回溯算法实验报告
- 格式:doc
- 大小:133.00 KB
- 文档页数:9
一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。
二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。
其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。
通过这种方法,可以找到问题的所有解,或者找到最优解。
四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。
(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。
(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。
一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
回溯算法实验报告实验目的:回溯算法是一种递归算法,通常用于解决有限集合的组合问题。
本实验旨在通过实现回溯算法来解决一个具体的问题,并对算法的性能进行评估。
实验内容:本实验将以八皇后问题为例,展示回溯算法的应用。
八皇后问题是一个经典的问题,要求在一个8x8的棋盘上放置8个皇后,使得任意两个皇后不能在同一行、同一列或同一对角线上。
算法步骤:1. 创建一个二维数组,表示棋盘。
初始化所有元素为0,表示棋盘上无皇后。
2. 逐行进行操作,尝试在每一列放置皇后。
在每一列,从上到下逐个位置进行尝试,找到一个合适的位置放置皇后。
3. 如果找到合适的位置,则将该位置标记为1,并向下一行进行递归操作。
4. 如果当前位置无法放置皇后,则回溯到上一行,尝试放置皇后的下一个位置。
5. 当所有皇后都放置好后,得到一个解。
将该解加入结果集中。
6. 继续回溯,尝试寻找下一个解。
7. 当所有解都找到后,算法终止。
实验结果:在本实验中,我们实现了八皇后问题的回溯算法,并进行了性能测试。
根据实验结果可以看出,回溯算法在解决八皇后问题上表现出较好的性能。
实验中,我们使用的是普通的回溯算法,没有进行优化。
对于八皇后问题来说,回溯算法可以找到所有解,但是随着问题规模的增加,算法的执行时间也会大大增加。
回溯算法是一种非常灵活的算法,可以用于解决各种组合问题。
对于规模较大的问题,回溯算法的时间复杂度很高,需要考虑优化算法以提高性能。
在实际应用中,可以结合其他算法,如剪枝等技巧,来改进回溯算法的性能。
回溯算法是一种非常有价值的算法,值得进一步研究和应用。
《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色。
如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。
图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。
2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。
3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。
他们想把参与者们尽可能分为实力相当的两支队伍。
每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。
4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。
每个作业J都有两项任务分别在两台机器上完成。
每个作业必须先由机器1处理,再由机器2处理。
作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。
对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。
批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。
(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。
(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。
(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。
三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。
四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。
实验报告实验项目实验六回溯法实验日期 2023.6.6 一、预习内容【实验目的】1.理解回溯法的设计思想;2.掌握回溯法的设计方法。
【实验内容及要求】实验内容:①素数环问题【题目描述】有一个整数n,把从1到n的数字无重复的排列成环,且使每相邻两个数(包括首尾)的和都为素数,称为素数环。
为了简便起见,我们规定每个素数环都从1开始。
例如,下图就是4的一个素数环。
【输入格式】有多组测试数据,每组输入一个n(0<n<=20),n=0表示输入结束。
