(完整版)换元法在因式分解中的应用
- 格式:doc
- 大小:76.01 KB
- 文档页数:5
换元法在因式分解中的应用
换元法是中学数学中一种重要的解题方法,属于非常规思维,带有试探性、不规则性及创造性.用换元法解题,不蹈常规,见解独特,是培养学生创造性思维能力的重要手段。
因式分解是初中数学的重要内容之一,是多项式乘法的逆运算,在代数式的化简、求值、解方程等领域中都有着广泛、直接的应用。但当一个多项式的项数、字母较多,次数较高或还含有代数式乘积的项时,结构复杂,容易造成思路混乱,这时可对多项式中某些相同的部分设辅助元代换,达到减少项数、降低次数,便于分解因式。把复杂、繁难的问题变得简单、容易的目的。举例简解如下。
一、整体换元
例1因式分解
解:设,原式
例2若是方程的两根。因式分解
解:因为是方程的两根,所以
设,原式
但
同理
所以原式
二、局部换元
例3因式分解
解:设
原式
例4因式分解
解:设,原式
三、局部分解后,重组再换元
例5因式分解
解:原式
原式
例6因式分解
解:原式
设,原式
注:这里分解后重组的目的是为了寻找整体或局部换元的可能。
四、多元换元
例7因式分解
解:设
原式
例8因式分解
解:设
原式
例9因式分解
解:设注意到
所以原式
注:类似例7、8、9等,不能展开,否则将不堪繁琐,难以继续分解。
由上述数例可知,比较复杂的多项式因式分解,需综合应用多种分解方法,而换元法是一种行之有效的手段,在换元分解结束后,必需把原代换的代数式代换回来,恢复成原字母的分解式。