中考数学易错题专题训练-圆的综合练习题及详细答案
- 格式:doc
- 大小:1.19 MB
- 文档页数:18
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为
4cm,求这个圆形截面的半径.
【答案】10cm
【解析】
分析:先过圆心O作半径CO⊥AB,交AB于点D设半径为r,得出AD、OD的长,在
Rt△AOD中,根据勾股定理求出这个圆形截面的半径.
详解:解:过点O作OC⊥AB于D,交⊙O于C,连接OB,
∵OC⊥AB
∴BD=1
2
AB=
1
2
×16=8cm
由题意可知,CD=4cm
∴设半径为xcm,则OD=(x﹣4)cm
在Rt△BOD中,
由勾股定理得:OD2+BD2=OB2
(x﹣4)2+82=x2
解得:x=10.
答:这个圆形截面的半径为10cm.
点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.
2.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧OB上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.
(1)求证:PD2=PE•PF;
(2)当∠BOP=30°,P点为OB的中点时,求D、E、F、P四个点的坐标及S△DEF.
【答案】(1)详见解析;(2)D(﹣
3
4
a,
3
4
a),E(﹣
33
4
a,
3
4
a),F(﹣
3
2
a,
0),P(﹣3
a,
2
a
);S△DEF=
33
a2.
【解析】
试题分析:(1)连接PB,OP,利用AB切⊙O1于B求证△PBE∽△POD,得
出PB PE
OP PD
=,同理,△OPF∽△BPD,得出
PB PD
OP PF
=,然后利用等量代换即可.
(2)连接O1B,O1P,得出△O1BP和△O1PO为等边三角形,根据直角三角形的性质即可解得D、E、F、P四个点的坐标.再利用三角形的面积公式可直接求出三角形DEF的面积.
试题解析:(1)证明:连接PB,OP,
∵PE⊥AB,PD⊥OB,
∴∠BEP=∠PDO=90°,
∵AB切⊙O1于B,∠ABP=∠BOP,
∴△PBE∽△POD,
∴=,
同理,△OPF∽△BPD
∴=,
∴=,
∴PD2=PE•PF;
(2)连接O1B,O1P,
∵AB切⊙O1于B,∠POB=30°,
∴∠ABP=30°,
∴∠O1BP=90°﹣30°=60°,
∵O1B=O1P,
∴△O1BP为等边三角形,
∴O1B=BP,
∵P为弧BO的中点,
∴BP=OP,
即△O1PO为等边三角形,
∴O1P=OP=a,
∴∠O1OP=60°,
又∵P为弧BO的中点,
∴O1P⊥OB,
在△O1DO中,∵∠O1OP=60°O1O=a,
∴O1D=a,OD=a,
过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,
∴D(﹣a, a),
∵∠O1OF=90°,∠O1OP=60°
∴∠POF=30°,
∵PE⊥OA,
∴PF=OP=a,OF=a,
∴P(﹣a,),F(﹣a,0),
∵AB切⊙O1于B,∠POB=30°,
∴∠ABP=∠BOP=30°,
∵PE⊥AB,PB=a,
∴∠EPB=60°
∴PE=a,BE=a,
∵P为弧BO的中点,
∴BP=PO,
∴∠PBO=∠BOP=30°,
∴∠BPO=120°,
∴∠BPE+∠BPO=120°+60°=180°,
即OPE三点共线,
∵OE=a+a=a,
过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,
∴EM=OE=a,OM=a,
∴E(﹣a, a),
∵E(﹣a, a),D(﹣a, a),
∴DE=﹣a ﹣(﹣a )=a ,
DE 边上的高为: a ,
∴S △DEF =×a×a=a 2.
故答案为:D (﹣
a , a ),E (﹣a , a ),F (﹣a ,0),P (﹣a ,);S △DEF =a 2.
3.如图,□ABCD 的边AD 是△ABC 外接圆⊙O 的切线,切点为A ,连接AO 并延长交BC 于点E ,交⊙O 于点F ,过点C 作直线CP 交AO 的延长线于点P ,且∠BCP =∠ACD . (1)求证:PC 是⊙O 的切线;
(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .
【答案】(1)见解析;(2)14
π-
【解析】 【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;
(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE = 12
BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.
【详解】(1) 过C 点作直径CM ,连接MB ,
∵CM 为直径,
∴∠MBC =90°,即∠M+∠BCM =90°,