【输出格式】如果存在满足题意叙述的素数环,从小到大输出所有的素数环。
否则输出No Circle。
【输入示例】【输入格式】皇后的个数n。
【输出格式】n皇后问题的解。
【输入示例】皇后的个数n:6【输出示例】第1个解:(1,2) (2,4) (3,6) (4,1) (5,3) (6,5)第2个解:(1,3) (2,6) (3,2) (4,5) (5,1) (6,4)第3个解:(1,4) (2,1) (3,5) (4,2) (5,6) (6,3)第4个解:(1,5) (2,3) (3,1) (4,6) (5,4) (6,2)要求:①求解的问题需用回溯法实现;②对算法进行时间和空间复杂度分析;③实验内容任选两个。
二、实验过程三、实验结果与分析教师评阅意见(1)实验预习 (30分)成绩:□预习认真、熟练掌握方法与步骤(30~28) □有预习、基本掌握方法与步骤(27~22)□有预习、但未能掌握方法与步骤(21~18) □没有预习,不能完成实验(17~0)(2)操作过程 (40分)成绩:□遵规守纪、操作熟练、团结协作 (40~37) □遵规守纪、操作正确、有协作 (36~29) □遵规守纪、操作基本正确、无协作 (28~24) □不能遵规守纪、操作不正确、无协作(23~0) (3)结果分析 (30分)成绩:□结果详实、结论清晰、讨论合理(30~28) □结果正确、讨论适当(27~22)□结果正确、没有分析讨论(21~18) □结果不正确、没有分析讨论(17~0) 其它意见:教师签名:年月日。
《算法设计与分析》实验报告实验4 回溯算法一、实验目的:掌握回溯算法的设计思想与设计方法。
二、实验环境1、硬件环境CPU:Intel(R) Celeron(R) CPU 1007U @ 1.5GHz内存:4G硬盘:500G2、软件环境操作系统:Windows7编程环境:Visual C++ 6.0编程语言:C三、实验内容1、问题有一个背包,最大限重为C,有n个物品,重量分别为W=<w1, w2, …, w n>,要求找出一个装载方案,使得放入背包物品的重量最大。
输出装载方案和该方案下的背包所装物品总重量。
2、数据结构(1)解的结构一维数据(1)<0 1 0 1 1 1 1>(2) <0 0 1 0 1 1 0>(2)搜索空间的结构3、算法伪代码ReBack(i)1、If i>n then<x1,x2,x3,...xn>是解2、Else while Si≠∅do3、Xi Si中最小值4、SiSi-{Xi}5计算Si+16ReBack(i+1)4、算法分析时间复杂度:O(2n)空间复杂度:O(n)5、关键代码(含注释)#include<stdio.h>int n,c,bestp;//物品的个数,背包的容量,最大重量int w[10000],x[10000],bestx[10000];//w[i]物品的重量,x[i]暂存物品的选中情况,bestx[i]物品的选中情况void Backtrack(int i,int cw){ //cw当前包内物品重量int j;if(i>n)//回溯结束{if(cw>bestp){bestp=cw;for(i=0;i<=n;i++) bestx[i]=x[i];}}elsefor(j=0;j<=1;j++){x[i]=j;if(cw+x[i]*w[i]<=c){cw+=w[i]*x[i];Backtrack(i+1,cw);cw-=w[i]*x[i];}}}6、实验结果(1)输入:C=152,n=7,W=<90, 80, 40, 30, 20, 12, 10> 输出:(2)输入:C=954,n=7,W=<2, 23, 163, 241, 311, 479, 487> 输出:四、实验总结(心得体会、需要注意的问题等)回溯算法也称试探法,是一种系统的搜索问题的解的方法。
一、实验背景随着信息技术的飞速发展,数据安全和个人隐私保护成为越来越重要的问题。
客体文件作为存储信息的重要载体,其安全性直接关系到数据的安全。
为了有效保护客体文件,我们需要对其进行加密处理。
回溯算法作为一种有效的加密算法,可以在保证数据安全的同时,提供高效的解密速度。
本实验旨在通过实践,掌握客体文件回溯加密和解密的方法,并分析其性能特点。
二、实验目的1. 理解回溯算法的基本原理和实现方法。
2. 掌握客体文件回溯加密和解密的过程。
3. 分析回溯算法在客体文件加密中的应用性能。
三、实验内容1. 回溯算法原理介绍2. 客体文件回溯加密和解密实现3. 性能分析四、实验步骤1. 回溯算法原理介绍回溯算法是一种在限定条件下,通过逐步尝试,逐步排除不可能的解,从而找到问题的解的方法。
在客体文件加密中,回溯算法通过将原始文件分割成若干片段,对每个片段进行加密,再进行拼接,从而达到加密的目的。
2. 客体文件回溯加密和解密实现(1)加密过程① 将原始文件分割成若干片段。
② 对每个片段进行加密,使用回溯算法生成密钥。
③ 将加密后的片段按照一定的顺序进行拼接,生成加密后的文件。
(2)解密过程①将加密文件分割成若干片段。
② 对每个片段进行解密,使用回溯算法生成密钥。
③ 将解密后的片段按照一定的顺序进行拼接,生成原始文件。
3. 性能分析(1)加密时间分析加密时间与文件大小、片段数量和加密算法复杂度有关。
在本实验中,加密时间主要受加密算法复杂度的影响。
通过对比不同加密算法的复杂度,我们可以得出加密时间的优劣。
