浅析铁路曲线桥墩台中心坐标计算
- 格式:docx
- 大小:910.12 KB
- 文档页数:10
浅析铁路曲线桥墩台中
心坐标计算
Revised at 2 pm on December 25, 2020.
浅析铁路曲线桥墩
台中心坐标计算
(中交 广东 广州)
摘 要:结合在建的某铁路设计资料,采用坐标计算法计算铁路曲线桥梁工作线偏角,并推算出桥梁墩台中心坐标,全过程采用VB 语言程序结合Excel 电子表格自动计算。
关键词:曲线桥梁工作线;偏距E 值;交点距L ;桥梁偏角;桥梁偏角坐标计算法 Abstract :
Key words :
1引言
高速铁路采用的桥梁部份所占比例较大,需要计算的曲线桥梁墩台坐标计算工作量繁重。与直线桥相比,曲线桥墩台坐标的计算要复杂的多,涉及的内容也较多,如何能快速准确计算出曲线桥梁墩台坐标对测量内业计算至关重要。传统的采用前后视偏角计算法计算桥梁偏角,F B A δδα+=,δB 前视偏角,δB 后视偏角,由于梁体在线路上的位置不同,δB 、δF 的计算方法也不一样,不同情形下桥梁线路偏角的计算公式也不同,计算起来繁琐。
本文结合在建的某铁路,谈谈自已采用坐标计算法计算桥梁偏角,推算曲线桥梁墩台坐标的一些快速计算方法及编程实现。
2 基本原理
2-1. 梁和桥台在曲线上的布置形式
桥梁位于曲线上,线路中线为具有一定半径的圆曲线或缓和曲线,而预制梁的中线为直线,这就要求梁中线必须随着线路中线的弯曲形成与线路曲线基本相符的连续折
线,如图2-1-1所示。这条连续折线称为曲线桥梁的工作线,其顶点为相邻两梁中线的交点,相邻两交点之间的水平距离,称为交点距,亦称墩中心距或跨距,以L表示。
图2-1-1
在曲线桥上,桥梁工作线为折线,线路中线为曲线,两者并不重合,列车通过时,桥梁必然承受偏心荷载。为了使桥梁承受较小的偏心荷载,桥梁设计中,每孔梁中心线的两个端点并不位于线路中心线上,而必须将梁的中线向曲线外侧移动一段距离。根据跨长及曲线半径,梁中线向曲线外侧所移动的距离,可以等于以梁长为弦线的中矢值,此布置方式称为切线布置,如图2-1-2(a)所示;也可以等于该中矢值的一半,称为平分中矢布置,如图2-1-2(b)所示。两种布置形式比较,平分中矢布置较为有利,铁路曲线桥基本上都采用这种布置形式。
桥台在曲线上的布置形式与梁稍有不同,如果将桥台的中心线和与其相邻的梁跨中线布置在同一条直线上,则台尾中心必然偏离到线路中线的外侧,如图2-2-1所示。设其偏距为d,如果d≤10cm 时,则桥台就采用这种布置形式;否则,应旋转桥
台,使台前的偏距与相邻梁跨的偏距相同,台尾的偏距为0,如图2-2-2所示。前者布置形式称为直线布置,后者称为折线布置。
当采用折线形式布置桥台时,台尾偏角可能会出现负值,如图2-2-3(a )所示,如果出现这种情况,则台前和台尾采用相同的偏距,如图2-2-3(b )所示。
2-2.偏距E 的计算
在曲线桥上,梁的中线由弦线位置,向曲线外侧移动的一段距离称为偏距,并以E 表示。由于曲线半径很大,相邻两跨梁中线的偏转角很小,故可以认为偏距E 就是桥梁工作线各转折点相对线路中线外移的距离。
图2-2-1 图2-2-2
图2-2-3
在圆曲线上,切线布置的梁,其偏距为:
R
L E 82= ( 1-1) 若为平分中矢布置,其偏距为:
R
L E 162= (1-2) 在缓和曲线上,切线布置的梁,其偏距为:
28l l R L E i ⋅= (1-3) 若为平分中矢布置,则偏距为:
216l l R L E i ⋅= (1-4) 式中,L 为交点距、R 为圆曲线半径、l i 为ZH (或HZ )至计算点的距离、l 0为缓和曲线长。
曲线桥梁设计中,桥墩的中心选在桥梁工作线的转折点上,其纵轴线位于工作线转折角的角平分线上,横轴线与纵轴线垂直。由偏距的计算公式可以看出,当相邻两
孔梁的跨距不等,或虽然跨距相等,但位于缓和曲线上时,所求得的偏距E 值不等,导致相邻两孔梁中线的交点不在两孔梁的正中间,这就造成两孔梁在墩上不能对称放置。为了避免这种情况的发生,规定了当相邻梁跨都小于16m 时,按较小跨度梁的要求计算偏距E 值,而大于20m 时,按较大跨度梁的要求计算偏距E 值。
2-3. 交点距L 的计算
考虑到梁体的制造误差、架设误差、梁在受力后的伸长、温度变化对梁长的影响、墩台施工误差和测量误差等,相邻两跨梁的梁端之间、桥台胸墙线与相邻梁端之间应留有一定的间隙。对于直线桥,梁端之间、梁端与桥台胸墙线之间彼此平行,其间隙称为直线桥的梁缝。对于曲线桥,相邻两跨梁的梁端之间、桥台胸墙线与相邻梁端之间不平行,规定曲线内侧的间隙不小于一个定值,该定值称为曲线桥的梁缝,如图2-3-1所示。由于梁缝的存在,使得交点距L 并不等于梁的长度L ′。
交点距的计算公式为
F L L 2+'= (1-5)
其中:
当 很小时,22 12
sec ααα≈≈tg 、,则 2
2α⋅+≈B a F (1-6)
式中,F 为墩中心至相邻梁端的距离;a 为规定的最小梁缝之半;B 为梁的宽度; 为工作线转向角。
2-4.桥梁偏角 的计算
桥梁偏角 即曲线桥梁工作线的偏转角。桥梁在曲线上的布置,可以看成先将梁布置在线路上,此时相邻两梁中线转向角即为线路偏角;然后将梁向曲线外侧移动以满足受力要求,此时相邻两梁中线转向角即为桥梁偏角。梁向曲线外侧移动后,如果相邻三个交点的偏距值均相等,即梁体是相对平移的,则桥梁偏角的值与线路偏角的值相等;否则,桥梁偏角的值就为线路偏角的值和梁体两端位移不等产生的角值共同组成的。梁体两端位移不等产生的角值称为外移偏角,是由于外移的偏距不等而产生的。由此可见,桥梁偏角实际上是由线路偏角和外移偏角组成的,如图2-4-1所示。设线路偏角为A ,外移偏角为E ,则桥梁偏角为
= A + E (1—7)
图2-4-1
A =i- 1-i - i-i+1 (1-8)
i- 1-i –小里程向的方位角;i-i+1–大里程向的方位角;由线路里程坐标反算求出。
i- 1-i =atn(
11----xi xi yi yi ) (1-9) i-i+1=atn(xi
xi yi yi -+-+11) (1-10) 桥梁外移偏角公式推算:外移偏角的产生主要是由相邻梁跨偏值E 不同引起,可借用测量学里偏心观测角度规化原理及公式计算。
ρθθφφα)2cos )(11cos )(1()(11+--+--=+-=i i F
i i B F B E E E L E E L ″ 单位为″(1-11)