当前位置:文档之家› 直流发电机与同步发电机交轴电枢反应的比较研究_程小华

直流发电机与同步发电机交轴电枢反应的比较研究_程小华

直流发电机与同步发电机交轴电枢反应的比较研究_程小华
直流发电机与同步发电机交轴电枢反应的比较研究_程小华

 收稿日期:2003-10-17.

 程小华 男 1963年生;1982年毕业于合肥工业大学电机系电机专业,1994年研究生毕业于华中科技大学电力系电机与控制专业,获博士学位,现任华南理工大学电力学院副教授,硕士生导师。主要从事电机理论、电机设计和电机控制的研究.

直流发电机与同步发电机交轴电枢反应的比较研究

程小华1 徐宏谋

2

 1华南理工大学电力学院,广州(510640) 2

长沙市电子技术研究所,湖南常德(415000)

摘 要 主要解释了现行电机学书籍中关于直流发电机和同步发电机交轴电枢反应的差异。通过引入有效磁通的概念,理清了电机学中每极磁通概念的混乱;通过引入视在磁通的概念,使交轴电枢反应的效应在直流发电机和同步发电机中统一起来,维护了电机学内在的逻辑一致性。

关键词 直流发电机 同步发电机 交轴电枢反应

Comparison Study of the q -Axis Armature Reaction of D .C .Generator and Synchronous Generator

C heng Xiaohua and Xu H ongmou

A bstract This paper explains the difference of the q -axis armature reaction between D .C .generator and synchronous generator in the current book about electrical machine ,the con -cept of flux per pole in electrical machine discipline is understood by introducing of the active

flux ,and the effect of q -axis armature reaction in D .C .generator and synchronous generator is united by introducing of the concept of appar ent flux ,thus the internal logic of electrical ma -chine discipline is c onsistent .

Key words D .C .generator ,synchronous generator ,q -axis armature reaction .

1 引言

传统的中、外电机学教科书或著作

[1,2,3,4,5,6,etc ]

对直流电机和同步电机都是分章论述的。然而,细心的具有归纳倾向的电机学研习者会注意到:

同样是交轴电枢反应,在直流发电机中没有增磁效应,而在同步发电机中却有增磁效应。这是为什么?本文试图对这一问题进行解释(见本文第2节),并通过提出有效磁通和视在磁通两个新概念对这一问题进行与现行电机学书籍不同的全新阐述(见本文第3节)。本文不考虑直轴电枢反应,并不计饱和。

2 交轴电枢反应的差异及其存在的

原因

2.1 交轴电枢反应的差异

直流发电机和同步发电机都有交轴电枢反应。现行的电机学告诉我们,这两个交轴电枢反应对气隙磁场的影响却有差异。直流发电机的交轴电枢反应仅使气隙磁场的波形发生畸变,并不改变每极气隙磁通;而同步发电机的交轴电枢反应在使气隙磁场发生扭斜的同时还使每极气隙磁通增大。

2.2 交轴电枢反应差异存在的原因

2.2.1 直流发电机交轴电枢反应不增磁的原因

1

图1是直流发电机交轴电枢反应的示意图。图中L g 1、L g 2是换向器的几何中心线,电刷就放在其上,L p 1、L p 2是气隙磁场的物理中性线,a 、b 、e 、f 各点所在的直线称为横轴。图中平顶波曲线B ox 是励磁磁场的波形,马鞍状曲线B ax 是交轴电枢反应磁场的波形,偏顶波曲线B δx 是气隙磁场的波形。气隙磁场是励磁磁势和交轴电枢反应磁场的合成磁场,相应地偏顶波曲线B δx 是平顶波曲线B ox 与马鞍状曲线B ax 的合成曲线

图1 直流发电机的交轴电枢反应

由图1可见,电机空载时,气隙磁场仅由励磁磁场构成,气隙磁密为零的点位于电刷的中心,换

句话说,气隙磁密的物理中性线与换向器上的几何中心线重合。电机负载时,气隙磁场由励磁磁场和交轴电枢反应磁场共同构成,此时气隙磁密为零的点偏离了电刷的中心,顺着转子的旋转方向沿电枢表面移动了α角,也就是说,气隙磁密的物理中性线与换向器上的几何中心线位移了α角。

由图1可见,在L g 1、L g 2之间,偏顶波与横轴所围的面积等于平顶波与横轴所围的面积。

仔细观察图1可见,计算电机支路电势所用的“每极磁通”在负载和空载时之所以相等,是因为无论空载、负载,“每极”的范围都是在几何中心线L g 1、L g 2之间。尽管事实上负载时气隙磁场的N 极范围已由L g 1、L g 2之间向左移到了L p 1、L p 2之间。从另一方面讲,在直流发电机中,气隙磁场不动,伪静止的电枢导体扫过气隙磁场。电机负载后,幅值增大了的气隙磁场不再与支路绕组范围(即L g 1、L g 2之间的范围,它为电刷所固定)相重合,因为负载时二者相移了α角。这就是直流发电机交轴电枢反应不具有增磁(准确地讲是增电势)的原因。

2.2.2 同步发电机交轴电枢反应增磁的原因

图2是同步发电机(以凸极同步发电机为例)交轴电枢反应的示意图。F f 1是励磁磁场的基波,F α是电枢反应磁势的基波,F δ是气隙磁势的基波。由于F f 1、F α都是空间矢量,故用平行四边形法则求得其合成矢量为F α。显然,电机负载时的气隙磁势F δ比空载时的气隙磁势F f 1要大。电机负载时按双反应理论分别求得直轴上的励磁磁密和交轴上的电枢反应磁密,然后合成可得气隙磁密。

同步发电机中每相的电枢导体在空间固定不动,气隙磁场扫过电枢导体,故每相绕组的每极磁通是变化的,而每相绕组的每极磁通的幅值(这个幅值在气隙磁场之轴线与该相绕组之轴线重合时

达到)与气隙磁场的幅值成正比。所以当气隙磁势增大从而气隙磁密也增大后,气隙磁场对每相绕组的每极磁通也就增大了。

图2 交流发电机的交轴电枢反应

3 直流电机中视在磁通、有效磁通

和磁通因数的概念

3.1 直流发电机和同步发电机气隙磁场波形的比较

如果仅考虑负载时气隙磁密的波形而不考虑它感生电势的效应,那么可以想见,直流发电机和同步发电机是一致的。也就是说,将图1中的偏顶波进行谐波分析并取其基波,又将图1中的平顶波进行谐波分析并取其基波,显然将有偏顶波的基波幅值大于平顶波的基波幅值。

由图1可见,如果按物理中性线L p 1、L p 2所界

2

定的范围来计算每极磁通,则所得每极磁通将大于按几何中心线L g1、L g2所界定的范围来计算所得的每极磁通。由于物理中性线L p1、L p2所界定的范围内含有感应电势方向相反的电枢导体,所以按此范围计算的每极磁通对产生支路电势而言并不全部是有积极意义的。

3.2 直流发电机中每极气隙磁场视在磁通、有效磁通和磁通因数概念的引入

参看图1。由于磁通与磁密曲线和横轴所围面积成比例,故通过探讨后者可以知道各种磁通之间的关系。约定一些记号如下(各个面积均取正值):