(2)解密时间分析解密时间与加密过程类似,主要受解密算法复杂度的影响。
在本实验中,解密时间同样与加密算法复杂度有关。
(3)加密和解密速度对比通过对比加密和解密速度,我们可以分析回溯算法在客体文件加密中的性能特点。
在本实验中,回溯算法具有较高的加密和解密速度,适合应用于实际场景。
五、实验结果与分析1. 加密过程通过实验,我们成功实现了客体文件的回溯加密。
《算法设计与分析》实验报告回溯法姓名:XXX专业班级:XXX学号:XXX指导教师:XXX完成日期:XXX一、试验名称:回溯法(1)写出源程序,并编译运行(2)详细记录程序调试及运行结果二、实验目的(1)掌握回溯算法思想(2)掌握回溯递归原理(3)了解回溯法典型问题三、实验内容(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度(3)数字全排列问题四、算法思想分析(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度[问题描述]给定n个作业的集合J=(J1, J2, … , Jn)。
每一个作业Ji都有两项任务需要分别在2台机器上完成。
每一个作业必须先由机器1处理,然后再由机器2处理。
作业Ji需要机器i的处理时间为tji,i=1,2, … ,n; j=1,2。
对于一个确定的作业调度,设Fji是作业i在机器i上完成处理的时间。
则所有作业在机器2上完成处理的时间和成为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定一个最佳的作业调度方案,使其完成时间和达到最小。
要求输入:1、作业数2、每个作业完成时间表:要求输出:1、最佳完成时间2、最佳调度方案提示提示:算法复杂度为O(n!),建议在测试的时候n值不要太大,可以考虑不要超过12。
(3)数字全排列问题:任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。
如N=3时,共有以下6种排列方式:123,132,213,231,312,321。
注意:数字不能重复,N由键盘输入(N<=9)。
五、算法源代码及用户程序(1)编写一个简单的程序,解决8皇后问题N皇后问题代码1:#include<stdio.h>#define NUM 8 //定义数组大小int a[NUM + 1];int main (){int a[100];int number;int i;int k;int flag;int notfinish = 1;int count = 0; i = 1; //正在处理的元素下标,表示前i-1个元素已符合要求,正在处理第i个元素a[1] = 1; //为数组的第一个元素赋初值printf ("Result:\n"); while (notfinish) //处理尚未结束{while (notfinish && i <= NUM) //处理尚未结束且还没处理到第NUM个元素{for (flag = 1, k = 1; flag && k < i; k++) //判断是否有多个皇后在同一行{if (a[k] == a[i])flag = 0;}for (k = 1; flag && k < i; k++) //判断是否有多个皇后在同一对角线{if ((a[i] == a[k] - (k - i)) || (a[i] == a[k] + (k - i)))flag = 0;} if (!flag) //若存在矛盾不满足要求,需要重新设置第i个元素{if (a[i] == a[i - 1]) //若a[i]的值已经经过一圈追上a[i-1]的值{i--; //退回一步,重新试探处理前的一个元素if (i > 1 && a[i] == NUM){a[i] = 1; //当a[i]的值为NUM时将a[i]的值置1}else if (i == 1 && a[i] == NUM){notfinish = 0; //当第一位的值达到NUM时结束}else{a[i]++; //将a[i]的值取下一个值}}else if (a[i] == NUM){a[i] = 1;}else{a[i]++; //将a[i]的值取下一个值}}else if (++i <= NUM) //第i位已经满足要求则处理第i+1位{if (a[i - 1] == NUM) //若前一个元素的值为NUM则a[i]=1 {a[i] = 1;}else{a[i] = a[i - 1] + 1; //否则元素的值为前一个元素的下一个值}}}if (notfinish){++count;printf ((count - 1) % 3 ? "[%2d]:" : "\n[%2d]:", count);for (k = 1; k <= NUM; k++) //输出结果{printf (" %d", a[k]);} if (a[NUM - 1] < NUM) //修改倒数第二位的值{a[NUM - 1]++;}else{a[NUM - 1] = 1;} i = NUM - 1; //开始寻找下一个满足条件的解}}//whileprintf ("\n");return 0;}(2)批处理作业调度import java.util.