k −≠,得229k <且219k ≠,所以1212221818,1919k x x x x k k +=−=−−−, 又221119x y −=,即221199x y −=,则1111339y x x y −=+, 所以()()11121122122233339933AMBNy x x x k x y y y k y y x x −−−+===−−()()()()()121212122121212393991191x x x x x x x x kx kx k x x k x x −++−++==−−⎡⎤−++⎣⎦2222222218183996119193911818911919kk k k k k k k k k −+⨯+−+−−===−−⎛⎫−++ ⎪−−⎝⎭, 整理得218310k k −−=,解得16k =−或13k =(舍去),故直线l 的斜率为16−.05 定点定值问题1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明; (2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x −=−或截距式y kx b =+来证明. 一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m . ③参数无关找定点:找到和k 没有关系的点.【典例5-1】(2024·全国·模拟预测)已知离心率为23的椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,点P 为椭圆C 上的动点,且12A PA 面积的最大值为35():20l x my m =−≠与椭圆C 交于,A B 两点,点()1,0D −,直线,AD BD 分别交椭圆C 于,G H 两点,过点2A 作直线GH 的垂线,垂足为M . (1)求椭圆C 的方程.(2)记直线GH 的斜率为k ,证明:km 为定值.(3)试问:是否存在定点N ,使MN 为定值?若存在,求出定点N 的坐标;若不存在,说明理由. 【解析】(1)由题意,得22235,2,3,ab c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩解得2229,5,4.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为22195x y +=. (2)证明:设()()()()11223344,,,,,,,A x y B x y G x y H x y . 又()1,0D −,所以可设直线AD 的方程为1111x x y y +=−. 联立椭圆方程与直线AD 的方程,得112211,1.95x x y y x y +⎧=−⎪⎪⎨⎪+=⎪⎩ 消去x ,得()()222211111519101400x y y x y y y ⎡⎤++−+−=⎣⎦. 又2211195x y +=,所以22115945x y +=,可得()()2211115140x y x y y y +−+−=.由根与系数的关系,得2113145y y y x −=+,则13145y y x −=+,所以11131111459155x y x x y x x +−−−=⋅−=++,同理,得224422594,55x y x y x x −−−==++. 从而直线GH 的斜率()()()()()()2112214321214312212144454555595959559555y y y x y x y y x x k x x x x x x x x x x −−−+−+−++====−−−−−++−++−++()()()122112454516y x y x x x +−+−.又11222,2x my x my =−=−, 所以()()()()()1221121212434312316164y my y my y y k x x x x m +−+−===−−,即34km =,为定值. (3)由(2)可得直线GH 的方程为11114594355y x m x y x x ⎛⎫+=⋅+− ⎪++⎝⎭. 由椭圆的对称性可知,若直线GH 恒过定点,则此定点必在x 轴上, 所以令0y =,得()()()()()11111111116235916595135535353x x my x x x x x x x +−+++=−===++++.故直线GH 恒过定点T ,且点T 的坐标为1,03⎛⎫⎪⎝⎭.因为2A M GH ⊥,垂足为M ,且()23,0A ,所以点M 在以2A T 为直径的圆上运动.故存在点5,03N ⎛⎫⎪⎝⎭,使21423MN A T ==.【典例5-2】(2024·黑龙江双鸭山·模拟预测)已知双曲线2222:1(0,0)x y C a b a b −=>>的焦距为25点3)D 在C 上. (1)求C 的方程;(2)直线:1l x my =+与C 的右支交于A ,B 两点,点E 与点A 关于x 轴对称,点D 在x 轴上的投影为点G . (ⅰ)求m 的取值范围; (ⅱ)求证:直线BE 过点G .【解析】(1)由已知得222251631a b a b ⎧+=⎪⎨−=⎪⎩,解得224,1a b ==,所以C 的方程为2214x y −=.(2)(i )设()11,A x y ,()22,B x y ,则()11,E x y −,联立22144x my x y =+⎧⎨−=⎩, 消去x 得()224230m y my −+−=,则240m −≠,()()222Δ41241630m m m =+−=−>,解得||3m >||2m ≠.又l 与C 的右支交于A ,B 两点,C 的渐近线方程为12y x =±,则11||2m >,即0||2m <<, 所以|m 的取值范围为(3,2). (ii )由(i )得12224my y m +=−−,12234y y m −=−, 又点3)D 在x 轴上的投影为(4,0)G ,所以()224,GB x y =−,()114,GE x y =−−, 所以()()122144x y x y −+−()()122133my y my y =−+−()121223my y y y =−+,223223044mm m m −−=⋅−⋅=−−, 所以//GB GE ,又GB ,GE 有公共点G ,所以B ,G ,E 三点共线,所以直线BE 过点G .【变式5-1】(2024·陕西西安·一模)已知椭圆2222:1(0)x y E a b a b +=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的一个端点Q 构成一个等腰直角三角形,点23P ⎝⎭在椭圆E ,过点2F 作互相垂直且与x 轴不重合的两直线AB ,CD 分别交椭圆E 于A ,B 和点C ,D ,且点M ,N 分别是弦AB ,CD 的中点.(1)求椭圆E 的标准方程;(2)若()0,1D ,求以CD 为直径的圆的方程;(3)直线MN 是否过x 轴上的一个定点?若是,求出该定点坐标;若不是,说明理由. 【解析】(1)因为椭圆2222:1(0)x y E a b a b +=>>经过点23P ⎝⎭, 且1F ,2F 与短轴的一个端点Q 构成一个等腰直角三角形, 可得b c =,则22222a b c b =+=,所以2223122b b+=⨯,解得222,1a b ==, 所以椭圆E 的标准分别为2212x y +=.(2)由(1)得1(1,0),(0,1)F D −,所以直线CD 的方程为1x y +=,联立方程组22112x y x y +=⎧⎪⎨+=⎪⎩,解得41,33x y ==−或0,1x y ==,所以41(,)33C −, 则CD 的中点为21(,)33N 且423CD =CD 为直径的圆的方程为22218()()339x y −+−=. (3)设直线AB 的方程为1x my =+,且0m ≠,则直线CD 的方程为11x y m=−+, 联立方程组22112x my x y =+⎧⎪⎨+=⎪⎩,整理得22(2)210m y my ++−=, 设1122(,),(,)A x y B x y ,则0∆>且12122221,22y y y y m m +=−=−++, 所以12121224(1)(1)()22x x my my m y y m +=+++=++=+, 由中点坐标公式得222(,)22mM m m −++, 将M 的坐标中的用1m −代换,可得CD 的中点为2222(,)2121m mN m m ++,所以232(1)MN mk m =−,所以直线MN 的方程为22232()22(1)2m m y x m m m +=−+−+,即23(1)12m y x m =−−,则直线MN 过定点2(,0)3. 【变式5-2】(2024·浙江·二模)已知双曲线()2222:10,0x y C a b a b−=>>左右焦点分别为1F ,2F ,点()3,2P 在双曲线上,且点()3,2P 到双曲线两条渐近线的距离乘积为65,过1F 分别作两条斜率存在且互相垂直的直线1l ,2l ,已知1l 与C 双曲线左支交于A ,B 两点,2l 与C 左右两支分别交于E ,F 两点. (1)求双曲线C 的方程;(2)若线段AB ,EF 的中点分别为M ,N ,求证:直线MN 恒过定点,并求出该定点坐标. 【解析】(1)设双曲线C 的两渐近线方程分别为b y x a=,by x a =−,点()3,2P 到双曲线两渐近线的距离乘积为22294323265b a b a b a ccc −−+⨯==,由题意可得:222222229465941a b c b a c a b ⎧+=⎪⎪−⎪=⎨⎪⎪−=⎪⎩,解得23a =,22b =, 所以双曲线C 的方程为22132x y −=.(2)设直线1l 的方程为(5y k x =, 由1l ,2l 互相垂直得2l 的方程(15y x k=−, 联立方程得(225132y k x x y ⎧=⎪⎨⎪−=⎩,消y 得()222223651560k x k x k −−−−=,0∆>成立,所以212352M x x k x +=,(255M M ky k x == 所以点M 坐标为23525k k ⎝⎭,联立方程得(2215132y x k x y ⎧=−⎪⎪⎨⎪−=⎪⎩,所以34352N x x x +==(1255N N k y x k −=−=, 所以点N 坐标为223525,2323k k k ⎛⎫− ⎪ ⎪−−⎝⎭,根据对称性判断知定点在x 轴上, 直线MN 的方程为()N MM M N My y y y x x x x −−=−−,则当0y =时,222223525352523232323351252525M N N M N M k k kx y x y k k k k x y y kk k −−−−−−===−−−−−−所以直线MN 恒过定点,定点坐标为()35,0−.1.已知椭圆Γ:()222210x y a b a b +=>>的上顶点为()0,1A ,离心率3e =()2,1P −的直线l 与椭圆Γ交于B ,C 两点,直线AB 、AC 分别与x 轴交于点M 、N .(1)求椭圆Γ的方程;(2)已知命题“对任意直线l ,线段MN 的中点为定点”为真命题,求AMN 的重心坐标;(3)是否存在直线l ,使得2AMN ABC S S =△△?若存在,求出所有满足条件的直线l 的方程;若不存在,请说明理由.(其中AMNS、ABCS分别表示AMN 、ABC 的面积)【解析】(1)依题意1b =,3c e a ==222c a b =−, 解得2a =,所以椭圆Γ的方程为2214x y +=;(2)因为命题“对任意直线l ,线段MN 的中点为定点”为真命题,。