S平—L g1、L g2间平顶波和横轴所围面积;

S偏1—L g1、L g2间偏顶波和横轴所围面积;

S偏2—L p1、L p2间偏顶波和横轴所围面积;

S abc—曲边三角形abc的面积;

S efg—曲边三角形efg的面积。

由图1可知:

S偏1=S平(1) S abc=S efg(2)

S偏2=S偏1+S abc+S efg

=S平+2S abc(3)

如果不计一个比例常数的差别,那么S偏2就是气隙磁场的每极磁通;S平就是励磁磁场的每极磁通。S偏2比S平多出2S abc正是交轴电枢反应的结果。

由于S偏1所代表的磁通能够全部用来产生同方向的感应电势,故可称之为每极气隙磁场的有效磁通,并以S eff记之;相应地由于S偏2所代表的磁通不能全部用来产生同方向的感应电势,故可称之为每极气隙磁场的视在磁通,以S app记之。显然:

S app-2S abc=S eff(4)

仿照功率因数,可把每极气隙磁场的有效磁通与视在磁通的比值定义为每极气隙磁场的磁通因数,记之为fφ。显然,

fφ=S eff S ap p(5) S eff=S app fφ(6)

这里的fφ虽然是在不计饱和时定义的,但它照样适合于计及饱和时的情形,只不过计及饱和时的fφ比不计饱和时的fφ要小些。

由上可见,可以认为直流发电机的交轴电枢反应有增磁效应,但增加的是视在磁通,而计算感应电势所用的磁通是有效磁通,它是不变的。

3.3 直流发电机中每极气隙磁场有效磁通概念引入的意义

有效磁通概念的引入有助于准确阐明直流发电机的基本原理。事实上,现行的电机学教科书中对直流电机基本公式之一电势公式:

E=C eΥn(7)

式中,Υ的说明是经不起推敲的。笔者在广州市购书中心翻过二十多种国内最新出版的电机学教科书(恕不一一列出),所有的都说(7)式中的Υ是每极磁通。本文所列的6种参考文献也是这样。我们知道,磁通是对应于磁场的,那么这个磁通Υ是对应于哪个磁场呢?教科书没有说明。如果说这个磁通是对应于主磁场(即励磁磁场)的,那么这是错的,因为计算负载时的感应电势不应该用主磁场的磁通,而应该用气隙磁场的磁通;如果说这个磁通是对应于气隙磁场的,那么这也是错的,因为由前面的讨论可知,气隙磁场的每极磁通相当于S偏2,它比Υ要来得大。所以,说是哪个磁场的每极磁通都不合适。这大概也是现行电机学教科书都不予明确说明的原因吧。

可见,(7)式中的“每极磁通”是一个混乱的概念。事实上,它磁密用的是气隙磁场的,而磁极的范围却用的是励磁磁场的。这样做虽然在数值上不会引起错误(这正是这一混乱能够延续下来的原因),但毕竟概念上是混乱的。这种混乱对电机学研习者,尤其是对初学者是有害的。初学者,尤其是本、专科生,由于要应付考试,在自己久思不解而又得不到有效指导时只好死记硬背人云亦云了。这大概也是大学生普遍反映电机学难学的原因之一吧。

引入有效磁通概念,既不损害数值的正确性,

3

又有利于理清概念上的混乱,逻辑严谨,概念清楚,应该说是有一定学术意义的,对电机学的研习者(尤其是初学者)尽快理解和掌握相关内容也是有利的。

3.4 直流发电机中每极气隙磁场视在磁通概念引入的学术意义

视在磁通概念的引入有助于电机学内在逻辑一致性的达成。

细心而好比较的电机学研习者会问:同样是交轴电枢反应,为什么在同步发电机中有增磁效应,而在直流发电机中却没有呢?如果容忍这种不合理现象(类似于某种“分裂症”)存在,那将有损于电机学内在逻辑的一致性。

如果引入视在磁通的概念,则能够消除这种逻辑上的不一致性。

由前面的讨论可知,视在磁通是指每极气隙磁场的总磁通。由图1可见,它相当于两条物理中性线L p1、L p2之间偏顶波曲线与横轴所围的面积。显然,这个面积真实地反映了励磁磁场与交轴电枢反应磁场的叠加作用。正是这种叠加作用。正是这种叠加才使得每极气隙磁场的磁通(即视在磁通)比每极励磁磁场的磁通(在数值上等于气隙磁场的每极有效磁通)来得大。因此,可以说交轴电枢反应在直流发电机中同样是有增磁效应的。这样一来,就使得交轴电枢反应的效应在同步发电机和直流发电机中统一起来(由电机的可逆性原理可知此结论同样适合于同步电动机和直流电动机),从而维护了电机学内在逻辑的一致性。

与有效磁通概念的引入一样,视在磁通概念的引入对电机学研习者,尤其是熟练者也有一定的启发作用(初学者一般难得去追问为什么直流电机和同步电机中的交轴电枢反应之效应不一致这样较为深奥的问题)。

4 结语

现行电机学教科书对直流发电机和同步发电机中的交轴电枢反应采取不同的态度,认为前者无增磁效应,而后者有增磁效应,这违背了科学上的内在逻辑一致性的要求。本文首先解释这种现象产生的原因,然后反其道而行之,对交轴电枢反应采取一致的态度,认为无论直流发电机、同步发电机,交轴电枢反应都具有增磁效应。有效磁通概念的引入,既保持了直流发电机感应电势计算的正确性,又理清了在“每极磁通”这一概念上的混乱。视在磁通概念的引入,使得交轴电枢反应的效应在直流发电机和同步发电机中统一起来———都表现为增磁效应,维护了电机学内在逻辑的一致性。

参考文献

[1] 许实章.电机学(上册)〔M〕.北京:机械工业出版社, 1980.

[2] 许实章.电机学(下册)〔M〕.北京:机械工业出版社,1981.

[3] 汤蕴.电机学—机电能量转换(上册)〔M〕.北京:机械工业出版社,1981.

[4] Hind marsh.Electrical Machines and their Applications. fourth edition.Pergamon Press,1984.

[5] A.E.Fitzgerald,Charles Kingsley Jr.,Stephen D.Umans. Electric Machinery.fourth edition.McGraw-Hill Compan y,1983.

[6] Theodore Wildi.Electrical Machines,Drives,and Power Systems(Fifth edition)[M].(英文影印本)北京:科学出版社,2002.

(上接第7页)

参考文献

[1] 王宏华.开关型磁阻电动机调速控制技术[M].北京:机械工业出版社,1995.

[2] 陈 昊,张 东,谢桂林.开关磁阻电动机传动系统的机械特性研究.中国矿业大学学报[J].2001.9.

[3] Chen H.2-D electromagnetic field anal y s is of the three-phase s witched reluctance machine[A].Yan W.Proceedin gs of the4th International Conference on Electromagnetic Field Prob-lems&Applications[C].Beijing:International Academic Pub-lishers,2000.

[4] 程 军.用MATLAB/SIMULINK进行车辆控制系统的设计.汽车研究与开发[J].1997.3.

[5] 宋凌锋,李立毅,程树康.MATLAB语言在电机控制系统仿真研究中的应用.微特电机[J].1999.4.