*;public class FlowShop{static int n; //作业数static int f1; //机器1完成处理时间static int f; //完成时间和static int bestf; //当前最优值static int[][] m; //各作业所需要的处理时间static int[] x; //当前作业调度static int[] bestx; //当前最优作业调度static int[] f2; //机器2完成处理时间public static void trackback(int i) {if (i == n) {for (int j = 0; j < n; j++) {bestx[j] = x[j];}bestf = f;} else {for (int j = i; j < n; j++) {f1 += m[x[j]][0];if (i > 0) {f2[i] = ((f2[i - 1] > f1) ? f2[i - 1] : f1) + m[x[j]][1]; } else {f2[i] = f1 + m[x[j]][1];}f += f2[i];if (f < bestf) {swap(x, i, j);trackback(i + 1);swap(x, i, j);}f1 -= m[x[j]][0];f -= f2[i];}}}private static void swap(int[] x, int i, int j) {int temp = x[i];x[i] = x[j];x[j] = temp;}private static void test() {n = 3;int[][] testm = {{2, 1}, {3, 1}, {2, 3}};m = testm;int[] testx = {0, 1, 2};x = testx;bestx = new int[n];f2 = new int[n];f1 = 0;f = 0;bestf = Integer.MAX_V ALUE;trackback(0);System.out.println(Arrays.toString(bestx)); System.out.println(bestf);}public static void main(String[] args){test();System.out.println("Hello World!");}}(3)数字全排列问题#include "stdio.h"#include "conio.h"int num,cont=0;main(){ int i,n,a[30];printf("enter N :");scanf("%d",&num);for(i=1;i<=num;i++)a[i]=i;perm(a,1);printf("\n%d",cont);getch();}int perm(int b[], int i){int k,j,temp;if(i==num){for(k=1;k<=num;k++)printf("%d ",b[k]);printf("\t");cont++;}elsefor(j=i;j<=num;j++){temp=b[i];b[i]=b[j],b[j]=temp;perm(b,i+1);temp=b[i];b[i]=b[j],b[j]=temp;}return(0);}六、实验结果与思想这次的实验是回溯法,我也对回溯法有了一个基本印象,所谓回溯法,就是把所有的可行解都遍历一遍,遇到不可行的就回溯到上一步,然后通过添加约束条件和限界条件就可以得到最优解。
回溯算法实验报告(一)回溯算法实验报告1. 简介回溯算法是一种经典的解决问题的方法,特别适用于求解排列组合问题、迷宫问题以及图的搜索等。
本实验旨在探究回溯算法的原理、应用以及优缺点。
2. 原理回溯算法是一种递归的算法,通过不断试错来找出问题的解。
其基本思想是: - 从问题给定的初始解开始,逐步构建一个候选解; - 当候选解不满足约束条件时,进行回溯,返回上一步重新构建候选解;- 当所有候选解都被尝试过且都不满足约束条件时,算法停止。
3. 应用回溯算法在很多领域都有广泛的应用,以下列举几个常见的例子:1. 排列组合问题:如求解一个数组的全排列; 2. 迷宫问题:如求解从起点到终点的路径; 3. 图的搜索:如深度优先搜索(DFS)和广度优先搜索(BFS)。
4. 优缺点回溯算法有以下优点: - 适用性广:可以解决多种问题,特别擅长于求解排列组合和搜索类问题; - 简单直观:算法思想直观,易于理解和实现。
但回溯算法也有一些缺点: - 效率较低:因为回溯算法需要枚举所有可能的解,所以在问题规模较大时,时间复杂度较高; - 可能存在重复计算:如果问题的解空间中存在重复的子问题,回溯算法可能会进行重复的计算。
5. 实验结论通过本实验我们可以得出以下结论: 1. 回溯算法是一种经典的解决问题的方法,可应用于多个领域; 2. 回溯算法的基本原理是试错法,通过逐步构建候选解并根据约束条件进行回溯,找到问题的解;3. 回溯算法的优点是适用性广、简单直观,但缺点是效率较低且可能存在重复计算。
因此,在实际应用中,我们需要根据具体问题的特点来选择适合的算法。
回溯算法在问题规模较小时可以快速得到解答,但对于规模较大的问题,可能需要考虑其他高效的算法。
6. 探索进一步改进回溯算法的方法虽然回溯算法在解决一些问题时非常有用,但对于问题规模较大的情况,它可能会变得低效且耗时。
因此,我们可以探索一些方法来改进回溯算法的性能。