上册数学压轴题(提升篇)(Word版含解析)一、压轴题1.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.2.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n²−32n+247,1⩽n<16,n为整数。
(1)例如,当n=2时,a2=2²−32×2+247=187,则a5=___,a6=___;(2)第n层比第(n+1)层多堆放多少个仪器箱;(用含n的代数式表示)(3)假设堆放时上层仪器箱的总重量会对下一层仪器箱产生同样大小的压力,压力单位是牛顿,设每个仪器箱重54 牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。
①若仪器箱仅堆放第1、2两层,求第1层中每个仪器箱承受的平均压力;②在确保仪器箱不被损坏的情况下,仪器箱最多可以堆放几层?为什么?3.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a≠相除记作na,读作“a的n次商”.(1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是()A.任何非零数的2次商都等于1B.对于任何正整数n,()111n--=-C.除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D.负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.5.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.6.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.7.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 8.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.9.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.10.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?11.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.12.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)8;(2)4或10;(3)t的值为167和329【解析】【分析】(1)由数轴上点B在点A的右侧,故用点B的坐标减去点A的坐标即可得到AB的值;(2)设点C表示的数为x,再根据AC=3BC,列绝对值方程并求解即可;(3)点C位于A,B两点之间,分两种情况来讨论:点C到达B之前,即2<t<3时;点C 到达B之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=16 7②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=329或t=43,其中43<3不符合题意舍去答:t的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.2.(1)112,91;(2)(31-2n )个;(3)①46.75N ;②该仪器最多可以堆放5层. 【解析】 【分析】(1)把n=5,n=6分别代入n²−32n+247中进行计算.;(2)分别表示出n+1和n 时的代数式,然后进行减法计算;(3)①根据公式分别求得第二层和第一层的个数,再根据第二层的总重量除以第一层的个数进行计算;②根据①中的方法进行估算,求得最多可以堆放的层数. 【详解】解:(1)当n=5时,a 5=5²−32×5+247=112, 当n=6时,a 6=6²−32×6+247=91; (2)由题意可得,n²−32n+247-[ (n+1)²−32(n+1)+247] = n²−32n+247-(n 2+2n+1−32n -32+247) = n²−32n+247-n 2-2n-1+32n+32-247 =31-2n (个)答:第n 层比第(n+1)层多堆放(31-2n )个仪器箱. (3)①由题意得,()222322247541321247-⨯+⨯-⨯+ =18754216⨯=46.75(N )答:第1层中每个仪器箱承受的平均压力是46.75N. ②该仪器箱最多可以堆放5层,理由如下. 当n=1时,a 1=216, 当n=2时,a 2=187, 当n=3时,a 3=160, 当n=4时,a 4=135, 当n=5时,a 5=112, 当n=6时,a 6=91,当n=5时,第1层中每个仪器箱承受的平均压力为:()18716013511254216+++⨯=148.5<160(N )当n=6时,第1层中每个仪器箱承受的平均压力为:()187160135112+9154216+++⨯=171.25>160(N )所以,该仪器箱最多可以堆放5层. 【点睛】本题考查了图形变化规律探究问题,要能够根据所给的公式进行分析计算,同时体现了“估算”思想,体现了“优选”思想,对这类问题能从“中点”处、“黄金分割点”处思考是解答此题的重要思想. 3.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】 【分析】(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】 (1)3111111222222⎛⎫=÷÷=÷=⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14;(2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯-21()3=-;611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯45=;故答案为:21()3-,45; (4)由(3)得到规律:21()n n a a-=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a-,故答案为:21()n a-;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭11186=-- 29=-.【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序.4.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】 【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可; (1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. 【详解】 解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++;(1)1111 (12233420192020)++++⨯⨯⨯⨯ =111111...22320192020-+-++- =112020-=20192020; (2)∵|2||4|0a b -+-=, ∴a-2=0,b-4=0, ∴a=2,b=4, ∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++=111124466820182020++++⨯⨯⨯⨯=1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭=111222020⎛⎫- ⎪⎝⎭=10094040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10 【解析】 【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可, (2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可, (4)根据(3)的结果计算即可. 【详解】(1)观察数轴可知,4a =-,1b =,6c =. 故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =, 则若将数轴在点B 处折叠,点A 与点C 能重合. 故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,53BC b c t =-=+.故答案为:5t +;53t +. (4)5AB t =+, ∴3153AB t =+.又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+-- 10=.故3AB BC -的值不会随时间t 的变化而变化,值为10. 【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度. 6.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析 【解析】 【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2. 【详解】解:(1)∵b 是最小的正整数,∴b=1. 根据题意得:c-5=0且a+b=0, ∴a=-1,b=1,c=5. 故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0, 则:|x+1|-|x-1|+2|x+5| =x+1-(1-x )+2(x+5) =x+1-1+x+2x+10 =4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0. ∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5) =x+1-x+1+2x+10 =2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5. ∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2, ∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变. 【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.7.(1)①7+21;②10.82- ;③22.8 3.23+-;(2)9;(3)10012004. 【解析】 【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可; (3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可. 【详解】解:(1)①|7+21|=21+7; 故答案为:21+7; ②110.80.822-+=-; 故答案为:10.82-; ③23.2 2.83--=22.83.23+- 故答案为:22.83.23+-; (2)原式=1111924233202033-++- =9 (3)原式 =11111111 (23344520032004)-+-+-++- =1122004- =10012004【点睛】此题考查了有理数的加减混合运算,此题的难点把互为相反的两个数相加,使运算简便.