[6] 杨 静,袁爱平.基于MATLAB的开关磁阻电动机建模与仿真.江苏理工大学学报(自然科学版)[J].2000.5.

4

最新电机学作业及答案(同步电机)

同步电机章节作业: 1. 有一台TS854-210-40的水轮发电机,P N =100兆瓦,U N =13。8千伏,9.0cos =N ?,f N =50赫兹,求(1)发电机的额定电流;(2)额定运行时能发多少有功和无功功率?(3)转速是多少? 解:(1)额定电流A U P I N N N N 6.46489.0108.13310100cos 336=????==? (2)有功功率MW P N 100= 无功功率 var 4.48)9.0tan(arccos 100tan M P Q N N =?==? (3)转速 min /15020 506060r p f n N N =?== 2.同步发电机的电枢反应性质主要决定于什么?在下列情况下(忽略电机自身电阻),电枢反应各起什么作用? 1) 三相对称电阻负载; 2) 电容负载8.0*=c x ,发电机同步电抗 0.1*=t x ; 3) 电感负载 7.0*=L x 答: 电枢反应的性质取决于内功率因数角ψ, 而ψ角既与负载性质有关,又与发电机本身的参数有关。 由等效电路图可知(忽略电枢绕组电阻r a ): ①当负载阻抗为Z L =R 时,阻抗Z=jx t +R ,其阻抗 角ψ在900>ψ>00范围内,即空载电动势. 0E 和 电枢电流。I 之间的相位角ψ在900>ψ>00范围内, 所以电枢反应既有交轴又有直轴去磁电枢反应; ②当负载阻抗为Z L =-jx c 时,阻抗Z=jx t -jx c ,由于x t *=1.0>x c *=0.8, 阻抗角ψ=900,即空载 电动势.0E 和电枢电流。 I 之间的相位角ψ=900,所以电枢反应为直轴去磁电枢反应; ③当负载阻抗为Z L =jx L 时,阻抗Z=jx t +jx L 的阻抗角为ψ=900,即空载电动势. 0E 和电枢电流。 I 之间的相位角ψ=900,所以电枢反应为直轴去磁电枢反应。 3. 试述直轴和交轴同步电抗的意义。X d 和X q 的大小与哪些因素有关? 直轴(交轴)同步电抗表征了当对称三相直轴(交轴)电流每相为1A时,三相联合产生的直轴电枢反应磁场和漏磁场在一相电枢绕组中感应的电动势。 直轴(交轴)同步电抗是表征对称稳态运行时直轴(交轴)电枢反应基波磁场和漏磁场综合效应的电磁参数。 Xd 正比于频率f,电枢相绕组的串联匝数的平方N 2以及直轴气隙磁导Λd ;

实验二 并励直流发电机的自励建压

实验二并励直流发电机的自励建压 及空载特性的测定 一、实验目的 1.学习和掌握并励直流发电机的自励条件与方法、观察自励过程。 2.掌握改变直流发电机输出电压极性的方法。 3.掌握并励直流发电机的空载特性的测定方法。 二、实验内容 1.并励直流发电机自励建压。 2.改变直流发电机输出电压的极性。 3.测定直流发电机空载特性。 三、预习要点 1.并励直流发电机自励建压的条件。 2.并励直流发电机不能自励建压时的处理方法。 3.与直流发电机输出电压极性有关的因素。 4.空载特性测定时,励磁电流的调节方法。 四、原理简述 并励直流发电机是一种自励电机。当原动机拖动发电机旋转时,电枢绕组切割剩磁通产生感应剩磁电势。此电势在并励绕组回路中产生一个不大的励磁电流,该电流产生的磁通必须与剩磁方向一致,使气隙磁通增强,从而使电枢电势和端电压升高,励磁电流增加,气隙磁场进一步加强,如此循环激励,直至建立稳定的端电压。稳定点由发电机的空载特性曲线与磁场总电阻线的交点确定。 并励直流发电机的自励,必须满足三个条件: (1)发电机的主磁极必须有剩磁。 (2)并励绕组两端的极性必须正确配合,使励磁电流所产生的磁势与剩磁方向一致。 (3)励磁回路的总电阻必须小于与电机运行转速相应的临界电阻。 并联直流发电机输出电压的极性取决于发电机的转向及电机主磁场的方向。

直流发电机的空载特性是指发电机转速=常数、负载电流时,空载电压 与励磁电流的关系,即。 空载特性曲线的形状与电机的磁化曲线相似,起始部分基本上是一条直线。当励磁电流 逐渐增加时,磁路逐渐饱和,曲线弯曲,直到高度饱和时,曲线趋近于与横轴平行的直 线。通常额定电压位于空载特性曲线的弯曲部分(称为膝部)。 五、实验方法 1.并励直流发电机自励建压 (1)并励直流发电机G由直流电动机M拖动,接线可参考图2-1-2或2-2-1。 (2)断开发电机负载,正确起动直流电动机(起动方法参见实验一)。 (3)调节直流电动机的励磁电流(减小直流电动机励磁变阻器的阻值),使发电机转 速。 (4)观察直流发电机空载输出电压(剩磁电压)并记录在表2-2-1中。若无输出电压, 则应将发电机励磁绕组改接到直流电源上重新充磁。 (5)增加直流发电机励磁电流,观察发电机电枢两端电压的变化。若输出电压不变或 下降,说明励磁绕组产生的磁通方向与剩磁通方向不符,则应断开电源,将发电机励磁绕组 两端对调,重新起动直流电动机并调节直流发电机励磁电流至发电机电枢电压为额定电压止。 ( a) (b) 图2-2-1并励直流发电机自励建压 2.并励直流发电机电压极性的改变

发电机的运行特性

1.为什么发电机在并网后,电压一般会有些降低? (2) 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? (2) 3.发电机运行时为什么会发热? (2) 4.定子绕组单相接地时对发电机有危险吗? (2) 5.大修后的发电机为什么要做空载和短路试验? (2) 6.什么是保护接地与保护接零? (3) 7.发电机启动前,对碳刷和滑环应进行那些检查? (3) 8.发电机升压操作时应注意什么? (3) 9.发电机并解列前为什么必须投入主变中性点地刀? (3) 10.何谓发动机的调相运行?如何实现? (4) 11.何谓发动机的进相运行,应注意什么,为什么? (4) 12.何谓发动机自励磁,一般在什么情况下发生,如何避免? (4) 13.失磁现象? (4) 14.转子两点接地的危害表现为: (5) 15.发动机非全相运行的危害? (5) 16.与发电厂相连的线路在什么情况下可采用零起升压? (5) 17.定子单相接地时对发电机是否有危险? (5) 18.转子一点接地时发电机是否可以继续运行? (6) 19.发电机为什么要做直流耐压试验并测泄漏电流? (6) 20.发电机的空载特性试验有什么意义?做发电机空载特性试验应注意哪些事项? (6) 21.发电机产生轴电压的原因是什么?它对发电机的运行有何危害? (6)