6.1 剪枝策略在回溯算法中,我们可以通过剪枝策略来减少无效的搜索路径,从而提高算法的效率。
算法实验报告四回溯法实验一、实验目的及要求利用回溯方法设计指派问题的算法,掌握回溯法的基本思想和算法设计的基本步骤。
要求:设计指派问题的回溯算法,注意回溯算法解决此问题要找出问题所有的可行解,然后一次比较保留问题的最优解(即最少耗费的解),并输出结果。
利用c语言(c++语言)实现算法,给出程序的正确运行结果。
(必须完成)指派问题描述:n个雇员被指派做n件工作,使得指派第i个人做第i件工作的耗费为ci,j,找出一种指派使得总耗费最少。
二、算法描述输入一个二维矩阵如下:352 4675 3374 5854 6其中行代表第几个雇员,列代表第几项工作,利用非递归的回溯算法实现,有主函数中定义k为第几个雇员,k的取值为集合{1,2,3,4}中元素。
且为行,列用a[k]表示,表示第几项工作。
定义耗费数组,一般项为c[i][j]],则c[k][a[k]]就可表示第k个人做第a[k]个工作。
由于同一个工作不能被两个人做或者说每个人只能做不同的工作,因此若设行排列固定,则a[k]!=a[j],其中从j=1变到=k-1即第k个人只能做1项的工作。
即他在做第a[k]项工作时要保证前面的工作都没做。
开始:For k =1 to 4a[k]=0;end for;k=1;while k>=1while a[k]<=3a[k]=a[k]+1;v=v+c[k][a[k]];for(j=1;j<=k-1;j++)if(a[k]!=a[j])标记合法与部分解;else标记非法解,剪掉部分;If a[k]为合法解then 输出当前指派和当前最小耗费Else if a[k]为部分解then k=k+1{前进}End while;a[k]=0;k=k-1;v=v-c[k][a[k]];{回溯}End while;输出每次求得的耗费,求出最小的即调用min(s[])函数,并将最小耗费cost输出;结束三、调试过程及运行结果调试过程中出现的问题:虽然按照回溯算法所给的模式写完了程序,却不对,经单步调试发现是我的程序结构混乱,部分解和合法解还有非法解之间的条件处理那有问题,因为通过一个循环要保证一个人只能做一项工作,而且要做别人没做过的工作,此条件对于部分解、合法解都要求,而当它不满足时应跳出作另外处理。
回溯法实验报告一、实验目的本实验旨在通过应用回溯法解决一系列问题,并验证回溯法在问题求解中的有效性和实用性。
通过实际的案例分析和实验结果,掌握回溯法的应用方法和技巧。
二、实验原理回溯法是一种求解问题的通用方法,适用于那些可以分解为一组相互排斥的子问题的求解过程。
回溯法通过尝试可能的解决方案,并根据约束条件逐步构建问题的解。
实际使用回溯法求解问题时,按照如下步骤进行:1. 定义解空间:将问题的解表示为一个n维向量或n维数组,定义问题的解空间。
2. 约束条件:确定问题的约束条件,即问题的解必须满足的条件。
3. 逐步构造解:按照问题的解空间和约束条件,逐步构造问题的解。
4. 解空间的搜索:通过递归或迭代的方式,搜索解空间中的所有可能解。
5. 解的选取与判定:根据需要选择符合要求的解,并进行最优解的判定。
三、实验步骤在本次实验中,我们选择了数独问题和八皇后问题作为实验案例进行分析和求解。
1. 数独问题:数独问题是一个9×9的格子,其中每个格子中都填有一个1到9的数字。
数独谜题的目标是在每个格子中填写数字,使得每一行、每一列和每一个宫(3×3的格子)中的数字均不重复。
通过回溯法求解数独问题的步骤如下:(1)定义解空间:将数独问题的解定义为一个9×9的二维数组。
(2)约束条件:每一行、每一列和每一个宫中的数字不能重复。
(3)逐步构造解:从数独问题的左上角开始,按照行优先的顺序逐个格子地填写数字,并保证数字的唯一性。
(4)解空间的搜索:当需要填写一个新的格子时,先确定该格子可能的数字范围,然后选择一个数字填入,再递归地进行下一步搜索。
(5)解的选取与判定:当所有的格子都被填满时,即找到了一个满足条件的解。
在求解过程中,需要判断填入的数字是否符合约束条件,并进行回退操作,直到找到所有可能的解。
2. 八皇后问题:八皇后问题是一个经典的回溯法问题,要求在一个8×8的棋盘上放置8个皇后,使得它们互相之间不能攻击到对方。
一、实验目的通过本次实验,旨在掌握回溯算法的基本原理和应用方法,加深对回溯算法的理解,并学会运用回溯算法解决实际问题。
实验内容包括:设计回溯算法解决八皇后问题、0-1背包问题以及TSP问题,并对算法进行时间复杂度和空间复杂度的分析。
二、实验内容1. 八皇后问题问题描述:在8x8的国际象棋棋盘上,放置8个皇后,使得它们互不攻击。
即任意两个皇后不能在同一行、同一列或同一斜线上。
算法设计:使用回溯算法,通过递归尝试在棋盘上放置皇后,当出现冲突时回溯到上一步,重新尝试。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(n):def backtrack(row):if row == n:result.append(board[:])returnfor col in range(n):if is_valid(board, row, col):board[row] = colbacktrack(row + 1)board[row] = -1board = [-1] nresult = []backtrack(0)return result```2. 0-1背包问题问题描述:给定n个物品,每个物品有一个价值v[i]和重量w[i],以及一个背包容量W,如何选择物品使得背包中的物品总价值最大且不超过背包容量。
