现代电力系统分析
- 格式:doc
- 大小:225.14 KB
- 文档页数:14
2024年电力系统分析总结范本总结:2024年电力系统分析显示,该年度电力系统运行相对稳定,但也面临一些挑战和改进的机会。
以下是对2024年电力系统的总结和分析:1.可再生能源发展迅猛:2024年可再生能源在电力生产中的比重继续增加。
太阳能和风能发电站的数量和容量都有所增加,并且在全球范围内传统电力生产与可再生能源发电的比例逐渐趋于平衡。
2.智能电力网的发展:2024年智能电力网的应用进一步普及。
大量的智能电网设备和技术被引入,实现了对电力系统的更加精准监测和管理。
这为电力系统的可靠性和效率提供了更好的保障。
3.电能储存技术的进步:2024年电能储存技术持续改进,促使大规模储能系统的部署。
电力系统能够更好地应对瞬时电力需求的变化,提高系统的灵活性和响应能力。
改进机会:虽然2024年电力系统已经取得了一些进展,但仍存在一些改进的机会:1.可再生能源的集成:尽管可再生能源的发展迅猛,但其集成仍然面临一些挑战。
更多的研究和投资应该放在可再生能源与传统电力系统的协同运行上,以确保可再生能源的稳定供电和可靠性。
2.电力系统弹性:随着电力需求和供给的变化,电力系统需要更具弹性才能应对不断变化的情况。
更多的研究和投资应该放在电力系统的储能技术和灵活性增强上,提高系统的适应性。
3.网络安全:随着电力系统的数字化转型加速,网络安全成为一个重要的问题。
加强电力系统的网络安全措施,防止黑客攻击和供电中断,是一个重要的改进方向。
结论:2024年电力系统取得了一些积极的进展,特别是在可再生能源、智能电力网、电能储存和数字化转型方面。
然而,仍有改进的空间,特别是在可再生能源的集成、电力系统的弹性和网络安全方面。
通过继续创新、研究和投资,将有助于进一步提高电力系统的可靠性、效率和可持续性。
2024年电力系统分析总结____年电力系统分析总结一、总体情况在____年,电力系统在全球范围内取得了显著的发展和进步。
经过多年的努力和投资,电力系统逐渐实现了可持续发展和碳中和的目标。
特别是在可再生能源的推动下,电力系统的清洁能源比例不断增加,传统的煤炭发电逐渐减少。
二、可再生能源发展1. 太阳能发电:太阳能发电在____年继续快速增长。
随着太阳能技术的成本不断降低和效率的提高,太阳能电池板的市场需求大幅增加。
多个国家和地区已经实施了太阳能发电的政策措施,促进了市场的发展。
在____年,全球太阳能发电容量超过了1000GW,成为全球电力系统中最主要的能源之一。
2. 风能发电:风能发电在____年也取得了显著的进展。
尤其是海上风电的发展迅猛,多个国家和地区在海上建设了大型风电场。
风能发电的技术逐渐成熟,成本也在不断下降。
____年,全球风能发电容量达到了800GW,成为电力系统中的重要组成部分。
3. 水电发电:水电发电依然是可再生能源的主要形式之一。
在____年,多个国家的水电站继续运营和建设,水电发电容量稳步增长。
尽管水电发电有一定的环境影响,但在高效管理下,水电发电仍然可以为电力系统提供稳定的清洁能源。
三、电力存储技术电力存储技术在____年得到了广泛的关注和应用。
随着可再生能源的比例增加,电力系统对于储能的需求也不断增长。
各种电力存储技术被广泛研究和开发,以解决电力系统的不稳定性和间歇性。
在____年,电池技术得到了显著的改善,成本逐渐下降,电动汽车的推广也促使了电池技术的发展。
四、智能电网技术智能电网技术在____年进一步推动了电力系统的发展。
通过信息通信技术的应用,电力系统的监控和管理更加智能化和高效化。
智能电网技术可以实现对电力系统各个环节的精确监控和控制,提供电力系统的稳定性和可靠性。
五、电力系统规划和管理在____年,电力系统规划和管理的重要性得到了充分认识。
由于电力系统的复杂性和多样性,合理的规划和有效的管理对于电力系统的稳定运行至关重要。
现代电力系统分析总计电力系统稳定性分析:包括功角稳定性分析、电压稳定性分析和频率稳定性分析。
功角稳定性研究的是电力系统中互联的发电机间维持同步的能力问题。
在交流系统中,所有连接在系统中的发电机必须要保持同步运行。
角度稳定性分为以下三类。
静态稳定性:指电力系统受到小扰动后,不发生非同期失步,自动恢复到起始运行状态的能力。
暂态稳定性:指电力系统受到大的扰动后,各同步电机保持同步运行并过渡到新的或恢复到原来稳定运行状态的能力动态稳定性:指电力系统受到小的或大的扰动后,在自动调节和控制装置的作用下,保持长过程的运行稳定性的能力。
频率稳定性:系统中有功功率的缺乏导致的频率下降现象。
电压稳定性:研究的是系统在受到小的或大的扰动后系统维持电压电力系统静态稳定性分析的一般步骤:①计算给定稳态运行情况下各变量的稳态值;②对描述暂态过程的方程式在稳态值附近线性化;③形成线性化方程状态矩阵A,根据其特征值的性质判断稳定性。