做题时,要注意多观察各项之间的关系.8.(1)80°,20°;(2)90°;(3)当030AOB <∠<时,45BOM CON ∠+∠=;当3090AOB <∠<,45CON BOM ∠-∠=,理由见解析【解析】 【分析】(1)利用平角的定义、角平分线的定义和角的和差即可得出结论 (2)设AOM COM x ∠=∠=,再根据已知12BOM COD ∠=∠得出∠BOM=90°-x , 再利用BOC BOM COM ∠=∠+∠即可得出结论(3)分030AOB <∠<,3090AOB <∠<两种情况加以讨论 【详解】解:(1)∵∠AOB=40°,∠COD=60°∴∠BOC=180°-∠AOB -∠COD=80°,∠AOC=180°-∠COD =120° ∵OM 平分∠AOC ∴∠AOM=60°∴∠BOM=∠AOM-∠AOB =20° 故答案为:80°,20° (2)∵OM 平分∠AOC∴设AOM COM x ∠=∠=,则1802COD x ∠=- ∵12BOM COD ∠=∠ ∴()11802902BOM x x ∠=-=- ∴9090BOC BOM COM x x ∠=∠+∠=-+= (3)当030AOB <∠<时,即OB 在OM 下方时 设AOB x ∠= ∴90AOC x ∠=-∴1452AOM x ∠=-∴13454522BOM x x x ∠=--=-∴119022DOA DOB x ∠==-.∴13909022CON DOC DON x x x ∠=∠-∠=+-+= ∴45BOM CON ∠+∠=②当3090AOB <∠<,即OB 在OM 上方时设AOB x ∠= ∴90AOC x ∠=- ∴1452AOM x ∠=- ∴3452BOM x ∠=- ∴1809090DOC x x ∠=-+=+, ∵ON 平分BOD ∠,∴119022DON BOD x ∠=∠=- ∴32CON x ∠=∴45CON BOM ∠-∠= 【点睛】本题考查角的相关计算,难度适中,涉及角平分线的定义和邻补角相加等于180°的知识点;同时,里面的小题从易到难,体现了分类讨论的数学思想. 9.(1)2;(2)1.5;(3)4-5t 或5t-4;(4)47或45或87或85【解析】 【分析】(1)先计算出点P 到达点B 时运动的时间,再计算出点Q 相同时间内运动的路程,进而可得答案;(2)利用路程=速度×时间,分别计算出当t =0.5时点P 、Q 运动的路程,即AP 和CQ 的长,再根据PQ =AQ -AP 计算即可;(3)分点P 、Q 重合前与重合后两种情况,画出图形,根据PQ =AQ -AP (重合前)与PQ =AP -AQ (重合后)列式化简即可;(4)分点P 从点A 向点B 运动和点P 从点B 向点A 运动时两种情况,每种情况再分点P 、Q 在点C 异侧和点C 同侧,用含t 的代数式分别表示出CP 和CQ ,即可列出方程,解方程即可求出结果. 【详解】 解:(1)[]3(3)61--÷=,1112⨯+=,所以点Q 所表示的数是2;(2)当t =0.5时,AP =6×0.5=3,CQ =1×0.5=0.5,所以PQ=AQ -AP=AC+CQ -AP =4+0.5-3=1.5;(3)在点P 从点A 向点B 运动时,若点P 、Q 重合,则64t t =+,解得:45t =; 当405t ≤≤时,如图1,4645PQ AQ AP t t t =-=+-=-;当415t <≤时,如图2,6454PQ AP AC CQ t t t =--=--=-.故答案为:4-5t 或5t -4;(4)当点P 从点A 向点B 运动时,若P ,Q 两点到点C 的距离相等,则有如下两种情况: ①点P 、Q 在点C 两侧,如图3,根据题意,得:46t t -=,解得:47t =;②点P 、Q 在点C 右侧,此时P 、Q 重合,由(3)题得:45t =; 当点P 从点B 向点A 运动时,若P ,Q 两点到点C 的距离相等,也有如下两种情况: ③点P 、Q 在点C 右侧,此时P 、Q 重合,根据题意,得:()266t t --=,解得:87t =; ④点P 、Q 在点C 两侧,如图4,根据题意,得:()662t t --=,解得:85t =.综上,在整个运动过程中,当P ,Q 两点到点C 的距离相等时,47t =或45或87或85. 【点睛】本题考查了数轴上两点间的距离、线段的和差关系和一元一次方程的解法等知识,正确理解题意、全面分类、灵活运用方程思想和数形结合的思想是解题的关键. 10.(1)t 的值为1秒或52651秒;(2)当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103<t <6时,BON COM AOCMON∠-∠+∠∠不是定值.【解析】 【分析】(1)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t <12时,分别根据已知条件列等式可得t 的值;(2)分两种情况,分别计算∠COM 、∠BON 和∠MON 的度数,代入可得结论. 【详解】(1)当ON 与OA 重合时,t=90÷12=7.5(s ) 当OM 与OA 重合时,t=180°÷15=12(s )①如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-69°,可得180-15t=3(90-12t )-69, 解得t=1;②如图所示,当7.5<t <12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-69°,可得180-15t=3(12t-90)-69,解得t=52651, 综上,t 的值为1秒或52651秒; (2)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°, ∴15t+90+12t=180,解得t=103, ①如图所示,当0<t <103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°=02790t +,∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)902790t t t +--++=000027902790t t ++=1(是定值), ②如图所示,当103<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON )=360°-(15t°+90°+12t°)=270°-27t°,∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)9027027t t t +--+-=0000902727027t t+-(不是定值),综上所述,当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103<t <6时,BON COM AOCMON∠-∠+∠∠不是定值.【点睛】本题主要考查了角的和差关系的计算,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.11.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4. 【解析】 【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°; (2)∠AOE ﹣∠BOF 的值是定值 由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°, ∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°; (3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =. 故答案为4. 【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键. 12.(1)10.5°或14°或28°或31.5°;(2)74或218或212或634【解析】 【分析】(1)分4种情况,根据奇分线定义即可求解; (2)分4种情况,根据奇分线定义得到方程求解即可. 【详解】解:(1)如图1,∵∠MPN=42°,∵当PQ 是∠MPN 的3等分线时,∴∠MPQ=13∠MPN=13×42°=14°或∠MPQ=23∠MPN=23×42°=28°∵当PQ是∠MPN的4等分线时,∴∠MPQ=14∠MPN==14×42°=10.5°或∠MPQ=34∠MPN=34×42°=31.5°;∠MPQ=10.5°或14°或28°或31.5°;(2)依题意有①当3×8t=42时,解得t=74;②当2×8t=42时,解得t=218;③当8t=2×42时,解得t=212.④当8t=3×42时,解得:t=634,故当t为74或218或212或634时,射线PN是∠EPM的“奇分线”.【点睛】本题考查了旋转的性质,新定义奇分线,以及学生的阅读理解能力及知识的迁移能力.理解“奇分线”的定义是解题的关键.。
高中数学导数尖子生指导(填选压轴)一.选择题(共 30 小题)1.( 2013?文昌模拟)如图是322+x 2 2的值是()f ( x ) =x +bx +cx+d 的图象,则 x 1 A . B . C .D .考点 : 利用导数研究函数的极值;函数的图象与图象变化. 专题 : 计算题;压轴题;数形联合.剖析: 先利用图象得: f (x ) =x ( x+1 )( x ﹣ 2)=x 3﹣ x 2﹣2x ,求出其导函数,利用 x 1, x 2 是原函数的极值点,求出 x 1+x 2= ,,即可求得结论.解答: 解:由图得: f ( x ) =x ( x+1 )(x ﹣ 2) =x 3﹣ x 2﹣ 2x ,∴ f'( x ) =3x 2﹣ 2x ﹣ 2∵ x 1, x 2 是原函数的极值点所以有 x 1+x 2= ,,222.故 x 1 +x 2 =(x 1+x 2) ﹣ 2x 1x 2== 应选 D .评论: 本题主要考察利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考察,属于基础题.2.( 2013?乐山二模)定义方程 f ( x ) =f ′( x )的实数根 x 0 叫做函数 f ( x )的 “新驻点 ”,若函数 g ( x ) =x , h ( x )=ln ( x+1), φ( x )=x 3﹣ 1 的 “新驻点 ”分别为 α, β, γ,则 α, β,γ的大小关系为( ) A .α> β> γB . β> α> γC . γ> α>βD .β> γ>α考点 : 导数的运算. 专题 : 压轴题;新定义.剖析: 分别对 g ( x ),h (x ),φ( x )求导,令g ′( x ) =g ( x ),h ′( x )=h ( x ),φ′( x ) =φ( x ),则它们的根分别32为 α, β, γ,即 α=1, ln ( β+1) =, γ﹣ 1=3γ,而后分别议论 β、 γ的取值范围即可.解答:解: ∵ g ′( x ) =1, h ′( x ) =, φ′(x ) =3x 2,由题意得:α=1, ln ( β+1) = 32, γ﹣ 1=3γ,① ∵ ln ( β+1) =,β+1∴ ( β+1 ) =e ,当 β≥1时, β+1≥2, ∴ β<1,这与 β≥1矛盾,∴ 0< β< 1;32② ∵ γ﹣ 1=3 γ,且 γ=0 时等式不行立,2∴ 3γ>3∴ γ> 1, ∴ γ> 1.