算法设计:使用回溯算法,递归尝试选择每个物品,当背包容量不足或物品价值超过剩余容量时回溯到上一步。
代码实现:```pythondef knapsack(weights, values, capacity):def backtrack(i, cw, cv):if cw > capacity or i == len(weights):return cvif not backtrack(i + 1, cw, cv):return cvif cw + weights[i] <= capacity:return max(backtrack(i + 1, cw, cv), backtrack(i + 1, cw + weights[i], cv + values[i]))else:return cvreturn backtrack(0, 0, 0)```3. TSP问题问题描述:给定n个城市,以及每对城市之间的距离,求出一条最短路径,使得路径上的城市互不相同,并且最终回到起点。
回溯法实验报告实验04 回溯法班级:0920561 姓名:宋建俭学号:20一、实验目的1.掌握回溯法的基本思想。
2.掌握回溯法中问题的解空间、解向量、显式约束条件、隐式约束条件以及子集树与排列树的递归算法结构等内容。
3.掌握回溯法求解具体问题的方法。
二、实验要求1.认真阅读算法设计教材,了解回溯法思想及方法;2.设计用回溯算法求解装载问题、n后问题、图的m着色问题的java程序三、实验内容1.有一批共n个集装箱要装上2艘载重量分别为C1和C2的轮船,其中集装箱i的重量为wi,且∑wi≤C1+C2。
装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。
如果有,找出一种装载方案。
2.在n×n格的棋盘上放置彼此不受攻击的n个皇后。
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。
3.给定无向连通图G和m种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色。
是否有一种着色法使G中每条边的2个顶点着不同颜色。
这个问题是图的m可着色判定问题。
四、算法原理1、装载问题用回溯法解装载问题时,用子集树表示其解空间是最合适的。
可行性约束可剪去不满足约束条件(w1x1+w2x2+…+wnxn)<=c1的子树。
在子集树的第j+1层结点Z处,用cw记当前的装载重量,即cw=(w1x1+w2x2+…+wjxj),当cw>c1时,以结点Z为根的子树中所有结点都不满足约束条件,因而该子树中的解均为不可行解,故可将该子树剪去。
解装载问题的回溯法中,方法maxLoading返回不超过c的最大子集和,但未给出达到这个最大子集和的相应子集。
算法maxLoading调用递归方法backtrack(1)实现回溯搜索。
Backtrack(i)搜索子集树中第i层子树。
类Loading的数据成员记录子集树结点信息,以减少传给backtrack的参数。
回溯法实验报告回溯法实验报告一、引言回溯法是一种经典的算法解决方法,广泛应用于组合优化、图论、人工智能等领域。
本实验旨在通过实际案例,深入探讨回溯法的原理、应用和优化方法。
二、实验背景回溯法是一种通过不断尝试和回退的方式,寻找问题的解的方法。
它适用于那些问题空间巨大且难以直接求解的情况。
回溯法通过逐步构建解空间树,深度优先地搜索可能的解,并在搜索过程中剪枝,以提高搜索效率。
三、实验过程我们选择了一个经典的回溯法问题——八皇后问题作为实验案例。
该问题要求在一个8x8的棋盘上放置8个皇后,使得它们两两之间无法互相攻击。
我们采用了递归的方式实现回溯法,并通过剪枝操作来减少搜索空间。
具体实验步骤如下:1. 定义一个8x8的棋盘,并初始化为空。
2. 从第一行开始,逐行放置皇后。
在每一行中,尝试将皇后放置在每一个位置上。
3. 检查当前位置是否与已放置的皇后冲突。
如果冲突,则回溯到上一行,并尝试下一个位置。
4. 如果成功放置了8个皇后,则找到了一个解,将其保存。
5. 继续尝试下一个位置,直到所有可能的解都被找到。
四、实验结果通过实验,我们找到了92个不同的解,符合八皇后问题的要求。
这些解展示了八皇后问题的多样性,每个解都有其独特的棋盘布局。
五、实验分析回溯法的优点在于可以找到所有解,而不仅仅是一个解。
然而,在问题空间较大时,回溯法的搜索时间会变得非常长。
因此,为了提高搜索效率,我们可以采用一些优化方法。
1. 剪枝操作:在搜索过程中,当发现当前位置与已放置的皇后冲突时,可以立即回溯到上一行,而不是继续尝试下一个位置。
这样可以减少不必要的搜索。
2. 启发式搜索:通过引入启发函数,可以在搜索过程中优先考虑最有希望的分支,从而更快地找到解。
例如,在八皇后问题中,可以优先考虑放置在当前行与已放置皇后冲突最少的位置。
3. 并行计算:对于一些复杂的问题,可以利用并行计算的优势,同时搜索多个分支,从而加快搜索速度。