(四)提高静态稳定性的措施⑴采用自动调节励磁装置;⑵减小元件的电抗,具体做法有以下几种:①采用分裂导线;②提高线路额定电压等级;③采用串联电容补偿⑶改善系统的结构和采用中间补偿设备。
小扰动法是根据李雅普诺夫稳定性理论,以线性化分析为基础的分析方法。
当受扰动系统的线性化微分方程组的特征方程式的根的实部皆为负值时,该系统是稳定的,当根的实部有正值时,该系统式不稳定的。
小扰动法分析简单电力系统静态稳定性的步骤:(1)列出描述系统中各元件运行状态的微分方程式组;(2)将以上非线性方程线性化处理,得到近似的线性化微分方程式组;(3)根据近似方程式的根的性质,判断系统的静态稳定性。
暂态稳定:系统受到大的扰动后,将使系统结构和参数发生变化,系统潮流和发电机的输出功率也发生变化,从而破坏了远动机与发电机之间的功率平衡,使发电机开始加速或减速,扰动后,各发电机输出功率的变化并不相同,使它们的转速变化也不相同。
这样各发电机之间因转速不同产生相对运动,其结果是使转子之间的相对角度发生变化。
选用牛顿-拉佛森方法,利用matlab 软件计算基于PQ 节点情况下的潮流计算。
一.所用公式112222[()()][()()]()j ni i i ij j ij j i ij j ij j j j n i i i ij j ij j i ij j ij j j i i i iP P e G e B f f G f B e Q Q f G e B f e G f B e U U e f ====⎧∆=--++⎪⎪⎪⎪∆=---+⎨⎪⎪∆=-+⎪⎪⎩∑∑i j ≠2200i ij ij i ij iii ij ij i ij ii i ijij i ij i ij ii ij ij i ij i iji i iji i ij i P H B e G f f P N G e B f e Q J G e B f N f Q L B e G f H e U R f U S e ∂⎧==-+⎪∂⎪⎪∂==+⎪∂⎪⎪∂==--=-⎪∂⎪⎨∂⎪==-+=∂⎪⎪∂⎪==⎪∂⎪∂⎪==⎪∂⎩i j=2222i ii ij i ij i iiiiii ij i ij i iii iii ij i ij i ii ii ii ij i ij i ii i i iii i i ii ii P H B e G f b f P N G e B f a e Q J G e B f a f Q L B e G f b e U R f f U S e e ∂⎧==-++⎪∂⎪⎪∂==++⎪∂⎪⎪∂==--+⎪∂⎪⎨∂⎪==-+-∂⎪⎪∂⎪==⎪∂⎪∂⎪==⎪∂⎩其中11()()j nii ii i ii i ij j ij j j j i j niiii i ii i ij j ij jj j i a G e B f G e B f b G f B e G f B e ==≠==≠⎧=-+-⎪⎪⎪⎨⎪=+++⎪⎪⎩∑∑二、程序流程图开始形成节点导纳矩阵输入原始数据设节点电压(0)(0)i ie f,i=1,2…,n,i≠s置迭代次数0k=置节点号i=1计算雅克比矩阵元素计算PQ节点的()kiP∆,()kiQ∆,PV节点的()kiP∆,()2kiU∆求解修正方程式,得()kie∆,()kif∆雅克比矩阵是否已全部形求()max||k e∆,()max||k f∆迭代次数k=k+1i=i+1计算各节点电压的新值:(1)()()k k kie e e+=+∆。
现代电力系统的设计与控制技术分析电力是现代社会不可替代的重要物质基础。
电力系统的设计与控制技术是实现能源供应的关键,对于保障能源的稳定供应、提高能源利用效率具有重要意义。
本文将从电力系统的基本组成结构、电力系统主要设备和控制技术方面进行分析,为读者更好地了解现代电力系统提供参考。
一、电力系统的基本组成结构电力系统一般由三部分组成:发电系统、输电系统和配电系统。
发电系统是电力系统的重要组成部分,它主要由发电机组成。
发电机是通过机械能转化为电能的设备,是电力系统的核心设备。
发电机的类型有多种,其中最常见的为火力发电机、水力发电机和核电发电机等。
输电系统是将电力从发电站输送到用电地点的基础设施,主要由变压器、电缆、电线杆等组成。
输电系统的主要目的是降低电能传输损耗和维护电能的稳定性。
配电系统是电力系统的最后一道防线,它将输送的电力分配到各个用电地点,以供人们生活、生产和工作使用。
配电系统的主要设备包括开关、熔断器、变压器等。
二、电力系统主要设备电力系统主要设备包括发电机、变压器、开关、熔断器等。
这些设备在电力系统的安全和稳定性方面都扮演着非常重要的角色。
发电机是电力系统的核心设备,它将机械能转化为电能,是电力系统的发电源。
发电机通常有直流发电机和交流发电机两种类型。
在电力系统中,交流发电机被广泛应用。
变压器是输电系统的重要设备,它主要通过改变交流电压大小来提高电能传输效率。
变压器分为油浸式变压器和干式变压器两种类型,前者一般用于大型电力系统的输电环节,后者则被应用于城市配电系统中。