1.为什么发电机在并网后,电压一般会有些降低? 对于发电机来说,一般都是迟相运行,他的负载也一般是阻性和感性负载。当发电机升压并网后,定子绕组流过电流,此电流是感性的,感性电流在发电机内部的电枢反应作用比较大,他对转子磁场起削弱作用,从而引起端电压下降。当流过的只是有功电流时,也有相同的作用,只是影响比较小。这是因为定子绕组流过电流时产生磁场,这个磁场的一半对转子磁场起助磁作用,而另一半起去磁作用,由于转子磁场的饱和性,助磁一方总是弱于去磁的一方。因此,磁场会有所减弱,导致端电压有所下降。 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? 调无功功率时,因为励磁电流的变化引起功角的变化,从式看出,当发电机电动势增加,SIN¥值减小时,有功基本不变。 调有功功率时,对无功功率输出的影响就较大。发电机能不能送无功功率与电压差有关这个电压差指的是发电机电动势和端电压(系统电压)的同相部分的电压差,只有这个电压差才产生无功电流。当发电机送出有功功率,电动势就与系统电压错开一个角度,这样无功电压变小了。当有功变化越大,差角就越大,无功电压更小,因此无功自动减小,反之,当差角减小,无功会自动增加。 3.发电机运行时为什么会发热? 任何机器运转都会产生损耗,发电机也不例外,运行时他的内部损耗也很多。大致分四类: 铜损是指定子绕组的导线流过电流后在电阻上产生的损耗,即I2R而且定子槽内的导线产生的集肤效应额外引起损耗。 铁损是指铁芯齿部和轭部所产生的损耗,他有两种形式,一种是涡流损耗,另一种是磁滞损耗。涡流损耗是由于交变磁场产生感应电动势,在铁芯中引起涡流导致发热;磁滞损耗是由于交变磁场而使铁磁性材料克服交变阻力导致发热。 励磁损耗是转子绕组的电阻损耗。 另外,机械损耗就容易理解了。 这四种损耗都将使绕组、铁芯或其他部件发热,因此发电机在运行中会发热,这是不可避免的。 4.定子绕组单相接地时对发电机有危险吗? 发电机的中性点是绝缘的,如果一相接地,乍看构不成回路,但是由于带电体与处于地电位的铁芯间有电容存在,发生一相接地,接地点有会有电容电流流过。单相接地电流的大小,与接地线匝的份额a成正比。当机端发生金属性接地,接地电流最大,而接地点越靠近中性点,接地电流愈小,故障点有电流流过,就可能产生电弧,当接地电流大于5A时,就会有烧坏铁芯的危险。 5.大修后的发电机为什么要做空载和短路试验? 这两个试验都属于发电机的特性和参数试验,他与预防性试验的目的不同。这类试验是为了了解发电机的运行性能、基本量之间的关系的特性曲线以及被电机结构确定了的参数。做这些试验可以反映电机的某些问题。 空载试验是指电机以额定转速空载运行时,其定子电压与励磁电流之间的关系。他的用途很多,利用特性曲线,可以断定转子线圈有无匝间短路,也可判断定子铁芯有无局部短路如有短路,该处的涡流去磁作用也将使励磁电流因升至额定电

同步电机习题答案

同步电机 一、填空题: 1. 同步电机_____________对_____________的影响称为电枢反应。同步发电机电枢反应的性质取决于__________________________。 电枢磁动势;励磁磁动势;内功率因数角ψ 2. 同步发电机当?=0°时,除产生____________________电枢反应外,还产生__________________________电枢反应。 交轴电枢反应;直轴去磁电枢反应 3. 利用同步发电机的_____________和_____________曲线可以测量同步发电机的同步电抗,利用______ ______和_____________曲线可以测量同步发电机的定子漏电抗。 空载特性;短路特性;空载特性;零功率因数负载特性 4. 利用_________可以同时测量凸极同步发电机的直轴同步电抗和交轴同步电抗。 转差法 5. 同步发电机与电网并联运行的条件是:(1) ; (2) ; (3) ; (4) 。 发电机的频率等于电网的频率;发电机的电压幅值等于电网电压的幅值且波形一致;发电机的电压相序与电网的电压相序相同;在合闸时,发电机的电压相位与电网电压的相位一样 6. ★同步电机的功率角有双重物理含义,在时间上是 和 之间的夹角;在空间上是 和 之间的夹角。 励磁电动势0E &;电压U &;励磁磁动势1 f F &;等效合成磁动势F δ'& 7. 同步发电机静态稳定的判据是___________,隐极同步发电机静态稳定极限对应的功率角= 。 0dT d θ>,90 8. 同步发电机并联在无穷大容量电网上运行时,要调节输出的有功功率,必须调节___________________ ________;如果只调节其输出的无功功率,可通过调节______________实现。 原动机的输入功率(或输入转矩);励磁(电流) 9. 一台并联在无穷大容量电网上运行的同步发电机,功率因数是超前的,则电机运行在______状态,此时发电机向电网发出__________的无功功率;若不调节原动机的输入功率而使励磁电流单方向调大,当发出的无功功率为零时,励磁状态为 状态;进一步增大励磁电流,电机变化到_____状态,此时发电机向电网发出_______无功功率。 欠励;超前(或容性);正常励磁;过励;滞后(或感性) 10. 凸极同步发电机功角特性的表达式是_________________________________________。 20sin sin 22d q M d d q X X E U P m mU X X X θθ-=+ 11. ★凸极同步发电机与电网并联,如将发电机励磁电流减为零,则发电机电磁转矩为 。

直流并励电机

专业:电子信息工程 姓名: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:直流并励电动机同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二、实验内容 1.工作特性和机械特性 保持U=U N和I f=I fN不变,测取n、M2、n=f(Ia)及n=f(M2)。 2.调速特性 (1)改变电枢电压调速 保持U=U N,I f=I fN常值,M2=常值,测取n=f(Ua)。 (2)改变励磁电流调速 保持U=U N,M2=常值,R1=0,测取n=f(I f)。 (3)观察能耗制动过程 三、实验步骤 1. 并励电动机的工作特性和机械特性 实验线路如图所示。电机选用D17直流并励电动机,测功机(请阅测功机使 用说明)作为电动机负载。按照实验一方法起动直流并励电动机,其转向从测功 机端观察为逆时针方向。 将电动机电枢调节电阻R l调至零,同时调节直流电源调压旋钮、测功机的加 载旋钮和电动机的磁场调节电阻R f,调到其电机的额定值U=U N,I=I N,n=n N, 其励磁电流即为额定励磁电流I fN,在保持U=U N和I=I fN不变的条件下,逐次减 小电动机的负载,即将测功机的加载旋钮逆时针转动直至零。测取电动机输入电 流I、转速n和测功机的转矩M,共取6—7组数据,记录于表中。

2.调速特性 (1) 改变电枢端电压的调速 直流电动机起动后,将电阻R l调至零,同时调节负载(测功机)、直流电源及电阻R f使U=U N、I f=I fN、M2=0.5 N·m,保持此时的M2的数值和I f=I fN,逐次增加R1的阻值,即降低电枢两端的电压Ua,R l从零调至最大值,每次测取电动机的端电压Ua、转速n和输入电流I, 共取5—6组数据,记录于表中。 (2) 改变励磁电流的调速 直流电动机起动后,将电阻R l和电阻R f调至零,同时调节直流调压旋钮和测功机加载旋钮,使电动机U=U N,I f=I fN,M2=0.5N·m,保持此时的M2数值和U=U N的值,逐次增加磁场电阻R f,直至n=1.3n N,每次测取电动机的n、I f和I,共取5—6组数据,记录于表中。 四、实验数据及处理 1. 并励电动机的工作特性和机械特性 表1-6 U=U N=220V,I f=I fN=82.1mA,Ra=20 Ω 实验数据I (A) 1.080.990.800.520.430.280.16 n(r/min)1602161516281677169917221745 M2 (N.m) 1.060.960.860.420.320.130 计算数据Ia (A) 1.000.910.720.440.350.20.08 P2 (W)177.74 162.28 146.54 73.72 56.91 23.43 0.00 η (%)0.748 0.745 0.833 0.644 0.602 0.380 0.000 Δn= N N n n n 0×l00%=9.1% 1 2