六、实验总结通过本次实验,我们深入了解了回溯法的原理和应用。
武 夷 学 院实验报告数学与计算机系实验七 回溯算法一、实验目的与要求1、掌握装载问题的回溯算法;2、初步掌握回溯算法;二、实验题有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱I 的重量为wi ,且装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。
如果有,找出一种装载方案。
三.实验步骤1.程序输入:import java.util.*;public class huisuo {public static int nn ;public static int cc ;public static int bestww ;public static int [] ww ;public static int [] xx ;public static int [] bestxx ;public static int maxLoadingRE(int [] w, int c, int [] bestx) {nn = w.length ;cc = c;bestww = 0;ww = w;bestxx = bestx;xx = new int [nn ];int r = 0;for (int i = 0; i < nn ; i++) {r += ww [i];}trackback (0, 0, r);return bestww ;}private static void trackback(int i, int cw, int r) { / if (i == nn ) {for (int j = 0; j < nn ; j++) {bestxx [j] = xx [j];}bestww = cw;return ;}if (cw + ww [i] <= cc ) {xx [i] = 0;211c c w ni i +≤∑=trackback(i + 1, cw + ww[i], r); }if (r - ww[i] > bestww) { xx[i] = 1;trackback(i + 1, cw, r - ww[i]);}}public static int maxLoading(int[] w, int c, int[] bestx) {int i = 0;int n = w.length;int[] x = new int[n];Arrays.fill(x, -1);int bestw = 0;int[] cw = new int[n];int[] r = new int[n];int tor = 0;for (int item : w) {tor += item;}r[0] = tor;cw[0] = 0;while (i > -1) {do {x[i] += 1;if (x[i] == 0) {if (cw[i] + w[i] <= c) {if (i < n - 1) {cw[i + 1] = cw[i] + w[i];r[i + 1] = r[i];}break;}}else {if (r[i] - w[i] > bestw) {if (i < n - 1) {r[i + 1] = r[i] - w[i];cw[i + 1] = cw[i];}break;}}} while (x[i] < 2);if (x[i] < 2) {if (i == n - 1) {for (int j = 0; j < n; j++) {bestx[j] = x[j];}if (x[i] == 0) {bestw = cw[i] + w[i];}else {bestw = cw[i];}}else {i++;x[i] = -1;}}else {i--;}}return bestw;}public static void main(String[] args) {int[] w = {20, 10, 40};int n = w.length;int c = 50;int[] bestx = new int[n];int bestw = maxLoadingRE(w, c, bestx);System.out.println("bestw : " + bestw);System.out.println(Arrays.toString(bestx));}}2.运行结果:四.实验结果与体会1.通过本实验能比较清楚的了解回溯算法的基本思想。
算法分析与设计实验报告第七次附加实验测试结果当输入图如下时:当输入图如下时:1 2345 1 2345当输入图如下时:实验分析通过三个实例图,我们只是简单的将最开始的原始图进行加边处理,可以发现结果就会发生变化。
最大团问题可是比较典型的利用解空间的子集树进行深度搜索,然后通过上界函数进行剪枝,只是此处的上界函数比较简单,只要判断是否还有做够的顶点能够构成最大团即可,相对于0-1背包问题和最优装载问题来说还是简单一点,其中主要注意的就是要加入现有团的顶点必须满足和所有的团内的顶点都有边相连,这样才能加入该团中,否则就不能加入团中。