∴ γ> α> β. 应选 C .评论: 函数、导数、不等式密不行分,本题就是一个典型的代表,此中对对数方程和三次方程根的范围的议论是一个难点.3.( 2013?山东)抛物线 C 1:的焦点与双曲线C 2: 的右焦点的连线交C 1 于第一象限的点 M .若 C 1 在点 M 处的切线平行于 C 2 的一条渐近线,则p=()A .B .C .D .考点 : 利用导数研究曲线上某点切线方程;双曲线的简单性质. 专题 : 压轴题;圆锥曲线的定义、性质与方程.剖析: 由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在 x 取直线与抛物线交点 M 的横坐标时的导数值,由其等于双曲线渐近线的斜率获得交点横坐标与 p 的关系,把 M 点的坐标代入直线方程即可求得 p 的值.解答:解:由,得 x 2=2py ( p > 0),所以抛物线的焦点坐标为 F ().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为 ,即① .设该直线交抛物线于M ( ),则 C 1 在点 M 处的切线的斜率为 .由题意可知,得 ,代入 M 点得 M ( )把 M 点代入 ① 得:.解得 p=.应选 D .评论: 本题考察了双曲线的简单几何性质,考察了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.4.( 2013?安徽) 已知函数3 2 +bx+c 有两个极值点1211 2 ,则对于 x 的方程 3( f (x )) f ( x )=x +axx,x,若 f ( x)=x < x2+2af (x ) +b=0 的不一样实根个数为( )A .3B . 4C . 5D .6考点 : 利用导数研究函数的极值;根的存在性及根的个数判断.专题 : 压轴题;导数的综合应用.剖析: 由函数 f ( x )=x 32′ 2有两个不相等的实数根,必有+ax +bx+c 有两个极值点 x 1, x 2,可得 f ( x )=3x +2ax+b=0 △ =4a 2﹣ 12b > 0.而方程 3(f ( x ))2+2af ( x )+b=0 的 △ 1=△ >0,可知此方程有两解且 f ( x )=x 1 或 x 2.再分别议论利用平移变换即可解出方程f ( x ) =x 1 或 f ( x )=x 2 解得个数.解答: 解: ∵ 函数 f ( x ) =x 3 212+ax +bx+c 有两个极值点 x, x ,′2∴ f ( x )=3x +2ax+b=0 有两个不相等的实数根,∴ △ =4a 2﹣ 12b > 0.解得= .∵ x 1< x 2,∴,.而方程 3(f (x ))21=△ > 0, ∴ 此方程有两解且1 2+2af (x ) +b=0的△f ( x ) =x 或 x .不如取 0<x 1< x 2, f ( x 1)> 0.y=f ( x )﹣ x 的图象, ∵ f ( x )=x ,可知方程 f ( x )=x① 把 y=f ( x )向下平移 x个单位即可获得1有两1 1 1 1 解.② 把 y=f ( x )向下平移 x 2 个单位即可获得y=f ( x )﹣ x 2 的图象, ∵f (x 1) =x 1, ∴f (x 1)﹣ x 2<0,可知方程 f ( x ) =x 2 只有一解.综上 ①② 可知:方程 f ( x )=x 1 或 f ( x )=x 2.只有 3 个实数解. 即对于 x 的方程 3(f (x ))2+2af ( x )+b=0的只有 3 不一样实根.应选 A .评论: 本题综合考察了利用导数研究函数得单一性、极值及方程解得个数、平移变换等基础知识,考察了数形联合的思想方法、推理能力、分类议论的思想方法、计算能力、剖析问题和解决问题的能力.5.( 2013?湖北)已知 A .a 为常数,函数 B .f ( x ) =x ( lnx ﹣ ax )有两个极值点C .x 1,x 2( x 1< x 2)(D .)考点 : 利用导数研究函数的极值;函数在某点获得极值的条件.专题 : 压轴题;导数的综合应用.剖析: 先求出 f ′( x ),令 f ′( x )=0,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x ) =lnx+1 ﹣ 2ax 有且只有两个零点 ? g ′( x )在( 0, +∞)上的独一的极值不等于 0.利用导数与函数极值的关系即可得出.解答:解: ∵=lnx+1 ﹣ 2ax ,( x >0)令 f ′( x )=0 ,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x )=lnx+1 ﹣ 2ax 有且只有两个零点? g ′( x )在( 0, +∞)上的独一的极值不等于 0..① 当 a ≤0 时, g ′( x )> 0, f ′(x )单一递加,所以 g ( x ) =f ′(x )至多有一个零点,不切合题意,应舍去.② 当 a > 0 时,令 g ′( x ) =0 ,解得 x= ,∵ x, g ′( x )> 0,函数 g ( x )单一递加;时, g ′( x )< 0,函数 g ( x )单一递减.∴ x=是函数 g ( x )的极大值点,则> 0,即> 0,∴ ln ( 2a )< 0,∴ 0< 2a <1,即.∵, f ′( x ) =lnx +1﹣2ax =0, f ′( x ) =lnx +1﹣ 2ax 2=0.11122且 f ( x 1) =x 1( lnx 1﹣ ax 1) =x 1(2ax 1﹣ 1﹣ ax 1) =x 1( ax 1 ﹣1)< x 1(﹣ ax 1) =< 0,f (x 2) =x 2( lnx 2﹣ ax 2) =x 2( ax 2﹣1)>=﹣.().应选 D .评论: 娴熟掌握利用导数研究函数极值的方法是解题的要点.6.( 2013?辽宁)设函数 f ( x )知足 x 2f ′(x ) +2xf ( x ) =,f (2) = ,则 x >0 时, f ( x )()A .有 极大值,无极小值B . 有极小值,无极大值C . 既有极大值又有极小值D .既 无极大值也无极小值考点 : 函数在某点获得极值的条件;导数的运算.专题 : 压轴题;导数的综合应用.剖析: 先利用导数的运算法例,确立 f (x )的分析式,再结构新函数,确立函数的单一性,即可求得结论.解答:,解: ∵ 函数 f ( x )知足∴∴ x > 0 时,dx∴∴令 g ( x )=,则令 g ′(x ) =0,则 x=2 , ∴x ∈( 0, 2)时, 数单一递加∴ g ( x )在 x=2 时获得最小值g ′( x )< 0,函数单一递减,x ∈( 2, +∞)时,g ′( x )> 0,函∵ f ( 2) =, ∴ g (2) = =0∴ g ( x ) ≥g ( 2) =0∴≥0即 x > 0 时, f ( x )单一递加∴ f ( x )既无极大值也无极小值应选 D .评论: 本题考察导数知识的运用,考察函数的单一性与极值,考察学生剖析解决问题的能力,难度较大.7.( 2013?安徽)若函数f ( x )=x 3+ax 2+bx+c 有极值点 x 1,x 2,且 f ( x 1)=x 1,则对于 x 的方程 3( f ( x ))2+2af ( x ) +b=0 的不一样实根个数是( )A .3B . 4C . 5D .6考点 : 函数在某点获得极值的条件;根的存在性及根的个数判断. 专题 : 综合题;压轴题;导数的综合应用.剖析: 求导数 f ′( x ),由题意知 x 1, x 2 是方程 3x 2+2ax+b=0 的两根,从而对于 f ( x )的方程 3( f ( x ))2+2af ( x )+b=0 有两个根,作出草图,由图象可得答案.解答: 解: f ′( x ) =3x 2+2ax+b , x 1, x 2 是方程 3x 2+2ax+b=0 的两根,不如设 x 2>x 1,由 3( f ( x ))2+2af ( x ) +b=0,则有两个 f ( x )使等式成立, x 1=f ( x 1),x 2> x 1=f ( x 1),以下表示图象:如图有三个交点,应选 A .评论: 考察函数零点的观点、以及对嵌套型函数的理解,考察数形联合思想.8.( 2014?海口二模)设f (x )是定义在R 上的奇函数,且f ( 2) =0,当x > 0 时,有恒成立,则不等式 x 2f ( x )> 0 的解集是()A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣2, 0) ∪ ( 0, 2)C . (﹣ ∞,﹣2)∪(2,+∞)D .(﹣ ∞,﹣ 2) ∪ ( 0,2)考点 : 函数的单一性与导数的关系;奇偶函数图象的对称性;其余不等式的解法. 专题 : 综合题;压轴题.剖析:第一依据商函数求导法例,把 化为 [] ′< 0;而后利用导函数的正负性, 可判断函数y=在( 0, +∞)内单一递减;再由f ( 2)=0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得f ( x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因 当 x > 0 ,有 恒成立,即 [ ]′<0 恒成立,所以在( 0, +∞)内 减.因 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0.又因 f ( x )是定 在R 上的奇函数,所以在( ∞, 2)内恒有 f ( x )> 0;在( 2, 0)内恒有f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案 ( ∞, 2)∪ ( 0,2).故 D .点 :本 主要考 函数求 法 及函数 性与 数的关系,同 考 了奇偶函数的 象特色.9.( 2014?重 三模) 于三次函数 f ( x )=ax 3+bx 2+cx+d ( a ≠0), 出定 : f ′(x )是函数 y=f ( x )的 数, f ″ ( x )是 f ′( x )的 数,若方程 f ′′(x )=0 有 数解 x 0, 称点( x 0, f (x 0)) 函数 y=f ( x )的 “拐点 ”.某同学研究 :任何一个三次函数都有 “拐点 ”;任何一个三次函数都有 称中心,且“拐点 ”就是 称中心. 函数g ( x ) =, g ( ) +=()A .2011B . 2012C . 2013D .2014考点 : 数的运算;函数的 ;数列的乞降. : ; 数的观点及 用.剖析: 正确求出 称中心,利用 称中心的性 即可求出.解答: 解:由 意,′2 ″g (x ) =x x+3 , ∴ g ( x ) =2x 1, ″,解得,令 g ( x )=0又, ∴ 函数 g ( x )的 称中心 .∴,, ⋯∴ g ( ) +=2012 .故 B .点 : 正确求出 称中心并掌握 称中心的性 是解 的关 .10.( 2014?上海二模) 已知 f ( x )=alnx+ 2x 1,x 2,都有x ( a > 0),若 随意两个不等的正 数 > 2 恒成立, a 的取 范 是( )A .( 0, 1]B . ( 1, +∞)C . (0, 1)D .[1, +∞)考点 : 数的几何意 ;利用 数研究函数的 性.: 算 ; .剖析:先将条件 “ 随意两个不等的正 数 x 1,x 2,都有> 2 恒成立 ” 成当 x > 0 ,f'( x )≥2 恒成立,而后利用参 量分别的方法求出a 的范 即可.