三相同步发电机的运行特性完整版

三相同步发电机的运行特性 、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0 的条件下,测取空载特性曲线U0=f(I f) 。 3、三相短路实验:在n=n N、U=0 的条件下,测取三相短路特性曲线I K =f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈的0条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cos φ =1和cos φ =0.8滞(后)的条件下,测取外特性曲线U=f(I) 。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I) 。 四、实验方法 1 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻被试电机为三相凸极式同步电机,选用DJ18。 测量与计算方法参见实验4-1。记录室温。测量数据记录于表5-1 中。

源 电 磁 励 2 5 +D +D 图 5-1 三相同步发电机实验接线 图 4、空载实验 (1) 按图 5-1 接线, 校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发 电机G S旋转, GS的定子绕组为 Y 形接法 (U N =220V) 。R f2用 R4 组件上的 90Ω与 90Ω 串联加 R6 上 90Ω 与 90Ω并联共 225Ω 阻值, R st 用 R2 上的 180Ω 电阻值, R f1用 R1 上的 1800Ω电阻值。开关 S 1, S 2 选用 D51 挂箱。 (2) 调节 D52 上的 24V 励磁电源串接的 R f2 至最大位置。调节 MG 的电枢串联电阻 R st 至最大值, MG 的励磁调节电阻 R f1 至最小值。开关 S 1、S 2 均断开。将控制屏左侧调压器旋钮向逆时针方向旋 转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在 “关 ”断的位置,作 好实验开机准备。 (3) 接通控制屏上的电源总开关, 按下 “启动 ”按钮,接通励磁电源开关, 看到电流表 A 2有励磁电 流指示后,再接通控制屏上的电枢电源开关 ,起动 MG 。MG 起动运行正常后 , 把 R st 调至最小,调节 R f1使 MG 转速达到同步发电机的额定转速 1500 r/min 并保持恒定。 (4) 接通 GS 励磁电源,调节 GS 励磁电流 (必须单方向调节 ),使 I f 单方向递增至 GS 输出电压 U 0≈ 1.3U N 为止。 (5) 单方向减小 GS 励磁电流,使 I f 单方向减至零值为止,读取励磁电流 I f 和相应的空载电压 U 0。 (6) 共取数据 7~9 组并记录于表 5-2 中。 表 5-2 n=n N =1500r/min I=0 序号 1 2 3 4 5 6 7 8 9 10 11 I(mA) 48.1 26.7 33.8 33.8 26.7 40.8 26.7 33.5 47.1 U(V) 0.76 0.42 0.53 0.53 0.42 0.64 0.42 0.53 0.74 R(Ω) 63.3 63.6 63.8 63.8 63.6 63.8 63.6 63.2 63.6 COSФ R L S 1 R L A R L I C R f2 + x A MG X + y B V 1 C 同步电机 励磁绕组 同步电机 电枢绕组 TG R t s 源 电 磁 励 GS 3~ 励磁绕组

直流电机的认识及直流发电机的特性

实验报告 实验课程名称电机原理与拖动基础实验开课学院电信学院 指导老师姓名 学生姓名 学生学号 学生专业班级 2014 —2015 学年第一学期

实验课程名称:电机原理与拖动基础实验 一、实验目的 1.学习电机实验的基本要求与安全操作注意事项。 2.认识在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。 3.学会直流电机电枢电阻的测量方法。 4.掌握直流他励电动机的接线、起动、改变电机方向与调速的方法。 5.掌握用实验方法测定直流发电机的空载特性。 二、实验仪器及设备 1.实验台主控制屏 2.转速、转矩、功率显示(NMEL-13C) 3.电机导轨(NMEL-14C) 4.直流电机仪表、电源(NMEL-18A)(位于实验台主控制屏的下部) 5.电机起动箱(NMEL-09) 6.直流电压、毫安、安培表(NMCL-001) 7.旋转指示灯及开关板(NMEL-05C) 8.三相可调电阻1800Ω(NMEL-03) 9.直流电动机M03 (采用他励) 10.直流发电机M01(采用他励,作校正直流测功机) 三、实验内容及电路 五.实验内容 图1-1 测电枢绕组直流电阻接线图1.用伏安法测电枢的直流电阻 接线原理图见图1-1。 U:可调直流稳压电源(NMEL-18A) R:3000Ω磁场调节电阻(NMEL-09) V:直流电压表(MCL-001) A:直流安培表(MCL-001) M:直流电动机M03电枢 (1)经检查接线无误后,逆时针调节磁场调节电阻R使至最大。直流电压表量程选为20V档,注意直流电压表先不要接入电路或选择最大量程;;直流安培表量程选为2A档。 (2)在电机转子圆周上按120°标上记号。按顺序按下主控制屏绿色“闭合”按钮开关,可调直流稳压电源的船形开关以及复位开关,建立直流电源,并调节直流电源至220V输出,可将电压表接入电路。 (3)缓慢调节R使电枢电流达到0.2A(如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行,如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电

实习一:直流并励电动机

实验一直流并励电动机 一.实验目的 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二.预习要点 1.什么是直流电动机的工作特性和机械特性? 答:工作特性:当U = U N , R f + r f = C时,η, n ,T分别随P 2 变; 机械特性:当U = U N , R f + r f = C时, n 随 T 变; 2.直流电动机调速原理是什么? 答:由n=(U-IR)/Ceφ可知,转速n和U、I有关,并且可控量只有这两个,我们可以通过调节这两个量来改变转速。即通过人为改变电动机的机械特性而使电动机与负载两条特性的交点随之改变,从而达到调速的目的。 三.实验项目 1.工作特性和机械特性 保持U=UN和If=IfN不变,测取n=f(Ia)及n=f(T2)。 2.调速特性 (1)改变电枢电压调速 保持U=UN、If=IfN=常数,T2=常数,测取n=f(Ua)。 (2)改变励磁电流调速 保持U=UN,T2 =常数,R1 =0,测取n=f(If)。 (3)观察能耗制动过程 四.实验设备及仪器 1.MEL-I系列电机教学实验台的主控制屏。 2.电机导轨及涡流测功机、转矩转速测量(MEL-13)、编码器、转速表。 3.可调直流稳压电源(含直流电压、电流、毫安表) 4.直流电压、毫安、安培表(MEL-06)。

