如何用大数据进行金融风控_光环大数据培训
- 格式:pdf
- 大小:259.30 KB
- 文档页数:2
如何用大数据进行金融风控_光环大数据培训
至少应该从数据资源获取、数据处理、数据应用场景3个层面去谈。
他表示,数据应用的风险控制首先数据资源量要大,且数据需要持续生产、持续更新、动态变化。
其次,要用技术加固数据,面对数据越来越多、越来越分散、相关性越来越弱等问题,想要做到强大的数据处理必须要使用深度学习、机器学习、强化学习等先进技术,可建立风控模型、量化运营模型、用户洞察模型、企业征信模型等模型和产品出来;最后企业需要在应用场景下训练和使用数据,这样才能使数据处理能力得到反馈,使之成为一个正向的循环。
许凌透露,京东金融的资源获取主要来自体系内电商数据,体系外大量合作投资获得的数据,还有一部分来自大量模型变量和多维度数据。
大数据风控团队的核心能力在于拥有海量数据、能够实时决策以及数据在贷前贷中贷后的流转三大能力。
强大的数据获取和处理能力不仅包括对数据稳定性的维持,还包括对第三方欺诈数据的识别等等。
关于技术如何推动数据加工的问题,张敬华表示,拿到数据之后如何做清洗、加工、分成以及进行分布式计算、风控决策等等都需要大量技术层面的工作。
张敬华以“用户敏感信息”为例指出,技术要做到的是如何在保护用户隐私的情况下,让风控人员、不同的系统客户人员使用和支持,并进行流转。
全业务的智能决策引擎实践是掌众金服正在做的事情,该决策引擎包括风险授信,即让用户在56秒得到贷款;智能支付,用户在微信、支付宝等不同场景的代扣代收代付体验;精准营销,即怎么基于不同用户,实现贷款的需求。
这一决策模型能够实现在于掌众的自动化学习反哺体系,通过人工智能机器学习进行实践。
欺诈风险识别、信用风险识别是捷信当时亟待解决的问题,张韶峰表示,这两大方面涉及贷款申请设备反欺诈、黑名单过滤、身份验证、网络异常行为及申请信息对比等问题。
由于捷信的客户群下沉,其客户主要是蓝领工人、农民工,但这些人身上几乎没有常规的信用数据,百分之八九十查不到银行征信报告。
张韶峰介绍说,用机器学习算法和大数据技术,百融金服经过大半年的探索,最终的模型有效性由原来的0.2做到了0.38。
以还款能力计算为例,首先需要了解用户收入,第二个是负债,第三个是消费,以及很多辅助变量,以及是否看书或杂志、手机号使用多少年、在什么地方消费、社交圈怎么样等等,张韶峰表示这些都可以用来进行风险识别。
据张韶峰介绍,百融金服的传统逻辑合规评分基本上是几十个变量,而机器算法评分却可以变成几千个;一个逻辑模型算法建模能做到0.3%,人工智能算法,能够做到0.38%,这都是非常大的提升。
为什么大家选择光环大数据!
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。
讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。
通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。
【报名方式、详情咨询】
光环大数据官方网站报名:/
手机报名链接:http:// /mobile/。