解答:解:对随意两个不等的正实数x 1, x 2,都有> 2 恒成立则当 x > 0 时, f'( x )≥2 恒成立f' ( x ) = +x ≥2 在( 0, +∞)上恒成立则 a ≥( 2x ﹣ x 2) max =1 应选 D .评论: 本题主要考察了导数的几何意义,以及函数恒成立问题,同时考察了转变与划归的数学思想,属于基础题.11.(2012?桂林模拟)已知在(﹣ ∞, +∞)上是增函数,则实数 a 的取值范围是()A .(﹣ ∞, 1]B . [﹣ 1, 4]C . [﹣ 1,1]D .(﹣ ∞, 1)考点 : 利用导数研究函数的单一性.专题 : 计算题;压轴题.剖析: 假如一个分段函数在实数上是一个增函数,需要两段都是增函数且两个函数的交点处要知足递加,当于 0 时,要使的函数是一个减函数,求导此后导函数横小于0,注意两个端点处的大小关系.解答: 解: ∵ 假如一个分段函数在实数上是一个增函数.x 小需要两段都是增函数且两个函数的交点处要知足递加,当 x < 0 时, y ′=3x 2﹣( a ﹣1)> 0 恒成立,∴ a ﹣ 1< 3x 2∴ a ﹣ 1≤0∴ a ≤1,当 x=0 时, a 2﹣ 3a ﹣ 4≤0 ∴ ﹣ 1≤a ≤4,综上可知﹣ 1≤a ≤1 应选 C .评论: 本题考察函数的单一性,分段函数的单一性,解题的要点是在两个函数的分界处,两个函数的大小关系必定要写清楚.12.( 2012?河北模拟)定义在 [1, +∞)上的函数 f ( x )知足: ① f ( 2x ) =cf ( x )( c 为正常数);② 当 2≤x ≤4 时,f ( x ) =1﹣( x ﹣ 3) 2,若函数 f ( x )的图象上全部极大值对应的点均落在同一条直线上,则 c 等于( ) A .1 B . 2 C . 1 或 2 D .4 或 2 考点 : 利用导数研究函数的极值;抽象函数及其应用. 专题 : 计算题;压轴题.剖析: 由已知可得分段函数f ( x )的分析式,从而求出三个函数的极值点坐标,依据三点共线,则任取两点确立的直线斜率相等,能够结构对于c 的方程,解方程可得答案.解答: 解: ∵ 当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3)2当 1≤x < 2 时, 2≤2x < 4,则 f ( x ) = f ( 2x ) = [1﹣( 2x ﹣ 3) 2]此时当 x= 时,函数取极大值当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3) 2此时当 x=3 时,函数取极大值 1当 4< x≤8 时, 2<x≤4则f( x) =cf ( x) =c (1﹣( x﹣ 3)2,此时当 x=6 时,函数取极大值c∵ 函数的全部极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴解得 c=1 或 2.应选 C评论:本题考察的知识点是三点共线,函数的极值,此中依据已知剖析出分段函数 f ( x)的分析式,从而求出三个函数的极值点坐标,是解答本题的要点.13.( 2012?桂林模拟)设x﹣xf ′( x),且 f′( x)是奇函数.若曲线y=f ( x)的a∈R,函数 f ( x) =e+a?e 的导函数是一条切线的斜率是,则切点的横坐标为()A .ln2B .﹣ ln2C. D .考点:简单复合函数的导数.专题:压轴题.剖析:已知切线的斜率,要求切点的横坐标一定先求出切线的方程,我们可从奇函数下手求出切线的方程.解答:解:对f( x) =e x+a?e﹣x求导得 f ′( x) =e x﹣ ae﹣x又 f′( x)是奇函数,故f′( 0) =1﹣ a=0解得 a=1,故有f′( x) =e x﹣ e﹣x,设切点为( x0, y0),则,得或(舍去),得 x0=ln2 .评论:熟习奇函数的性质是求解本题的要点,奇函数定义域若包括x=0,则必定过原点.14.( 2012?太原模拟)已知定义在 R 上的函数 y=f( x﹣ 1)的图象对于点( 1,0)对称,且 x∈(﹣∞,0)时, f( x)+xf(′x)<0 成立,(此中 f(′x)是(f x)的导函数),a=( 30.3)(f 30.3),b=( log π3).(f logπ3),则 a, b, c 的大小关系是()A .a> b> cB . c> b>a C. c> a>b D .a> c> b 考点:利用导数研究函数的单一性;函数单一性的性质;导数的乘法与除法法例.专题 : 计算题;压轴题.剖析: 由 “当 x ∈(﹣ ∞, 0)时不等式f ( x )+xf ′(x )< 0 成立 ”知只需比较的大小即可.解答: 解: ∵ 当 x ∈(﹣ ∞, 0)时不等式 f ( x ) +xf ′(x )< 0 成立即:( xf ( x )) ′< 0,∴ xf ( x )在 (﹣ ∞, 0)上是减函数.又 ∵ 函数 y=f ( x ﹣ 1)的图象对于点( 1,0)对称,∴ 函数 y=f (x )的图象对于点( 0, 0)对称, xf ( x )是减函数,要获得a ,b ,c 的大小关系,∴ 函数 y=f (x )是定义在 R 上的奇函数∴ xf ( x )是定义在 R 上的偶函数∴ xf ( x )在 ( 0, +∞)上是增函数.又 ∵=﹣ 2,2=.∴> 30.3 0.3)>( log π π?f ( 3 3)?f ( log 3) 即> 30.3 0.3)>( log π π?f ( 33) ?f ( log 3) 即: c > a >b 应选 C .评论: 本题考察的考点与方法有: 1)全部的基本函数的奇偶性; 2)抽象问题详细化的思想方法,结构函数的思想; 3)导数的运算法例: ( uv )′=u ′v+uv ′; 4)指对数函数的图象; 5)奇偶函数在对称区间上的单一性:奇 函数在对称区间上的单一性同样;偶函数在对称区间上的单一性相反.本题联合已知结构出 h (x )是正确解答的要点所在.15.( 2012?广东模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,且e 为自然对数的底,则()A .f ( 1)> e?f (0), f ( 2012)> e2012?f ( 0) B . f (1)< e?f ( 0), f ( 2012)> e 2012?f ( 0)C . f ( 1)> e?f (0), f ( 2012)< e 2012?f ( 0)D .f (1)< e?f ( 0), f ( 2012)< e2012?f ( 0)考点 : 导数的运算. 专题 : 计算题;压轴题. 剖析:结构函数 y=的导数形式,并判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0即> 0,所以函数 y= 单一递加,故当 x > 0 时,=f ( 0),整理得出 f ( x )> e xf (0)当 x=1 时 f ( 1)> e?f ( 0),当x=2012 时 f( 2012)> e 2012?f( 0).应选 A .评论: 本题主要考察函数的单一性与其导函数的关系,函数单一性的关系,考察转变、结构、计算能力.16.( 2012?无为县模拟)已知定义在R 上的函数 f ( x )、g ( x )知足 ,且 f ′( x )g ( x )< f ( x )g ′(x ),,如有穷数列( n ∈N *)的前 n 项和等于,则 n 等于 ()A .4B . 5C . 6D .7考点 : 导数的运算;数列的乞降.专题 : 压轴题.剖析: 利用导数研究函数的单一性获得a 的范围,再利用等比数列前n 项和公式即可得出.解答:解: ∵=′′, f ( x ) g ( x )< f ( x ) g ( x ),∴= <0,即函数单一递减, ∴ 0<a < 1.又,即 ,即 ,解得 a=2(舍去)或 .∴,即数列 是首项为 ,公比 的等比数列,∴= = ,由解得 n=5 ,应选 B .评论: 娴熟掌握导数研究函数的单一性、等比数列前n 项和公式是解题的要点.17.( 2012?福建)函数 (f x )在[a ,b] 上有定义,若对随意 x1,x ∈[a ,b],有2则称 f ( x )在 [a , b] 上拥有性质 P .设 f ( x )在 [1, 3]上拥有性质 P ,现给出以下命题:① f ( x )在 [1, 3]上的图象是连续不停的;② f ( x 2)在 [1, ] 上拥有性质 P ;③ 若 f ( x )在 x=2 处获得最大值 1,则 f ( x )=1, x ∈[1, 3] ;④ 对随意 x 1,x 2, x 3, x 4∈[1, 3] ,有[f ( x 1) +f ( x 2) +f (x 3) +f ( x 4)]此中真命题的序号是( )A .① ②B . ① ③C . ② ④D .③ ④考点 : 利用导数求闭区间上函数的最值;抽象函数及其应用;函数的连续性.专题 : 压轴题;新定义.剖析: 依据题设条件,分别举出反例,说明 ① 和② 都是错误的;同时证明 ③ 和④ 是正确的.解答:解:在 ① 中,反例: f ( x ) =在 [1, 3] 上知足性质 P ,但 f ( x )在 [1, 3] 上不是连续函数,故 ① 不行立;在 ② 中,反例: f ( x ) =﹣ x 在 [1, 3]上知足性质 P ,但 f (x 2) =﹣ x 2在 [1, ] 上不知足性质 P ,故 ②不行立;在 ③ 中:在 [1 , 3] 上, f (2) =f () ≤ ,∴,故 f ( x ) =1,∴ 对随意的 x 1, x 2∈[1,3] , f ( x ) =1, 故 ③ 成立;在 ④ 中,对随意 x 1,x 2, x 3, x 4∈[1 ,3] ,有=≤≤= [f ( x 1) +f (x 2) +f ( x 3) +f ( x 4 )] ,∴[f (x 1) +f ( x 2) +f (x 3) +f ( x 4) ],故 ④ 成立. 应选 D .评论: 本题考察的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对全部的状况都成立.18.( 2013?文昌模拟)设动直线 x=m 与函数 f ( x ) =x 3,g ( x ) =lnx 的图象分别交于点M 、N ,则 |MN| 的最小值为 ( )A .B .C .D .l n3﹣ 1考点 : 利用导数求闭区间上函数的最值. 专题 : 计算题;压轴题.剖析: 结构函数 F ( x ) =f ( x )﹣ g ( x ),求出导函数,令导函数大于 0 求出函数的单一递加区间,令导函数小于0 求出函数的单一递减区间,求出函数的极小值即最小值.解答: 解:绘图能够看到 |MN| 就是两条曲线间的垂直距离.设 F ( x ) =f (x )﹣ g (x ) =x 3﹣lnx ,求导得: F'( x )=.令 F ′( x )> 0 得 x >;令 F ′( x )< 0 得 0< x < ,所以当 x=时, F (x )有最小值为 F ( ) = + ln3=( 1+ln3 ),应选 A评论: 求函数的最值时,先利用导数求出函数的极值和区间的端点值,比较在它们中求出最值.19.( 2011?枣庄二模)设 f ′( x )是函数 f ( x )的导函数,有以下命题: ① 存在函数 f ( x ),使函数 y=f ( x )﹣ f ′( x )为偶函数;② 存在函数 f ( x ) f ′( x ) ≠0,使 y=f ( x )与 y=f ′( x )的图象同样;③ 存在函数 f ( x ) f ′( x ) ≠0 使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称.