I S :涡流测功机励磁电流调节,位于MEL-13。 (2)测取电动机电枢电流I a 、转速n和转矩T 2 ,共取数据7-8组填入表1-8中 表1-8U=U N=220V I f=I f N=K a=Ω 2.调 速 特 性 (1) 改变 电枢 端电 压的调速 f fN2 (2)改变励磁电流的调速 2= 一7接线 MEL-09) MEL-03中两只900Ω电阻 MEL-05) .直流电动机起动前, 测功机加载旋钮调至零. 实验做完也要将测功机负载钮调到零,否则电机起动时,测功机会受到冲击。 2.负载转矩表和转速表调零.如有零误差,在实验过程中要除去零误差。 3.为安全起动, 将电枢回路电阻调至最大, 励磁回路电阻调至最小。 4.转矩表反应速度缓慢,在实验过程中调节负载要慢。 5.实验过程中按照实验要求, 随时调节电阻, 使有关的物理量保持常量, 保证实验数据的正确性。 七.实验数据及分析

直流发电机的工作特性实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ 直流发电机的工作特性实验报 告

编号:FS-DY-20379 直流发电机的工作特性实验报告 篇一:直流发电机实验报告 一、实验目的 1、掌握用实验方法测定直流发电机的各种运行特性,并根据所测得的运行特性评定该被试电机的有关性能。 2、通过实验观察并励发电机的自励过程和自励条件。 二、预习要点 1、什么是发电机的运行特性?在求取直流发电机的特性曲线时,哪些物理量应保持不变,哪些物理量应测取。 2、做空载特性实验时,励磁电流为什么必须保持单方向调节? 3、并励发电机的自励条件有哪些?当发电机不能自励时应如何处理? 4、如何确定复励发电机是积复励还是差复励? 三、实验项目

1、他励发电机实验 (1)测空载特性保持n=nN使IL=0,测取U0=f(If)。 (2)测外特性保持n=nN使If=IfN ,测取U=f(IL)。 (3)测调节特性保持n=nN使U=UN,测取If=f(IL)。 2、并励发电机实验 (1)观察自励过程 (2)测外特性保持n=nN使Rf2=常数,测取U=f(IL)。 3、复励发电机实验 积复励发电机外特性保持n=nN使Rf2=常数,测取U =f(IL)。 四、实验设备及挂件排列顺序 1、实验设备 2、屏上挂件排列顺序D31、D44、D31、D42、D51 五、实验方法1、他励直流发电机 励磁电源图2-3直流他励发电机接线图 按图2-3接线。图中直流发电机G选用DJ13,其额定值PN=100W,UN=200V,IN=0.5A,nN=1600r/min。校正直流测功机MG作为G的原动机(按他励电动机接线)。MG与

电枢反应

§2.3负载时直流电机的磁场――电枢反应 直流电机负载后,电枢绕组有电流通过,简称电枢磁场,而电枢磁场对主磁场的影响就称为电枢反应。具体分析如下: 当电机带上负载后,电枢绕组中有电流通过,电枢电流将产生电枢磁动势,此时电机的气隙磁场由主磁场和电枢两个磁场共同决定。电枢磁动势的出现,使气隙磁场发生畸变,即电枢反应。在直流电机中,不论电枢绕组是哪种型式,各支路电流都是通过电刷引入获引出,因此电刷是电枢表面上电流分布的分界线。电枢磁势的轴线总是与电刷轴线相重合。 一、交轴电枢磁势Faq 电枢磁场如左图,若电枢上半周的电流为流出, 下半周为流入,根据右手螺旋定则,该电枢磁动 势建立的磁场如虚线所示。从图可见,电枢磁动 势的轴线总是与电刷轴线重合。与主极轴线正交的轴线通常称为交轴,与主极轴线重合的轴线称为直轴;所以当电刷位于几何中性线上时,电枢磁动势时交轴电枢磁动势。 左图是直流电机电流分布和电枢磁场情况示意图,为便于分析让其展开成右图。 设直轴线上与电枢外圆的交点为0点,在距0点的 x 处作一闭

合磁力线回路。 据安培回路定律研究该闭路,该闭路可包围的总电流数即为总磁势Fa:因为设 A 是沿电枢表面周长方向单位长度上的安培导体数: Zaia A=-------(安培导体数/cm) ∏Da 式中: Za――电枢绕组的总导体数; D――电枢外径; ia――电枢电流。 则闭路总磁势为Fa=2xA ,略去铁内磁阻则每个气隙所消耗的磁势为Faq=A×x。

交轴电枢磁势Faq(x)的分布为呈三角波(略去齿槽影响时),则电枢磁密的分布波形是――"马鞍形"波。如上右图ba(x)。 二、直轴电枢磁势Fad 如下图此图当电刷不在几何中线时,设移过一个小角度β,除了交轴电枢磁动势外,还会产生直轴电枢磁动势。 电枢磁势分解成两个分量Faq和Fad 即Fa=Fad+Fad 三、直轴电枢反应 若电机为发电机时,电刷顺转向移动β角。直轴 电枢反应仅存在于电刷不与几何中线处导体接触 时,此时也存在交轴电枢反应(以后分析),现

同步电机电枢反应

同步电机电枢反应 磁场分析 一.课题内容 通过电磁场仿真计算明确同步电机电枢反应概念,仿真,分析和理解在同步电机定子电流为交轴,直轴去磁,直轴助磁情况下电机磁场的

分布情况,并重点分析气隙磁场的分布波形以及电枢反应对磁场大小的影响,总结电机电枢反应的规律。 二.课题背景 在同步电机中,电枢反应既是学习的难点也是重点。当同步电机作为发电机运行时,在空载时只有励磁绕组通有电流,主极磁场为直轴磁场,对称分布。若带三相对称负载,电枢绕组中通过三相对称电流时,会产生相应的电枢磁场。气隙内的磁场由电枢磁场和主极磁场合成。电枢反应的性质取决于电枢磁场和主磁场在空间的相对位置,其变化情况较为复杂,因此,利用仿真软件对同步电机的电枢反应进行分析,有利于加深对电枢反应的理解,并熟练掌握不同的情况下电机内磁场的分布规律。 三.探究方式 利用Maxwell 电磁场数值计算软件,建立两极同步电机的二维模型。通过改变定转子绕组电流,利用软件自带的作图系统,分布绘制电枢磁场分布,气隙磁场分布等图,对比分析得出同步电机磁场分布以及电枢反应影响的规律。 探究步骤 1单独给转子绕组通电流进行电磁场计算,画出空载时磁力线分布图和气隙磁场的磁密分布波形; 2单独定子绕组通交轴电流,画出电枢磁场的分布。同时给转子绕组通电流,观察交轴电枢反应时磁场的扭斜情况,画出磁力线分布图和气隙磁密的分布波形;

3单独定子绕组通去磁直轴电流,画出电枢磁场的分布。同时给转子通电流,画出磁场的分布,观察直轴电枢反应时磁场是否减小,画出磁力线分布图和气隙磁密的分布波形; 4单独定子绕组通助磁直轴电流,画出电枢磁场的分布。同时给转子绕组电流,画出电枢磁场的分布,观察直轴电枢反应时磁场的变化,画出磁力线分布图和气隙磁密的分布波形; 5比较上述几种情况下的磁力线分布和气隙磁密分布波形,对照电枢电流情况总结同步电机电枢反应规律。 6根据上述结果,分析当发电机负载为阻感性负载时,电枢反应情况.并自己设定电枢电流数值,计算此种情况下的气隙合成磁场分布,画出磁力线图,气隙磁密分布图,比较计算结果与理论分析结果是否相符。 四.仿真结果 交轴电流,去磁直轴电流,助磁直轴电流三种情况下,在所建模型中每相电流的数值如下:(取转子电流1000A定子最大200A) I A I B I C 交轴100 -200 100 直轴去磁173 0 -173 直轴助磁-173 0 173 1.单独给转子绕组通电流 空载时磁力线分布图如下