开关是电力系统中的控制设备,主要用于连接和断开电路。
开关通常分为低压开关和高压开关两种类型。
低压开关被广泛应用于配电系统中,高压开关则被应用于输电系统。
熔断器是电力系统中的安全设备,它主要用于断开电路以防止灾害事故的发生。
熔断器通常分为低压熔断器和高压熔断器两种类型。
低压熔断器被广泛应用于住宅和商业建筑中,高压熔断器则被应用于工业和大型电力系统中。
一、潮流计算方法之间的区别联系高斯-赛德尔法:原理简单,导纳矩阵对称且高度稀疏,占用内存小。
收敛速度很慢,迭代次数随节点数直接上升,计算量急剧增加,不适用大规模系统。
牛顿-拉夫逊法:收敛速度快,迭代次数和网络规模基本无关。
相对高斯-赛德尔法,内存量和每次迭代所需时间较多,其可靠的收敛还取决于一个良好的启动初值。
PQ 分解法(快速解耦法):PQ 分解法实际上是在极坐标形式的牛顿法的基础上,在交流高压电网中,输电线路等元件的R<<X ,即有功功率主要取决于电压相角,而无功功率主要取决于电压幅值,根据这种特性对方程组进行简化,从而实现了有功和无功的解耦。
两大条件:(1)线路两端的相角相差不大(小于10°~20°),而且||||ij ij G B ≤,于是可以认为:cos 1;sin ij ij ij ij G B θθ≈≤; (2)与节点无功功率相对应的导纳2/i i Q U 通常远小于节点的自导纳ii B ,也即2i i ii Q U B <<。
1. PQ 分解法用一个1n -阶和一个1n m --阶的方程组代替牛顿法中22n m --阶方程组,显著减少了内存需量和计算量。
2. 计算过程中B '、B ''保持不变,不同于牛顿法每次迭代都要重新形成雅可比矩阵,因此显著提高了计算速度。
3.雅可比矩阵J 不对称,而B '、B ''都是对称的,使求逆等运算量和所需的存储容量都大为减少。
4. PQ 分解法的迭代次数要比牛顿法多,但是每次迭代所需时间比牛顿法少,所以总的计算速度仍是PQ 分解法快。
在低压配电网中PQ 分解法不适用。
交流高压电网的输电线路的元件满足R<<X ,PQ 分解法正是基于此条件简化而来;而低电压配电网络一般R/X 比值很大,大R/X 比值病态问题也正是PQ 分解法应用中的一个最大障碍。
2024年电力系统分析总结范文2024年是电力系统发展迅速的一年, 随着可再生能源技术的不断突破和能源转型的深入推进, 电力系统在效率、可靠性和可持续性方面取得了显著进展。
本文将对2024年电力系统的发展进行综合分析和总结。
首先, 2024年电力系统在可再生能源方面取得了重要突破。
以太阳能和风能为代表的可再生能源技术得到了广泛的应用和推广, 大规模的太阳能和风能电站建设, 极大地增加了可再生能源的发电量。
与传统的火力发电相比, 太阳能和风能发电不会产生排放物和废水, 对环境的污染也更少。
在2024年, 太阳能和风能发电已成为电力系统的重要组成部分, 有效推动了能源的低碳转型。
其次, 2024年电力系统在能源储存技术方面取得了重要进展。
由于太阳能和风能的不稳定性, 电力系统需要能够储存电能以应对高峰时段或不稳定的情况。
在2024年, 电池技术得到了显著改进, 电池容量和性能得到了大幅提升, 电池成本也有所降低。
这些进展促使电力系统能够更好地利用可再生能源, 并且提供更稳定、可靠的电力供应。
再次, 2024年电力系统在智能电网建设方面取得了重要进展。
智能电网是当前电力系统发展的趋势, 通过智能感知、智能控制和智能运行等技术, 实现电力系统的自动化和智能化。
在2024年, 智能电网技术得到了快速发展, 智能计量、远程监控和自动化设备等应用得到了广泛推广。
智能电网的建设不仅提高了电力系统的运行效率和可靠性, 还为用户提供了更便捷、舒适的用电体验。
最后, 2024年电力系统在清洁能源消纳和能源交互方面取得了重要进展。
随着可再生能源发电量的增加, 清洁能源消纳成为电力系统发展的一个关键问题。
在2024年, 通过建设跨区域、跨国家的电力互联网和能源互联网, 不仅能实现清洁能源的分发和交易, 也能提高清洁能源的消纳能力。
同时, 电力系统也与其他能源领域进行了更紧密的交互合作, 如与交通运输领域的电动车充电设施、与工业领域的能源利用等。
《现代电力系统分析》Advanced Analysis of Power System课程介绍:本课程是在本科阶段学习《电力系统稳态分析》的基础上,针对现代电力系统特点,结合现代电力系统分析研究成果,为硕士研究生今后从事电力系统相关课题研究打下必要的基础而设置的一门《电力系统分析》延伸性质的课程。
本课程是从事电力系统经济运行、控制和稳定性分析研究的基础,也是现代电力系统规划、电能管理系统等应用项目的基础。
课程由若干专题讲座构成,讲授和讨论相结合。