此中真命题的个数为( )A .0B . 1C . 2D .3考点 : 导数的运算;函数奇偶性的判断.专题 : 计算题;压轴题.剖析: 对于三个命题分别找寻知足条件的函数,三个函数分别是x, f ( x )=e ﹣ x,从而获得结f ( x ) =0, f ( x )=e 论.解答: 解:存在函数 f ( x ) =0,使函数 y=f ( x )﹣ f ′( x )=0 为偶函数,故 ① 正确存在函数 f (x ) =e x,使 y=f ( x )与 y=f ′( x )的图象同样,故 ② 正确存在函数 f (x ) =e ﹣x使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称,故 ③ 正确. 应选 D .评论: 本题主要考察了函数的奇偶性以及函数图象的对称性,解题的要点就是找寻知足条件的函数,属于基础题.20.( 2011?武昌区模拟)已知f ( x )是定义域为R 的奇函数,f (﹣ 4)=﹣ 1, f ( x )的导函数f ′( x )的图象如图所示.若两正数a ,b 知足f ( a+2b )< 1,则的取值范围是()A .B .C . (﹣ 1, 10)D .(﹣ ∞,﹣ 1)考点 : 函数的单一性与导数的关系;斜率的计算公式.专题 : 计算题;压轴题;数形联合.剖析: 先由导函数 f ′( x )是过原点的二次函数下手,再联合f ( x )是定义域为 R 的奇函数求出f ( x );而后依据a 、b 的拘束条件画出可行域,最后利用的几何意义解决问题.解答: 解:由 f ( x )的导函数f ′( x )的图象,设 f ′( x ) =mx 2,则∵ f ( x )是定义域为 R 的奇函数, ∴ f ( 0) =0,即 n=0 .f ( x )=+n .又 f (﹣ 4) = m ×(﹣ 64) =﹣ 1, ∴ f ( x ) =x 3=.且 f ( a+2b ) =又 a > 0, b > 0,则画出点(< 1, ∴< 1,即 a+2b <4.b ,a )的可行域以以下图所示.而可视为可行域内的点(b, a)与点 M (﹣ 2,﹣ 2)连线的斜率.又因为 k AM =3,k BM = ,所以<< 3.应选 B .评论:数形联合是数学的基本思想方法:碰到二元一次不定式组要考虑线性规划,碰到的代数式要考虑点(x,y)与点( a, b)连线的斜率.这都是由数到形的转变策略.21.(2011?雅安三模)以下命题中:①函数, f ( x) =sinx+( x∈( 0,π))的最小值是 2;② 在△ ABC 中,若 sin2A=sin2B ,则△ ABC 是等腰或直角三角形;③假如正实数a, b, c 知足 a + b> c 则+>;④ 如果 y=f ( x)是可导函数,则f′( x0) =0 是函数 y=f (x)在 x=x 0处取到极值的必需不充足条件.此中正确的命题是()A .① ②③④B .① ④C.② ③④ D .② ③考点:函数在某点获得极值的条件;不等关系与不等式;三角函数中的恒等变换应用.专题:惯例题型;压轴题.剖析:依据基本不等式和三角函数的有界性可知真假,利用题设等式,依据和差化积公式整理求得cos(A+B )=0或 sin(A ﹣B ) =0,推测出 A+B=或 A=B ,则三角形形状可判断出.结构函数y=,依据函数的单一性可证得结论;由函数极值点与导数的关系,我们易判断对错.解答:解:① f ( x)=sinx+≥2 ,当 sinx=时取等号,而 sinx 的最大值是 1,故不正确;② ∵ sin2A=sin2B ∴ sin2A ﹣ sin2B=cos( A+B ) sin( A ﹣ B) =0∴ cos( A+B ) =0 或 sin( A ﹣B )=0∴ A+B=或 A=B∴ 三角形为直角三角形或等腰三角形,故正确;③可结构函数 y=,该函数在(0.+∞)上单一递加, a+b> c 则+>,故正确;④ ∵ f( x)是定义在R 上的可导函数,当 f′( x0)=0 时, x0可能 f ( x)极值点,也可能不是 f (x)极值点,当 x0为 f( x)极值点时, f ′( x0)=0 必定成立,故 f′( x0)=0 是 x0为 f ( x)极值点的必需不充足条件,故④ 正确;应选 C.评论:考察学生会利用基本不等式解题,注意等号成立的条件,同时考察了极值的相关问题,属于综合题.22.( 2011?万州区一模)已知 f ( x ) =2x的最小值是( )A .﹣ 37B .﹣ 29考点 : 利用导数求闭区间上函数的最值.专题 : 惯例题型;压轴题.3﹣ 6x 2 +m ( m 为常数)在 [ ﹣ 2, 2] 上有最大值 3,那么此函数在 [ ﹣ 2, 2]上 C .﹣5 D .以 上都不对剖析: 先求导数,依据单一性研究函数的极值点,在开区间(﹣2, 2)上只有一极大值则就是最大值,从而求出m ,经过比较两个端点﹣2 和 2 的函数值的大小从而确立出最小值,获得结论.2∵ f ( x )在(﹣ 2, 0)上为增函数,在( 0, 2)上为减函数, ∴ 当 x=0 时, f ( x ) =m 最大,∴ m=3,从而 f (﹣ 2) =﹣ 37, f ( 2) =﹣5. ∴ 最小值为﹣ 37.应选: A评论:本题考察了利用导数求闭区间上函数的最值, 求函数在闭区间 [a ,b] 上的最大值与最小值是经过比较函数在( a ,b )内全部极值与端点函数 f ( a ), f ( b ) 比较而获得的,属于基础题.23.(2010?河东区一模)已知定义在 R 上的函数 (fx )是奇函数,且(f 2)=0,当 x > 0 时有,则不等式 x 2?f ( x )> 0 的解集是( )A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣∞,﹣ 2)∪( 0,2)C . (﹣ 2, 0)∪ ( 0, 2)D .(﹣ 2, 2) ∪ ( 2,+∞)考点 : 函数的单一性与导数的关系;函数单一性的性质. 专题 : 计算题;压轴题.剖析:第一依据商函数求导法例,把化为 [ ]′< 0;而后利用导函数的正负性,可判断函数 y=在( 0,+∞)内单一递减;再由 f ( 2) =0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得 f (x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因为当 x > 0 时,有恒成立,即 []′< 0 恒成立,所以在( 0,+∞)内单一递减.因为 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0. 又因为 f ( x )是定义在 R 上的奇函数,所以在(﹣ ∞,﹣ 2)内恒有 f ( x )> 0;在(﹣ 2, 0)内恒有 f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案为(﹣ ∞,﹣ 2)∪ ( 0,2). 应选 B .评论: 本题主要考察函数求导法例及函数单一性与导数的关系,同时考察了奇偶函数的图象特色.24.( 2010?惠州模拟)给出定义:若函数 f ( x )在 D 上可导,即 f ′( x )存在,且导函数 f ′(x )在 D 上也可导,则称 f (x )在 D 上存在二阶导函数,记 f ″( x ) =( f ′( x )) ′,若 f ″( x )< 0 在 D 上恒成立,则称f ( x )在 D 上为凸函数.以下四个函数在上不是凸函数的是()A .f ( x ) =sinx+cosxB . f ( x )=lnx ﹣2xC . f ( x )=﹣ x 3+2x ﹣ 1﹣D .f ( x ) =﹣ xex考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析: 对 ABCD 分别求二次导数,逐个清除可得答案.解答:解:对于 f ( x )=sinx+cosx ,f ′(x )=cosx ﹣sinx ,f ″(x )=﹣ sinx ﹣ cosx ,当 x ∈ 时, f ″( x )< 0,故为凸函数,清除A ;对于 f ( x ) =lnx ﹣2x , f ′( x ) = , f ″(x ) =﹣,当 x ∈时, f ″( x )< 0,故为凸函数,清除 B ;对于 f ( x ) =﹣x 3+2x ﹣ 1, f ′(x ) =﹣ 3x 2+2, f ″(x ) =﹣ 6x ,当 x ∈时, f ″( x )< 0,故为凸函数,清除 C ;应选 D .评论: 本题主要考察函数的求导公式.属基础题.25.( 2010?黄冈模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,则 ( )A .f ( 2)> e 2f ( 0), f ( 2010)> e 2010f ( 0)B . f (2)< e 2f ( 0),f (2010)> e 2010f (0)C . f ( 2)> e 2f ( 0), f ( 2010)< e 2010f ( 0)D .f (2)< e 2f ( 0),f (2010)< e 2010f (0)考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析:先转变成函数 y=的导数形式,再判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0从而>0 从而函数 y= 单一递加,故 x=2 时函数的值大于 x=0 时函数的值,即所以 f ( 2)> e 2f ( 0).2010同理 f ( 2010)> ef ( 0);评论: 本题主要考察函数的单一性与其导函数的正负状况之间的关系,即导函数大于 0 时原函数单一递加,当导函数小于0 时原函数单一递减.26.( 2010?龙岩二模)已知f ( x )、g ( x )都是定义在R 上的函数,f ′( x )g ( x ) +f (x ) g ′( x )< 0, f ( x ) g ( x )=ax , f ( 1)g ( 1) +f (﹣ 1)g (﹣ 1) =.在区间[ ﹣3, 0]上随机取一个数x , f ( x ) g ( x )的值介于4 到 8 之间的概率是()A .B .C .D .考点 : 利用导数研究函数的单一性;几何概型.专题 : 计算题;压轴题.剖析: 依据函数积的导数公式,可知函数f ( x )g ( x )在R 上是减函数,依据f ( x )g ( x ) =a x , f ( 1)g ( 1)+f(﹣ 1) g (﹣ 1) =.我们能够求出函数分析式,从而可求出f (x )g ( x )的值介于4 到 8 之间时,变量的范围,利用几何概型的概率公式即可求得. 解答: 解:由题意, ∵ f' ( x ) g ( x )+f (x ) g'( x )< 0,∴ [f ( x ) g ( x ) ]'<0,∴ 函数 f ( x )g ( x )在 R 上是减函数∵ f ( x ) g (x ) =a x,∴ 0< a < 1∵ f ( 1) g (1) +f (﹣ 1)g (﹣ 1)= .∴∴∵ f ( x ) g (x )的值介于 4 到 8∴ x ∈[﹣ 3,﹣ 2]∴ 在区间 [﹣3, 0] 上随机取一个数 x ,f (x ) g ( x )的值介于 4 到 8 之间的概率是应选 A .评论: 本题的考点是利用导数确立函数的单一性,主要考察积的导数的运算公式,考察几何概型,解题的要点是确立函数的分析式,利用几何概型求解.27.( 2010?