同步电机习题与解答

同步电机习题与答案 6.1 同步电机的气隙磁场,在空载时是如何激励的?在负载时是如何激励的?[答案见后] 6.2 为什么大容量同步电机采用磁极旋转式而不采用电枢旋转式? [答案见后] 6.3 在凸极同步电机中,为什么要采用双反应理论来分析电枢反应? [答案见后] 6.4 凸极同步电机中,为什么直轴电枢反应电抗X ad大于交轴电枢反应电抗 X aq? [答案见后] 6.5 测定同步发电机的空载特性和短路特性时,如果转速降为原来0.95n N,对试验结果有什么影响? [答案见后] 6.6 一般同步发电机三相稳定短路,当I k=I N时的励磁电流I fk和额定负载时的励磁电流I fN都已达到空载特性的饱和段,为什么前者X d取不饱和值而后者取饱和值?为什么X q一般总是采用不饱和值? [答案见后] 6.7 为什么同步发电机突然短路,电流比稳态短路电流大得多?为什么突然短路电流大小与合闸瞬间有关? [答案见后] 6.8 在直流电机中,E>U还是U>E是判断电机作为发电机还是作为电动机运行的依据之一,在同步电机中,这个结论还正确吗?为什么?

[答案见后] 6.9 当同步发电机与大容量电网并联运行以及单独运行时,其cosφ是分别由什么决定的?为什么? [答案见后] 6.10 试利用功角特性和电动势平衡方程式求出隐极同步发电机的V形曲线。[答案见后] 6.11 两台容量相近的同步发电机并联运行,有功功率和无功功率怎样分配和调节? [答案见后] 6.12 同步电动机与感应电动机相比有何优缺点? [答案见后] 6.13 凸极式同步发电机在三相对称额定负载下运行时,设其负载阻抗为R+jX,试根据不考虑饱和的电动势相量图证明下列关系式 [答案见后] 6.14 试述直流同步电抗X d、直轴瞬变电抗X′d、直轴超瞬变电抗X"d的物理意义和表达式,阻尼绕组对这些参数的影响? [答案见后] 6.15 有一台三相汽轮发电机,P N=25000kW,U N=10.5kV,Y接法,cosφN=0.8(滞后),作单机运行。由试验测得它的同步电抗标么值为X*t=2.13。电枢电

直流发电机

实验二直流发电机 一.实验目的 1.掌握用实验方法测定直流发电机的运行特性,并根据所测得的运行特性评定该被试电机的有关性能。 2.通过实验观察并励发电机的自励过程和自励条件。 二.预习要点 1.什么是发电机的运行特性?对于不同的特性曲线,在实验中哪些物理量应保持不变,而哪些物理量应测取。 2.做空载试验时,励磁电流为什么必须单方向调节? 3.并励发电机的自励条件有哪些?当发电机不能自励时应如何处理? 4.如何确定复励发电机是积复励还是差复励? 三.实验项目 1.他励发电机 (1)空载特性:保持n=n N,使I=0,测取Uo=f(I f)。 (2)外特性:保持n=n N,使I f =I fN,测取U=f(I)。 (3)调节特性:保持n=n N,使U=U N,测取I f=f(I)。 2.并励发电机 (1)观察自励过程 (2)测外特性:保持n=n N,使R f2=常数,测取U=f(I)。 3.复励发电机 积复励发电机外特性:保持n=n N,使R f=常数,测取U=f(I)。 四.实验设备及仪器 1.MEL系列电机教学实验台主控制屏(MEL-I、MEL-IIA、B)。 2.电机导轨及测功机,转矩转速测量组件(MEL-13)或电机导轨及转速表。 3.直流并励电动机M03。 4.直流复励发电机M01。 5.直流稳压电源(位于主控制屏下部)。 6.直流电压、毫安、安培表(MEL-06)。 7.波形测试及开关板(MEL-05)。 8.三相可调电阻900Ω(MEL-03)。 9.三相可调电阻90Ω(MEL-04)。

10.电机起动箱(MEL-09)。 五.实验说明及操作步骤 图1-3直流他励发电机接线图 按图1-3接线 G:直流发电机M01,P N=100W,U N=200V,I N=,N N=1600r/min M:直流电动机M03,按他励接法 S1、S2:双刀双掷开关,位于MEL-05 R1:电枢调节电阻100Ω/,位于MEL-09。 R f1:磁场调节电阻3000Ω/200mA,位于MEL-09。 R f2:磁场调节变阻器,采用MEL-03最上端900Ω变阻器,并采用分压器接法。 R2:发电机负载电阻,采用MEL-03中间端和下端变阻器,采用串并联接法,阻值为2250Ω(900Ω与900Ω电阻串联加上900Ω与900Ω并联)。调节时先调节串联部分,当负载电流大于时用并联部分,并将串联部分阻值调到最小并用导线短接以避免烧毁熔断器。 mA1、A1:分别为毫安表和电流表,位于直流电源上。 U1、U2:分别为可调直流稳压电源和电机励磁电源。 V2、mA2、A2:分别为直流电压表(量程为300V档),直流毫安表(量程为200mA档),直流安倍表(量程为2A档)

基于Matlab并励直流发电机的自励过程分析

基于Matlab并励直流发电机的自励过程分析 摘要:并励直流发电机,是实现直流电能与机械能相互转换的一种旋转电机.其将机械能转化为电能,其励磁方式是自励式,并且励磁绕组和电枢绕组并联构成并励式。本文通过使用Matlab软件平台,对其自励过程进行模拟仿真,从而进一步对并励直流发电机的自励过程的自励条件,空载运行,外特性等相关问题的分析。 关键词:并励直流发电机;自励;Matlab仿真 0 绪论 与交流电机相比,直流电机结构复杂、成本高、维护麻烦,但直流电动机具有良好的调速性能、较大的启动转矩和过载能力强等优点,广泛应用于轧钢机、电力机车、大型机床拖动系统中。并励直流发电机,是实现直流电能与机械能相互转换的一种旋转电机.其将机械能转化为电能,其励磁方式是自励式,并且励磁绕组和电枢绕组并联构成并励式。通过使用Matlab软件平台,对其自励过程进行模拟仿真,从而进一步对并励直流发电机的自励过程的自励条件,空载运行,外特性等相关问题的分析。 1 并励发电机的自励 并励发电机的励磁绕组与电枢并联,正常工作时,并励发电机的励磁电流由电枢发出的电流来供给,但是开始时发电机的电压是如何建立的呢? 并励发电机要自励和建立电压,电机的磁路中必须要有剩磁。电构在剩磁磁场内旋转时,将产生剩磁电动势Eor。剩磁电动势由电枢端点回授到励磁绕组,产生一个很小的励磁电流,其磁动势方向既可能与剩磁方向相同而形成正反馈,也可能与剩磁方向相反而形成负反馈。负反馈时,剩磁磁场被抑制,电压就建立不起来;正反馈时,气隙磁场加强,使电枢的感应电动势升高,从而使励磁电流和气隙磁场进一步加强。如此往复,发电机的端电压就逐步建立起来。 2 MATLAB的部分编程与运行结果 并励直流发电机的自励过程 3 结论 通过仿真可以清楚地了解完成这个自励过程需要满足三个条件: ①电机的主磁通有剩磁; ②励磁绕组连接极性要正确;

直流发电机直流电动机的工作原理和结构.