课程主要内容:一、现代电力系统分析基本功能、方法二、大规模电力系统分析的等值处理三、大规模电力系统分析的分块处理四、电力系统状态估计的基本功能、方法五、加权最小二乘状态估计六、快速分解状态估计、等值变换状态估计七、动态电力系统状态估计(*,以分块算法研究代替)八、不良数据检测和辨识方法九、广义状态估计方法(*)十、配电网络状态估计方法(*)考核方式:报告+考试。
先修课程:电力系统分析、数值计算方法。
参考书籍:诸骏伟. 电力系统分析上册. 中国电力出版社,1998年或诸骏伟. 电力系统分析上册. 水利电力出版社,1995年张伯明,陈寿孙著. 高等电力网络分析. 清华大学出版社,1996年H.H.Happ著,丘昌涛译. 分块法及其在电力系统中的应用. 科学出版社,1987年于尔铿主编. 水利电力出版社,1985年宋文南,李树鸿,张尧. 电力系统潮流计算. 天津大学出版社,1990年第1讲 现代电力系统分析基本功能、方法现代电力系统的特点规模庞大:1)系统网络节点数量多;2)系统覆盖地域广。
结构复杂:1)拓扑结构复杂;2)系统参数变化点多;3)交直流混合系统。
影响面宽:由影响一个地区、一个省、一个大区、一个国家到多个国家。
课程学习方法:复习《电力系统稳态运行分析》部分,多思考,多阅读文献,必要时编写程序对一些问题进行验证计算。
预备知识:电力网络构成,元件以及元件之间的连接。
选用牛顿-拉佛森方法,利用matlab 软件计算基于PQ 节点情况下的潮流计算。
一.所用公式112222[()()][()()]()j ni i i ij j ij j i ij j ij j j j n i i i ij j ij j i ij j ij j j i i i iP P e G e B f f G f B e Q Q f G e B f e G f B e U U e f ====⎧∆=--++⎪⎪⎪⎪∆=---+⎨⎪⎪∆=-+⎪⎪⎩∑∑i j ≠2200i ij ij i ij iii ij ij i ij ii i ijij i ij i ij ii ij ij i ij i iji i iji i ij i P H B e G f f P N G e B f e Q J G e B f N f Q L B e G f H e U R f U S e ∂⎧==-+⎪∂⎪⎪∂==+⎪∂⎪⎪∂==--=-⎪∂⎪⎨∂⎪==-+=∂⎪⎪∂⎪==⎪∂⎪∂⎪==⎪∂⎩i j=2222i ii ij i ij i iiiiii ij i ij i iii iii ij i ij i ii ii ii ij i ij i ii i i iii i i ii ii P H B e G f b f P N G e B f a e Q J G e B f a f Q L B e G f b e U R f f U S e e ∂⎧==-++⎪∂⎪⎪∂==++⎪∂⎪⎪∂==--+⎪∂⎪⎨∂⎪==-+-∂⎪⎪∂⎪==⎪∂⎪∂⎪==⎪∂⎩其中11()()j nii ii i ii i ij j ij j j j i j niiii i ii i ij j ij jj j i a G e B f G e B f b G f B e G f B e ==≠==≠⎧=-+-⎪⎪⎪⎨⎪=+++⎪⎪⎩∑∑二、程序流程图开始形成节点导纳矩阵输入原始数据 设节点电压(0)(0)i i e f ,i=1,2…,n,i ≠s置迭代次数0k =置节点号i=1计算雅克比矩阵元素计算PQ 节点的()k i P ∆,()k i Q ∆,PV 节点的()k i P ∆,()2k i U ∆求解修正方程式,得()k i e ∆,()k if ∆雅克比矩阵是否已全部形求()max ||k e ∆,()max ||k f ∆迭代次数 k=k+1i=i+1计算各节点电压的新值:(1)()()k k k i e e e +=+∆牛顿-拉佛森例题中的简单模型系统一、系统单线图图1 简单模型系统二、系统参数节点矩阵%(bus#)(volt)(ang)(p)(q)(bus type)bus=[1 1.00 0.00 -1.60 -0.80 1;2 1.00 0.00 -2.00 -1.00 1;3 1.00 0.00 -3.70 -1.30 1;4 1.05 0.00 5.00 0.00 2;5 1.05 0.00 0.00 0.00 3];线路矩阵%b#1 b#2 (R)(X)(G)(B)(K)line=[1 2 0.04 0.25 0 0.25 0;1 3 0.10 0.35 0 0.00 0;2 3 0.08 0.30 0 0.25 0;5 3 0.00 0.03 0 0.00 1.05;4 2 0.00 0.015 0 0.00 1.05] ;三、计算结果:牛顿-拉夫逊法潮流计算结果节点计算结果:n节点节点电压节点相角(角度)节点注入功率1 0.862150 -4.778511 -1.600000 + j -0.8000002 1.077916 17.853530 -2.000000 + j -1.0000003 1.036411 -4.281930 -3.700000 + j -1.3000004 1.050000 21.843319 5.000000 + j 1.8130845 1.050000 0.000000 2.579427 + j 2.299402n线路计算结果:n节点I 节点J 线路功率S(I,J) 线路功率S(J,I) 线路损耗dS(I,J)1 2 -1.466181 + j -0.409076 1.584546 + j 0.672556 0.118365 + j0.2634801 3 -0.133819 + j -0.390924 0.156788 + j 0.471315 0.022969 + j 0.0803912 3 1.415454 + j -0.244333 -1.277360 + j 0.203170 0.138093 + j -0.041163 5 3 2.579427 + j 2.299402 -2.579427 + j -1.974485 0.000000 + j 0.3249174 2 5.000000 + j 1.813084 -5.000000 + j -1.428223 0.000000 + j 0.384861导纳矩阵:Y =[ 1.3787 - 6.2917i -0.6240 + 3.9002i -0.7547 + 2.6415i 0 0-0.6240 + 3.9002i 1.4539 -66.9808i -0.8299 + 3.1120i 0 +63.4921i 0-0.7547 + 2.6415i -0.8299 + 3.1120i 1.5846 -35.7379i 0 0 +31.7460i0 0 +63.4921i 0 0 -66.6667i 00 0 0 +31.7460i 0 0 -33.3333i ]图2. Matlab运行结果结果分析:此程序的运行结果和试验程序给出的结果是一致的。
说明程序无误,但在精确度上有微小差异,这主要是和导纳矩阵的精确度以及显示精度有关。
心得:本程序分模块进行,先是排序,再是求导纳阵,然后求雅阁比,再进行迭代运算,程序本身很简洁明了,运行的时候只需要在matlab里输入main就行了,然后打开BUS和line所在的.m文件,结果就会自动存在result文件中了,通过编写牛顿拉夫逊法matlab潮流计算程序复习了潮流计算的知识,也实现了计算机算法附录:实验源程序:Main函数:clear[dfile,pathname]=uigetfile('*.m','Select Data File');if pathname == 0error(' you must select a valid data file')elselfile =length(dfile);% strip off .meval(dfile(1:lfile-2));end;global bus;global line;[nb,mb]=size(bus);[nl,ml]=size(line); % 计算bus和line矩阵的行数和列数[bus,line,nPQ,nPV,nodenum] = Num(bus,line); % 对节点重新排序的子程序Y = y(bus,line) % 计算节点导纳矩阵的子程序myf = fopen('Result.m','w');fprintf(myf,'计算结果');fclose(myf); % 在当前目录下生成“Result.m”文件,写入节点导纳矩阵format longEPS = 1.0e-10; % 设定误差精度for t = 1:100 % 开始迭代计算,设定最大迭代次数为100,以便不收敛情况下及时跳出[dP,dQ] = dPQ(Y,bus,nPQ,nPV); % 计算功率偏差dP和dQ的子程序J = Jac(bus,Y,nPQ); % 计算雅克比矩阵的子程序UD = zeros(nPQ,nPQ);for i = 1:nPQUD(i,i) = bus(i,2); % 生成电压对角矩阵 endenddAngU = J\[dP;dQ];dAng = dAngU(1:nb-1,1); % 计算相角修正量dU = UD*(dAngU(nb:nb+nPQ-1,1)); % 计算电压修正量bus(1:nPQ,2) = bus(1:nPQ,2) - dU; % 修正电压bus(1:nb-1,3) = bus(1:nb-1,3) - dAng; % 修正相角if (max(abs(dU))<EPS)&(max(abs(dAng))<EPS)breakend % 判断是否满足精度误差,如满足则跳出,否则返回继续迭代endbus = PQ(bus,Y,nPQ,nPV); % 计算每个节点的有功和无功注入的子程序[bus,line] = ReNum(bus,line,nodenum); % 对节点恢复编号的子程序YtYm = YtYm_(line); % 计算线路的等效Yt和Ym的子程序,以计算线路潮流bus_res = bus_res_(bus); % 