成都一模)已知函数 在区间( 1, 2)内是增函数,则实数m 的取值范围是( )A .B .C . (0, 1]D .考点 : 利用导数研究函数的单一性. 专题 : 压轴题.剖析: 第一求出函数的导数,而后依据导数与函数增减性的关系求出m 的范围.解答: 解:由题得 f ′( x )=x 2﹣ 2mx ﹣3m 2=( x ﹣ 3m )( x+m ),∵ 函数在区间( 1, 2)内是增函数,∴ f ′( x )> 0,当 m ≥0 时, 3m ≤1,∴ 0≤m ≤ ,当 m < 0 时,﹣ m ≤1, ∴ ﹣ 1≤m < 0,∴ m ∈[﹣ 1, ] .应选 D .点 :掌握函数的 数与 性的关系.28.( 2009?安徽) 函数 f ( x )= x 3+x 2+tan θ,此中 θ∈[0,] , 数 f (′1)的取 范 是 ()A .[ 2, 2]B . [, ]C . [ , 2]D .[ , 2]考点 : 数的运算.: .剖析: 利用基本求 公式先求出f ′( x ),而后令 x=1 ,求出 f ′(1)的表达式,从而 化 三角函数求 域 ,求解即可.2cos θ?x ,解答: 解: ∵ f ′( x ) =sin θ?x +∴ f ′( 1)=sin θ+ cos θ=2sin ( θ+ ).∵ θ∈[0, ],∴ θ+ ∈[ , ] . ∴ sin (θ+ ) ∈[ , 1] . ∴ 2sin ( θ+) ∈[, 2].故 D .点 : 本 合考 了 数的运算和三角函数求 域 ,熟 公式是解 的关 .29.( 2009?天津) 函数 f ( x )在 R 上的 函数f ′(x ),且 2f ( x ) +xf ′( x )> x 2,下边的不等式在R 内恒成立的是( )A .f ( x )> 0B . f ( x )< 0C . f ( x )> xD .f ( x )< x考点 : 数的运算. : .剖析: 于 参数取 , 些没有固定套路解决的 ,最好的 法就是清除法.解答: 解: ∵ 2f ( x ) +xf ′( x )> x 2,令 x=0 , f (x )> 0,故可清除 B ,D .假如 f ( x )=x 2+0.1, 已知条件 2f ( x ) +xf ′( x )> x 2成立,但 f ( x )>x 未必成立,所以 C 也是 的,故 A 故 A .点 :本 考 了运用 数来解决函数 性的 .通 剖析分析式的特色,考 了剖析 和解决 的能力.30.( 2009? 西) 曲 y=x n+1(n ∈N * )在点( 1, 1) 的切 与x 的交点的横坐 x n1 2n的, x ?x ?⋯?x( )A .B .C .D .1考点 : 利用 数研究曲 上某点切 方程;直 的斜率. : 算 ; . 剖析:欲判 x 1?x 2?⋯?x n 的 ,只 求出切 与x 的交点的横坐 即可,故先利用 数求出在 x=1 的 函数 ,再 合 数的几何意 即可求出切 的斜率.从而 解决.n+1*n解答: 解: y=x ( n ∈N )求 得 y ′=( n+1 )x ,令 x=1 得在点( 1,1) 的切 的斜率 k=n+1 ,在点( 1, 1) 的切 方程 y 1=k ( x n 1) =( n+1)( x n 1),不如 y=0,x 1?x 2?x 3⋯?x n = × × ,故 B .点 :本小 主要考 直 的斜率、利用 数研究曲 上某点切 方程、数列等基 知 ,考 运算求解能力、化 与 化思想.属于基 .高中数学导数尖子生指导(解答题)一.解答 (共30 小 )21.( 2014?遵 二模) 函数 f ( x ) =x +aln ( 1+x )有两个极 点x 1、x 2,且 x 1< x 2,( Ⅱ ) 明: f ( x 2)>.考点 : 利用 数研究函数的极 ;利用 数研究函数的 性;不等式的 明. : 算 ; 明 ; .剖析: ( 1)先确立函数的定 域而后求 数f ( x ),令g ( x )=2x 2+2x+a ,由 意知 x 1、 x 2 是方程 g ( x ) =0 的 两个均大于 1 的不相等的 根,成立不等关系解之即可,在函数的定 域内解不等式f ( x )> 0 和 f ( x )< 0,求出 区 ;( 2)x 2 是方程 g ( x ) =0 的根,将 a 用 x 2 表示,消去 a 获得对于 x 2 的函数,研究函数的 性求出函数的最大 ,即可 得不等式.解答:解:( I )令 g ( x )=2x2,其 称 .+2x+a由 意知x 1、 x 2 是方程 g ( x )=0 的两个均大于1 的不相等的 根,其充要条件,得( 1)当 x ∈( 1,x 1) , f'( x )> 0,∴ f ( x )在( 1, x 1)内 增函数; ( 2)当 x ∈( x 1, x 2) , f'(x )< 0, ∴f (x )在( x 1 ,x 2)内 减函数;( 3)当 x ∈( x 2, +∞) , f' ( x )> 0, ∴ f ( x )在( x 2, +∞)内 增函数;( II )由( I ) g ( 0) =a > 0, ∴,a= ( 2x222+2x )222∴ f ( x 2) =x 2 +aln ( 1+x 2) =x 2( 2x 2+2x 2) ln (1+x 2),h'( x ) =2x 2(2x+1 )ln ( 1+x ) 2x= 2( 2x+1 ) ln ( 1+x )( 1)当, h'(x )> 0,∴ h ( x )在 增;( 2)当 x ∈( 0, +∞) , h'( x )< 0, h (x )在( 0, +∞) 减. ∴故 .点 : 本 主要考 了利用 数研究函数的 性,以及利用 数研究函数的极 等相关知 ,属于基 .2﹣x2.( 2014?武汉模拟)己知函数 f ( x) =x e(Ⅰ)求 f ( x)的极小值和极大值;(Ⅱ)当曲线 y=f ( x)的切线 l 的斜率为负数时,求l 在 x 轴上截距的取值范围.考点:利用导数研究函数的极值;依据实质问题选择函数种类;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;转变思想;导数的综合应用.剖析:(Ⅰ )利用导数的运算法例即可得出f′( x),利用导数与函数单一性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ )利用导数的几何意义即可获得切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单一性、极值、最值即可.2 ﹣ x﹣x 2 ﹣ x ﹣ x2解答:解:(Ⅰ)∵ f( x) =x e,∴ f′( x) =2xe﹣ x e =e( 2x﹣ x ),令f′( x)=0 ,解得 x=0 或 x=2 ,令f′( x)> 0,可解得 0<x< 2;令 f′( x)< 0,可解得 x< 0 或 x> 2,故函数在区间(﹣∞, 0)与( 2,+∞)上是减函数,在区间( 0, 2)上是增函数.∴ x=0 是极小值点, x=2 极大值点,又f( 0) =0, f ( 2)=.故 f( x)的极小值和极大值分别为0,.( II )设切点为(),则切线方程为y﹣=(x﹣x0),令 y=0 ,解得 x==,因为曲线y=f ( x)的切线 l 的斜率为负数,∴(<0,∴ x0<0或x0>2,令,则=.①当 x0< 0 时,0,即 f′( x0)> 0,∴ f( x0)在(﹣∞, 0)上单一递加,∴ f(x0)< f( 0) =0;② 当x0> 2 时,令f′( x0) =0,解得.当时, f′( x0)> 0,函数 f ( x0)单一递加;当时, f ′( x0)< 0,函数f( x0)单一递减.故当时,函数f( x0)获得极小值,也即最小值,且=.综上可知:切线l 在 x 轴上截距的取值范围是(﹣∞,0)∪.评论:本题考察利用导数求函数的极值与利用导数研究函数的单一性、切线、函数的值域,综合性强,考察了推理能力和计算能力.3.( 2014?四川模拟)已知函数 f ( x) =lnx+x 2.( Ⅰ )若函数 g ( x ) =f ( x )﹣ ax 在其定义域内为增函数,务实数 a 的取值范围;( Ⅱ )在( Ⅰ )的条件下,若 a > 1, h ( x ) =e 3x ﹣ 3ae xx ∈[0, ln2] ,求 h ( x )的极小值;( Ⅲ )设 F ( x )=2f ( x )﹣ 3x 2﹣kx ( k ∈R ),若函数 F ( x )存在两个零点 m ,n ( 0< m <n ),且 2x 0=m+n .问:函数 F ( x )在点( x 0 ,F ( x 0))处的切线可否平行于x 轴?若能,求出该切线方程;若不可以,请说明原因.考点 : 函数的单一性与导数的关系;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题 : 计算题;压轴题;导数的观点及应用.剖析:( Ⅰ )先依据题意写出: g (x )再求导数, 由题意知, g ′( x )≥0,x ∈( 0,+∞)恒成立, 即由此即可求得实数 a 的取值范围;( Ⅱ )由( Ⅰ )知,利用换元法律t=e x ,则 t ∈[1,2] ,则 h ( t )=t 3﹣ 3at ,接下来利用导数研究 此函数的单一性,从而得出h (x )的极小值;( Ⅲ )对于可否问题,可先假定能,即设F (x )在( x 0,F ( x 0))的切线平行于 x 轴,此中 F ( x ) =2lnx﹣ x 2﹣ kx 联合题意,列出方程组,证得函数在( 0,1)上单一递加,最后出现矛盾,说明假定不行立,即切线不行否平行于x轴.解答:解:( Ⅰ ) g ( x ) =f ( x )﹣ ax=lnx+x 2﹣ax ,由题意知, g ′(x ) ≥0,对随意的x ∈( 0, +∞)恒成立,即又 ∵ x > 0,,当且仅当 时等号成立∴,可得( Ⅱ )由( Ⅰ )知,,令 t=e x,则 t ∈[1,2] ,则h ( t ) =t 3﹣3at ,由 h ′(t )=0,得或(舍去),∵ , ∴若 ,则 h ′( t )< 0,h ( t )单一递减;若 ,则 h ′( t )> 0, h ( t )单一递加∴ 当时, h ( t )获得极小值,极小值为x 轴,此中 F (x ) =2lnx ﹣ x 2﹣kx( Ⅲ )设 F ( x )在( x 0, F ( x 0))的切线平行于联合题意,有① ﹣ ② 得所以,由 ④ 得所以。
高考数学压轴题1 .椭圆的中心是原点O,它的短轴长为2龙,相应于焦点F(c,0) (c 》0 )的准线l 与x轴相交于点 A , OF =2 FA ,过点A 的直线与椭圆相交于 P 、Q 两点。
证明 FM=—HFQ . (14 分)-2 2 oa -c =2,由已知得《 a 2 解得a =J 6", c=2 c=2(—_c).c 所以椭圆的方程为 七+匕=1,离心率e =」662'3(2)解:由(1)可得 A (3, 0)。
2............................... 一. .匕 _1 设直线PQ 的方程为y=k(x —3)。
由方程组 " (2)',y =k(x -3 4 5)设 P(X I , y 1), Q(x 2, y 2),贝U X f, ① x 〔x 2 =』3k 13k 1由直线PQ 的方程得y 〔 =k3 -3), y 2=k(x 2 -3) 。
于是.22y 1y 2 =k (x 1 —3)(x 2 -3) =k [x 1x ? —3(x 1 +x 2) +9]。
OP OQ =0 ,x 1x 2 +y 1y 2 =0。
5 6 6 由①②③④得5k 2 =1 ,从而k =±凹亡(一翌6,四)。