直流发电机直流电动机的工作原理和结构 直流电机工作原理和结构 一、直流电机工作原理 * 直流发电机的工作原理 * 直流电动机的工作原理 * 电机的可逆运行原理 两个定理与两个定则 1、电磁感应定理在磁场中运动的导体将会感应电势,若磁场、导体和导体的运动方向三者互相垂直,则作用导体中感应的电势大小 为: e = B·l·v 符 号 物理 量 单位 B 磁场的磁感应强 度 Wb/m2 v 导体运动速 度 米/秒 l 导体有效长 度 m

e 感应电 势 V 电势的方向用右手定 则 2.电磁力定律载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直 (见下图),作用在导体上的电磁力大小为:f = B·l·i 符 号 物理 量 单位 i 导体中的电 流 A l 导体有效长 度 m f 电磁 力 N

力的方向用左手 定则 (一)直流发电机的工作原理 1.直流发电机的原理模型

2.发电机工作原理 a、直流电势产 生用电动机拖动电枢使之逆时针方向恒速转动,线圈边 a b 和 c d 分别切割不同极性磁极下的磁力线,感应产生电动

势直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势因为电刷 A 通过换向片所引出的电动势始终是切割N 极磁力线的线圈边中的电动势。所以电刷 A 始终有正极性,同样道理,电刷 B 始终有负极性。所以电刷端能引出方向不变但大小变化的脉动电动势 b、结 论线圈内的感应电动势是一种交变电动势,而在电刷 A B 端的电动势却是直流电动势。(二)直流电动机的工作原理 1.直流电动机的原理模型(图1.1.5) 直流电动机的工作原理 要使电枢受到一个方向不变的电磁转矩,关键在于:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向及时地加以变换,即进行所谓“换向”。为此必须增添一个叫做换向器的装置,换向器配合电刷可保证每个极下线圈边中电流始终是一个方向,就可以使电动机能连续的旋转,这就是直流电动机的工作原理 (三)电机的可逆运行原理从上述基本电磁情况来看:一台直流电机原则上既可以作为电动机运行,也可以作为发电机运行,这种原理在电机理论中称为可逆原理 二、直流电机的结构 旋转电机结构形式 , 必须有满足电磁和机械两方面要求的结构

直流发电机的工作原理与结构

直流发电机的工作原理及结构 电机的可逆运行原理 两个定理与两个定则 1、电磁感应定理 在磁场中运动的导体将会感应电势,若磁场、导体和导体的运动方向三者互相垂直,则作用导体中感应的电势大小为: e = B·l·v 符号物理量单位 B 磁场的磁感应强度Wb/m2 v 导体运动速度米/秒 l 导体有效长度m e 感应电势V 电势的方向用右手定则

2.电磁力定律载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直(见下图),作用在导体上的电磁力大小为:f = B·l·i 符号物理量单位 i 导体中的电流A l 导体有效长度m f 电磁力N 力的方向用左手定则 (一)直流发电机的工作原理 1.直流发电机的原理模型

2.发电机工作原理

a、直流电势产生 用电动机拖动电枢使之逆时针方向恒速转动,线圈边a b 和c d 分别切割不同极性磁极下的磁力线,感应产生电动势直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势因为电刷A 通过换向片所引出的电动势始终是切割N 极磁力线的线圈边中的电动势。所以电刷A 始终有正极性,同样道理,电刷 B 始终有负极性。所以电刷端能引出方向不变但大小变化的脉动电动势 b、结论 线圈的感应电动势是一种交变电动势,而在电刷A B 端的电动势却是直流电动势。 直流发电机[浏览次数:约145次] ?直流发电机是一种把机械能转换为直流电输出的电机,流电动机具有良好的起动性能和调速性能,因此广泛应用于要求调速平滑,调速围广等对调速要求较高的电气传动系统中,如电力机车、无轨电车、轧钢机起重设备等。 目录 ?直流发电机的结构 ?直流发电机的部件功能 ?直流发电机的工作原理 ?直流发电机的额定值

三相同步发电机的运行特性报告

三相同步发电机的运行特性 一、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0的条件下,测取空载特性曲线U0=f(I f)。 3、三相短路实验:在n=n N、U=0的条件下,测取三相短路特性曲线I K=f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈0的条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cosφ=1和cosφ=0.8(滞后)的条件下,测取外特性曲线U=f(I)。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I)。 四、实验方法 1、实验设备 序号型号名称数量 1MET01电源控制屏1台 2DD03不锈钢电机导轨、测速系统及数显转速表1件 3DJ23校正直流测功机1台 4DJ18三相凸极式同步电机1台 5D34-2智能型功率、功率因数表1件 6D51波形测试及开关板1件 7D52旋转灯、并网开关、同步机励磁电源1件 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻 被试电机为三相凸极式同步电机,选用DJ18。 测量与计算方法参见实验4-1。记录室温。测量数据记录于表5-1中。 表5-1 室温20℃ 绕组Ⅰ绕组Ⅱ绕组Ⅲ

I(mA) 48.126.733.833.826.740.826.733.547.1U(V) 0.760.420.530.530.420.640.420.530.74R(Ω) 63.363.663.863.863.663.863.663.263.6 图5-1 三相同步发电机实验接线图 4、空载实验 (1) 按图5-1接线,校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发电机GS旋转,GS的定子绕组为Y 形接法(U N =220V)。R f2用R4组件上的90Ω与90Ω串联加R6上90Ω与90Ω并联共225Ω阻值,R st 用R2上的180Ω电阻值,R f1用R1上的1800Ω电阻值。开关S 1,S 2选用D51挂箱。 (2) 调节D52上的24V 励磁电源串接的R f2至最大位置。调节MG 的电枢串联电阻R st 至最大值,MG 的励磁调节电阻R f1至最小值。开关S 1、S 2均断开。将控制屏左侧调压器旋钮向逆时针方向旋转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在“关”断的位置,作好实验开机准备。 (3) 接通控制屏上的电源总开关,按下“启动”按钮,接通励磁电源开关,看到电流表A 2有励磁电流指示后,再接通控制屏上的电枢电源开关,起动MG 。MG 起动运行正常后, 把R st 调至最小,调节R f1使MG 转速达到同步发电机的额定转速1500 r/min 并保持恒定。 (4) 接通GS 励磁电源,调节GS 励磁电流(必须单方向调节),使I f 单方向递增至GS 输出电压U 0≈1.3U N 为止。 (5) 单方向减小GS 励磁电流,使I f 单方向减至零值为止,读取励磁电流I f 和相应的空载电压U 0。 (6) 共取数据7~9组并记录于表5-2中。表5-2 n=n N =1500r/min I=0序 号1234567891011 z

相关主题
文本预览
相关文档 最新文档