计算节点数据结果的子程序S_res = S_res_(bus,line,YtYm); % 计算线路潮流的子程序myf = fopen('Result.m','a');fprintf(myf,'牛顿-拉夫逊法潮流计算结果节点计算结果:n节点节点电压节点相角(角度)节点注入功率\n');for i = 1:nbfprintf(myf,'%2.0f ',bus_res(i,1));fprintf(myf,'%10.6f ',bus_res(i,2));fprintf(myf,'%10.6f ',bus_res(i,3));fprintf(myf,'%10.6f + j %10.6f\n',real(bus_res(i,4)),imag(bus_res(i,4))); endfprintf(myf,'n线路计算结果:n节点I 节点J 线路功率S(I,J) 线路功率S(J,I) 线路损耗dS(I,J)\n');for i = 1:nlfprintf(myf,'%2.0f ',S_res(i,1));fprintf(myf,'%2.0f ',S_res(i,2));fprintf(myf,'%10.6f + j %10.6f ',real(S_res(i,3)),imag(S_res(i,3))); fprintf(myf,'%10.6f + j %10.6f ',real(S_res(i,4)),imag(S_res(i,4))); fprintf(myf,'%10.6f + j%10.6f\n',real(S_res(i,5)),imag(S_res(i,5)));endfclose(myf); % 迭代结束后继续在“Result.m”写入节点计算结果和线路计算结果程序结束"Num.m" 作用为对节点重排序,并修改相应的线路数据function [bus,line,nPQ,nPV,nodenum] = Num(bus,line)[nb,mb]=size(bus);[nl,ml]=size(line);nSW = 0; % number of swing bus counternPV = 0; % number of PV bus counternPQ = 0; % number of PQ bus counterfor i = 1:nb, % nb为总节点数type= bus(i,6);if type == 3,nSW = nSW + 1; % increment swing bus counterSW(nSW,:)=bus(i,:);elseif type == 2,nPV = nPV +1; % increment PV bus counterPV(nPV,:)=bus(i,:);elsenPQ = nPQ + 1; % increment PQ bus counterPQ(nPQ,:)=bus(i,:);endend;bus=[PQ;PV;SW];newbus=[1:nb]';nodenum=[newbus bus(:,1)];bus(:,1)=newbus;for i=1:nlfor j=1:2for k=1:nbif line(i,j)==nodenum(k,2)line(i,j)=nodenum(k,1);breakendendendend"y.m" 作用为计算节点导纳矩阵function Y = y(bus,line)[nb,mb]=size(bus);[nl,ml]=size(line);Y=zeros(nb,nb);for k=1:nlI=line(k,1); %读入线路参数J=line(k,2);Zt=line(k,3)+j*line(k,4);Yt=1/Zt;Ym=line(k,5)+j*line(k,6);K=line(k,7);if (K==0)&(J~=0) % 普通线路: K=0;Y(I,I)=Y(I,I)+Yt+Ym;Y(J,J)=Y(J,J)+Yt+Ym;Y(I,J)=Y(I,J)-Yt;Y(J,I)=Y(I,J);endif (K==0)&(J==0) % 对地支路: K=0,J=0,R=X=0;Y(I,I)=Y(I,I)+Ym;endif K>0 % 变压器线路: Zt和Ym为折算到i侧的值,K在j侧Y(I,I)=Y(I,I)+Yt+Ym;Y(J,J)=Y(J,J)+Yt/K/K;Y(I,J)=Y(I,J)-Yt/K;Y(J,I)=Y(I,J);endif K<0 % 变压器线路: Zt和Ym为折算到K侧的值,K在i侧Y(I,I)=Y(I,I)+Yt+Ym;Y(J,J)=Y(J,J)+K*K*Yt;Y(I,J)=Y(I,J)+K*Yt;Y(J,I)=Y(I,J);endEnd"dPQ.m" 作用为计算功率偏差function [dP,dQ] =dPQ(Y,bus,nPQ,nPV) % nPQ、nPV为相应节点个数n = nPQ + nPV +1; % 总节点个数dP = bus(1:n-1,4);dQ = bus(1:nPQ,5); % 对dP和dQ赋初值 PV节点不需计算dQ 平衡节点不参与计算for i = 1:n-1for j = 1:ndP(i,1) = dP(i,1)-bus(i,2)*bus(j,2)*(real(Y(i,j))*cos(bus(i,3)-bus(j,3))+imag(Y(i,j))*sin( bus(i,3)-bus(j,3)));if i<nPQ+1dQ(i,1) = dQ(i,1)-bus(i,2)*bus(j,2)*(real(Y(i,j))*sin(bus(i,3)-bus(j,3))-imag(Y(i,j))*cos( bus(i,3)-bus(j,3)));endendend % 利用循环计算求取dP和dQ"Jac.m" 作用为计算雅克比矩阵function J = Jac(bus,Y,nPQ)[nb,mb]=size(bus);H = zeros(nb-1,nb-1);N = zeros(nb-1,nPQ);K = zeros(nPQ,nb-1);L = zeros(nPQ,nPQ); % 将雅克比矩阵分块,即:J = [H N; K L],并初始化Qi = zeros(nb-1,1);Pi = zeros(nb-1,1);for i = 1:nb-1for j = 1:nbPi(i,1)=Pi(i,1)+bus(i,2)*bus(j,2)*(real(Y(i,j))*cos(bus(i,3)-bus(j,3))+imag( Y(i,j))*sin(bus(i,3)-bus(j,3)));Qi(i,1)=Qi(i,1)+bus(i,2)*bus(j,2)*(real(Y(i,j))*sin(bus(i,3)-bus(j,3))-imag( Y(i,j))*cos(bus(i,3)-bus(j,3)));endend % 初始化并计算Qi和Pifor i = 1:nb-1for j = 1:nb-1if i~=jH(i,j)=-bus(i,2)*bus(j,2)*(real(Y(i,j))*sin(bus(i,3)-bus(j,3))-imag(Y(i,j))* cos(bus(i,3)-bus(j,3)));elseH(i,j)=Qi(i,1)+imag(Y(i,j))*((bus(i,2))^2);end % 分别计算H矩阵的对角及非对角元素if j < nPQ+1if i~=jN(i,j)=-bus(i,2)*bus(j,2)*(real(Y(i,j))*cos(bus(i,3)-bus(j,3))+imag(Y(i,j))* sin(bus(i,3)-bus(j,3)));elseN(i,j)=-Pi(i,1)-real(Y(i,j))*((bus(i,2))^2);endend % 分别计算N矩阵的对角及非对角元素if i < nPQ+1if i~=jK(i,j)=bus(i,2)*bus(j,2)*(real(Y(i,j))*cos(bus(i,3)-bus(j,3))+imag(Y(i,j))*s in(bus(i,3)-bus(j,3)));elseK(i,j)=-Pi(i,1)+real(Y(i,j))*((bus(i,2))^2);end % 分别计算K矩阵的对角及非对角元素if j < nPQ+1if i~=jL(i,j)=-bus(i,2)*bus(j,2)*(real(Y(i,j))*sin(bus(i,3)-bus(j,3))-imag(Y(i,j))* cos(bus(i,3)-bus(j,3)));elseL(i,j)=-Qi(i,1)+imag(Y(i,j))*((bus(i,2))^2); endend % 分别计算L矩阵的对角及非对角元素endendendJ = [H N; K L]; % 生成雅克比矩阵"PQ.m" 作用为计算每个节点的功率注入function bus = PQ(bus,Y,nPQ,nPV)n = nPQ+nPV+1; % n为总节点数for i = nPQ+1:n-1for j = 1:nbus(i,5)=bus(i,5)+bus(i,2)*bus(j,2)*(real(Y(i,j))*sin(bus(i,3)-bus(j,3))-ima g(Y(i,j))*cos(bus(i,3)-bus(j,3)));endend % 利用公式计算PV节点的无功注入for j =1:nbus(n,4)=bus(n,4)+bus(n,2)*bus(j,2)*(real(Y(n,j))*cos(bus(n,3)-bus(j,3))+ima g(Y(n,j))*sin(bus(n,3)-bus(j,3)));bus(n,5)=bus(n,5)+bus(n,2)*bus(j,2)*(real(Y(n,j))*sin(bus(n,3)-bus(j,3))-ima g(Y(n,j))*cos(bus(n,3)-bus(j,3)));end % 计算平衡节点的无功及有功注入"ReNum.m" 