533所以直线PQ 的方程为x-i/§y -3 = 0或x + T5y-3=0(1) 求椭圆的方程;(2) 若OP OQ =0,求直线 PQ 的方程; (3) 设AP = 7.AQ (兀>1 ),过点P 且平行于准线l 的直线与椭圆相交于另一点 M,(1) 解:由题意,可设椭圆的方程为a 2玲顼佰>而。
得(3k2十1)x2—18k2x 十27k2—6=0 ,依题意A =12(2—3k2)>0 ,得一还<k〈疗。
3 318k227k2 -6 (3,理工类考生做)证明:AP=(x〔一3,山),AQ =以2-3, y2)。
高考数学压轴题1.椭圆的中心是原点O,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。
(1)求椭圆的方程;(2)若0OP OQ ⋅=u u u r u u u r,求直线PQ 的方程;(3)设AP AQ λ=u u u r u u u r(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM FQ λ=-u u u u r u u u r. (14分)(1)解:由题意,可设椭圆的方程为(22212x y a a +=>。
由已知得,().22222a c a c c c ⎧-=⎪⎨=-⎪⎩解得2a c == 所以椭圆的方程为22162x y +=,离心率e =。
(2)解:由(1)可得A (3,0)。
设直线PQ 的方程为()3y k x =-。
由方程组,()221623x y y k x ⎧+=⎪⎨⎪=-⎩得()222231182760k x k x k +-+-=,依题意()212230k ∆=->,得k <<。
设(,),(,)1122P x y Q x y ,则21221831k x x k +=+, ① 212227631k x x k -=+。
②由直线PQ 的方程得(),()112233y k x y k x =-=-。
于是()()[()]22121212123339y y k x x k x x x x =--=-++。
③ ∵0OP OQ ⋅=u u u r u u u r,∴12120x x y y +=。
④由①②③④得251k =,从而(k =。
所以直线PQ的方程为30x -=或30x +-=(3,理工类考生做)证明:(,),(,)112233AP x y AQ x y =-=-u u u r u u u r。
由已知得方程组(),,,.12122211222233162162x x y y x y x y λλ-=-⎧⎪=⎪⎪⎨+=⎪⎪⎪+=⎩ 注意1λ>,解得2512x λλ-=因(,),(,)1120F M x y -,故(,)((),)1121231FM x y x y λ=--=-+-u u u u r (,)(,)121122y y λλλλ--=-=-。
而(,)(,)222122FQ x y y λλ-=-=u u u r ,所以FM FQ λ=-u u u u r u u u r 。
2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。
(1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。
(2) 证明)(x f 是偶函数。
(3) 试问方程01log )(4=+xx f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。
①f(x)=12--k x (2k ≦x ≦2k+2, k ∈Z) ②略 ⑶方程在[1,4]上有4个实根3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(22=-+y x 。
(1) 若动点M 到点F (2) 过点F 的直线g (3) 过轨迹E 上一点P 求点P 的坐标及S ①x 2=4y ②x 1x 2=-4 ⑶4.以椭圆222y ax +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形. .解:因a >1,不防设短轴一端点为B (0,1)设BC ∶y =kx +1(k >0)则AB ∶y =-k1x +1 把BC 方程代入椭圆, 是(1+a 2k 2)x 2+2a 2kx =0∴|BC |=2222121k a k a k ++,同理|AB |=222221a k a k ++由|AB |=|BC |,得k 3-a 2k 2+ka 2-1=0(k -1)[k 2+(1-a 2)k +1]=0 ∴k =1或k 2+(1-a 2)k +1=0当k 2+(1-a 2)k +1=0时,Δ=(a 2-1)2-4由Δ<0,得1<a <3由Δ=0,得a =3,此时,k =1 故,由Δ≤0,即1<a ≤3时有一解 由Δ>0即a >3时有三解5 已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0.(Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.解:依题意,知a 、b ≠0∵a >b >c 且a +b +c =0 ∴a >0且c <0(Ⅰ)令f (x )=g (x ), 得ax 2+2bx +c =0.(*) Δ=4(b 2-ac )∵a >0,c <0,∴ac <0,∴Δ>0∴f (x )、g (x )相交于相异两点 (Ⅱ)设x 1、x 2为交点A 、B 之横坐标 则|A 1B 1|2=|x 1-x 2|2,由方程(*),知|A 1B 1|2=22224)(444a acc a a ac b -+=-2224()a c ac a =++ 24()1(**)cc aa ⎡⎤=++⎢⎥⎣⎦∵020a b c a c a b++=⎧⇒+>⎨>⎩,而a >0,∴2ca>- ∵020a b c a c c b++=⎧⇒+<⎨<⎩,∴12c a <- ∴122c a -<<- ∴4[(a c )2+ac +1]∈(3,12)∴|A 1B 1|∈(3,23)6 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱︱是2和→→⋅PN PM 的等比中项。
(1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。
解:(1)设动点的坐标为P (x,y ),则H (0,y ),()0,x PH -=→,→PM =(-2-x,-y )→PN =(2-x,-y )∴→PM ·→PN =(-2-x,-y )·(2-x,-y )=224y x +- x PH =→由题意得∣PH ∣2=2·→PM ·→PN 即()22242yx x +-=即14822=+y x ,所求点P 的轨迹为椭圆 由已知求得N (2,0)关于直线x+y=1的对称点E (1,-1),则∣QE ∣=∣QN ∣ 双曲线的C 实轴长2a=10=≤-=-ME QE QM QN QM (当且仅当Q 、E 、M 共线时取“=”),此时,实轴长2a 最大为10所以,双曲线C 的实半轴长a=210又23,221222=-=∴==a cb NMc Θ ∴双曲线C 的方程式为1232522=-y x7.已知数列{a n }满足aa aa b a a a a a a a n nn n n n +-=+=>=+设,2),0(32211 (1)求数列{b n }的通项公式;(2)设数列{b n }的前项和为S n ,试比较S n 与87的大小,并证明你的结论. (1)121-=n n b(2)08121116181)21212121161(81)212121(872441684=--=-+⋅+⋅+<-++++=-K K nS8.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称.(Ⅰ)求双曲线C 的方程;(Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程.解:(Ⅰ)设双曲线C 的渐近线方程为y=kx ,则kx-y=0∵该直线与圆1)2(22=-+y x 相切,∴双曲线C 的两条渐近线方程为y=±x .…………………………………………2分故设双曲线C 的方程为12222=-ay a x .又双曲线C 的一个焦点为 )0,2( ∴222=a ,12=a .∴双曲线C 的方程为122=-y x .………………………………………………4分(Ⅱ)由⎩⎨⎧=-+=1122y x mx y 得022)1(22=---mx x m . 令22)1()(22---=mx x m x f直线与双曲线左支交于两点,等价于方程f(x)=0在)0,(-∞上有两个不等实根.因此⎪⎪⎪⎩⎪⎪⎪⎨⎧>--<->∆012012022mm m解得21<<m . 又AB 中点为)11,1(22mm m --, ∴直线l 的方程为)2(2212+++-=x m m y .………………………………6分 令x=0,得817)41(2222222+--=++-=m m m b . ∵)2,1(∈m ,∴)1,22(817)41(22+-∈+--m∴),2()22,(+∞---∞∈Y b .………………………………………………8分 (Ⅲ)若Q 在双曲线的右支上,则延长2QF 到T ,使||||1QF QT =, 若Q 在双曲线的左支上,则在2QF 上取一点T ,使||||1QF QT =.根据双曲线的定义2||2=TF ,所以点T 在以)0,2(2F 为圆心,2为半径的圆上,即点T 的轨迹方程是)0(4)2(22≠=+-x y x ①…………………………………………10分 由于点N 是线段T F 1的中点,设),(y x N ,),(T T y x T .则⎪⎪⎩⎪⎪⎨⎧=-=222TT y y x x ,即⎩⎨⎧=+=y y x x T T 222.代入①并整理得点N 的轨迹方程为122=+y x .)22(-≠x ………………12分9. )(x f 对任意R x ∈都有.21)1()(=-+x f x f(Ⅰ)求)21(f 和)( )1()1(N n nn f nf ∉-+的值. (Ⅱ)数列{}n a 满足:n a =)0(f +)1()1()2()1(f nn f n f n f +-+++ΛΛ,数列}{n a 是等差数列吗?请给予证明;试比较n T 与n S 的大小.解:(Ⅰ)因为21)21()21()211()21(=+=-+f f f f .所以41)21(=f .……2分令n x 1=,得21)11()1(=-+n f n f ,即21)1()1(=-+n n f n f .……………4分(Ⅱ))1()1()1()0(f n n f n f f a n +-+++=Λ又)0()1()1()1(f nf n n f f a n +++-+=Λ………………5分两式相加21)]0()1([)]1()1([)]1()0([2+=+++-+++=n f f n n f n f f f a n Λ. 所以N n n a n ∈+=,41,………………7分又41414111=+-++=-+n n a a n n .故数列}{n a 是等差数列.………………9分(Ⅲ)na b n n 4144=-=22221n n b b b T +++=Λ)131211(16222n ++++=Λ ])1(13212111[16-++⨯+⨯+≤n n Λ………………10分)]111()3121()211(1[16n n --++-+-+=Λ………………12分n S nn =-=-=1632)12(16所以n n S T ≤……………………………………………………………………14分。