实验心得最大团问题和图的m 着色问题用回溯法解很相似,他俩在对于判断的时候都比较简单,但是相比而言,由于最大团问题涉及到利用上届函数进行右子树剪枝,所以相比较而言复杂一点,最大团问题的上届函数和很多问题比如最优装载问题的上届函数原理是相同的,就是判断右子树当前节点最好的可能是否能够比当前最优解要好,如果当前节点的最好情况都不能超过当前最优解,那么说明最优解绝对不会有该节点,因此可以将该节点所在的右子树剪掉,这样就减少了算法的查找和回溯的时间。
这里要提一点的是在进行右子树剪枝的时候使用了大于等于,如果只是大于的话就没有办法找到顶点数相同的其他最优解了,同样找到叶子节点时则证明得到一个最优解,将其输出即可实验得分助教签名1 2345附录:完整代码(回溯法)//最大团问题回溯法求解#include<iostream>using namespace std;class Clique{friend void MaxClique(int **,int *,int );private:void Backtrack(int i);int **a; //图的邻接矩阵int n; //图的顶点数int *x; //当前解int *bestx; //当前最优解int cn; //当前顶点数int bestn; //当前最大顶点数};void Clique::Backtrack(int i){ //计算最大团if(i>n) //到达叶子节点{for(int j=1;j<=n;j++)bestx[j]=x[j];bestn=cn;cout<<"最大团:(";for(int i=1;i<n;i++)cout<<bestx[i]<<",";cout<<bestx[n]<<")"<<endl;return;}//检查当前顶点是否与当前团连接int ok=1;for(int j=1;j<i;j++)if(x[j]&&a[i][j]==0) //i与j不连接,即j在团中,但是i,j不连接{ok=0;break;}if(ok) //进入左子树{x[i]=1;cn++;Backtrack(i+1); //回溯到下一层节点x[i]=0;cn--;}//通过上界函数判断是否减去右子树,上界函数用于确认还有足够多的可选择顶点使得算法有可能在右子树中找到更大的团if(cn+n-i>=bestn){ //修改一下上界函数的条件,可以得到x[i]=0; //相同点数时的解Backtrack(i+1);}}void MaxClique(int **a,int *v,int n){ //初始化YClique Y;Y.x=new int[n+1];Y.a=a;Y.n=n;=0;Y.bestn=0;Y.bestx=v;Y.Backtrack(1);delete [] Y.x;cout<<"最大团的顶点数:"<<Y.bestn<<endl;}int main(){int n;cout<<"please input number of node:";cin>>n;//int a[n+1][n+1]; //由于定义的是int **a,且采用的是二维数组传参,因此int **a=new int *[n+1]; //两种解决方法,一是给定第二维的大小,二是通过for(int i=0;i<=n;i++) //动态分配内存,这里采用了动态内存分配解决问题a[i]=new int[n+1];for(int i=0;i<n+1;i++)for(int j=0;j<n+1;j++)a[i][j]=0;int edge;cout<<"please input number of edge:";cin>>edge;cout<<"please input edge:"<<endl;int v,w;for(int i=0;i<edge;i++){cin>>v>>w;a[v][w]=1;a[w][v]=1;}int *p=new int[n+1];MaxClique(a,p,n);system("pause");return 0;}。
回溯法实验报告总结
回溯法实验报告总结
引言
回溯法是一种常见的求解问题的算法,它通过不断尝试并回溯来寻找问题的最优解。
本次实验旨在探究回溯法在解决不同类型问题中的应用和效果。
实验一:八皇后问题
八皇后问题是一个经典的回溯法问题,其目标是在一个 8*8 的棋盘上放置 8 个皇后,使得每个皇后都不会互相攻击。
通过实现该问题,我们可以更好地理解回溯法的思想和过程。
实验二:0/1 背包问题
0/1 背包问题是另一个经典的回溯法问题,其目标是在给定一组物品和一个背包容量时,选择哪些物品放入背包中,使得背包中物品价值之和最大。
该问题可以用于优化算法设计和资源分配等领域。
实验三:数独游戏
数独游戏是一种基于逻辑推理和填空的益智游戏,也可以用回溯法来求解。
该游戏需要填写一个 9*9 的数独表格,使得每行、每列和每个
3*3 的小方格内都恰好包含数字 1~9,且不重复。
实验结果
通过对以上三个问题的实验,我们可以得出以下结论:
1. 回溯法在解决八皇后问题、0/1 背包问题和数独游戏等经典问题中具有较好的应用效果。
2. 在实现回溯法时,需要注意剪枝和优化等技巧,以提高算法效率和减少时间复杂度。
3. 回溯法虽然能够求解一些 NP 难问题,但在面对大规模数据和高维空间时往往会遇到困难。
结论
回溯法是一种常见的求解问题的算法,在许多领域中都有着广泛的应用。
通过本次实验,我们更加深入地了解了回溯法的思想和过程,并探究了其在不同类型问题中的应用和效果。
在今后的学习和研究中,我们将继续深入探究回溯法及其相关算法,并在实践中不断提高自己的编程能力。