作用为对节点和线路数据恢复编号function [bus,line] = ReNum(bus,line,nodenum)[nb,mb]=size(bus);[nl,ml]=size(line);bus_temp = zeros(nb,mb); % bus_temp矩阵用于临时存放bus矩阵的数据k = 1;for i = 1 :nbfor j = 1 : nbif bus(j,1) == kbus_temp(k,:) = bus(j,:);k = k + 1;endendend % 利用bus矩阵的首列编号重新对bus矩阵排序并存入bus_temp矩阵中bus = bus_temp; % 重新赋值回bus,完成bus矩阵的重新编号for i=1:nlfor j=1:2for k=1:nbif line(i,j)==nodenum(k,1)line(i,j)=nodenum(k,2);breakendendendend % 恢复line的编号"YtYm_.m" 作用为计算线路的等效Yt和Ym,以计算线路潮流function YtYm = YtYm_(line)[nl,ml]=size(line);YtYm = zeros(nl,5); % 对YtYm矩阵赋初值0YtYm(:,1:2) = line(:,1:2); % 矩阵前两列为线路两段节点编号,后三列分别为线路等效Yt,i侧的等效Ym,j侧的等效Ymj = sqrt(-1);for k=1:nlI=line(k,1);J=line(k,2);Zt=line(k,3)+j*line(k,4);if Zt~=0Yt=1/Zt;endYm=line(k,5)+j*line(k,6);K=line(k,7);if (K==0)&(J~=0) % 普通线路: K=0YtYm(k,3) = Yt;YtYm(k,4) = Ym;YtYm(k,5) = Ym;endif (K==0)&(J==0) % 对地支路: K=0,J=0,R=X=0YtYm(k,4) = Ym;endif K>0 % 变压器线路: Zt和Ym为折算到i侧的值,K在j侧YtYm(k,3) = Yt/K;YtYm(k,4) = Ym+Yt*(K-1)/K;YtYm(k,5) = Yt*(1-K)/K/K;endif K<0 % 变压器线路: Zt和Ym为折算到K侧的值,K在i侧YtYm(k,3) = -Yt*K;YtYm(k,4) = Ym+Yt*(1+K);YtYm(k,5) = Yt*(K^2+K);endend"bus_res_.m" 计算并返回节点数据结果function bus_res = bus_res_(bus)[nb,mb]=size(bus);bus_res = zeros(nb,4); % bus_res矩阵储存着节点计算结果bus_res(:,1:2) = bus(:,1:2);bus_res(:,3) = bus(:,3) *180 / pi; % 相角采用角度制bus_res(:,4) = bus(:,4) + (sqrt(-1))*bus(:,5); % 注入功率"S_res_.m" 计算并返回线路潮流function S_res = S_res_(bus,line,YtYm)[nl,ml]=size(line);S_res = zeros(nl,5); % S_res矩阵储存着线路潮流计算结果S_res(:,1:2) = line(:,1:2); % 前两列为节点编号for k=1:nlI = S_res(k,1);J = S_res(k,2);if (J~=0)&(I~=0)S_res(k,3)=bus(I,2)^2*(conj(YtYm(k,3))+conj(YtYm(k,4)))-bus(I,2)*bus(J,2)*(c os(bus(I,3))+j*sin(bus(I,3)))*(conj(cos(bus(J,3))+j*sin(bus(J,3))))*conj(YtY m(k,3));S_res(k,4)=bus(J,2)^2*(conj(YtYm(k,3))+conj(YtYm(k,5)))-bus(I,2)*bus(J,2)*(c onj(cos(bus(I,3))+j*sin(bus(I,3))))*(cos(bus(J,3))+j*sin(bus(J,3)))*conj(YtY m(k,3));S_res(k,5)=S_res(k,3) + S_res(k,4); % 利用公式计算非接地支路的潮流 else if(J==0 )S_res(k,3)=bus(I,2)^2*conj(YtYm(k,4));S_res(k,5)=S_res(k,3)+S_res(k,4);elseS_res(k,4)=bus(J,2)^2*conj(YtYm(k,5));S_res(k,5)=S_res(k,3)+S_res(k,4); % 利用公式计算接地支路的潮流endendendend。