光的全反射
- 格式:doc
- 大小:520.00 KB
- 文档页数:2
光的全反射原理光的全反射原理光的全反射原理是一种特殊的光学现象,它发生在光线射入介质时,因介质间的折射率差异而反射全部光线回程,造成光线完全照入物体。
全反射只发生在光线由比较低折射率的介质射入到高折射率的介质时。
介质的折射率比较低的一种物质常为空气或蒸汽,而折射率比较高的一种物质常为液体或固体,全反射所产生的光线可以分为漫射及表面反射光。
使用全反射可以获得较大程度的反光、反照明或聚光效果。
现在,光的全反射原理已经被广泛应用在照明、显示器以及光学行业中,这也使得光学行业取得了很大的发展。
未来,光的全反射原理可能会运用于更多的领域,如医疗设备等,有望获得更多的发展。
光的全反射是指介质间的折射率差异,使得由比较低折射率的介质射入比较高折射率的介质时,反射所有的光线到物体表面,无论是漫射光或表面反射光,它们都可以使用全反射法获得较大程度的反光,反照明或聚光效果。
根据实验可以确定,光波在折射率较大的介质的入射角超过折射极限角时,出射光线就会100%的利用全反射原理,而不会有折射发生,即“全反射”。
全反射的最常见的应用之一就是在矩阵式的光照明设备中,它们通过把封闭的空腔中的光源反射到室内环境上,从而达到节省能源的效果,减轻环境污染压力。
其中特别重要的一点就是空腔设计要选择合适的反射曲面,从而使得反射光线全部利用全反射几乎无损地回程,产生聚光效果。
另外,全反射的一大优势就是消除反射面上的人眼可见微粒,从而实现反射光的高效折射,从而有效提高光源的强度。
另外,全反射也可以用于许多其他方面,例如用于圆弧照明,光源通过多个反射镜和反射物,形成平均分布的光,可以满足半球形及全球形的照明需求,用于发光字、照明塔、橱柜、无线遥控设备等方面。
因此,光的全反射是一种特殊而又复杂的现象,在很多方面都有着广泛的应用,是一个具有重要成就和用处的物理现象。
通过深入的研究,以及正确的利用,可以发挥光的全反射原理的最大功效,节省能源、提高环境效率,让人们的生活更加科技实惠。
光的全反射产生条件引言光的全反射是光从光密介质射向光疏介质时发生的现象,当光从光密介质射向光疏介质的入射角大于临界角时,光将完全反射回光密介质中,这种现象称为光的全反射。
本文将对光的全反射的产生条件进行全面、详细、完整且深入的探讨。
光的全反射条件为了发生全反射,必须满足以下几个条件:1. 光从光密介质射向光疏介质光的全反射只会发生在两种介质之间的边界面上,其中一种介质的折射率比另一种介质的折射率大。
2. 光的入射角大于临界角当光从光密介质射向光疏介质时,入射角必须大于临界角才能发生全反射。
临界角是指使光完全发生反射的最大入射角。
当入射角大于临界角时,光将被完全反射回光密介质中。
临界角的计算公式为:临界角=arcsin(n2 n1 )其中,n1为光密介质的折射率,n2为光疏介质的折射率。
3. 光的入射角小于90度光的入射角必须小于90度,因为当入射角为90度时,光将无法穿过边界面,而是发生了切线摆脱光密介质,进入光疏介质的边界。
光的全反射应用光的全反射在实际生活中有许多应用。
以下是一些例子:1. 光纤通信光纤通信是利用光的全反射进行信息传输的技术。
光纤中心的光芯是由高折射率的材料构成,周围是低折射率的材料。
当光从光纤中心射向光纤外部时,由于入射角大于临界角,光会被完全反射在光纤内部,从而能够有效传输信号。
2. 光学稳定器光学稳定器是一种可以使光保持直线传播的装置。
通过利用光的全反射的原理,在光路中设置一系列反射面,将入射光束进行多次全反射,使光线保持直线传播而不会发生散射。
3. 光学薄膜在光学薄膜中,利用光的全反射特性可以实现光的反射和透射的调控。
通过调整光密介质和光疏介质的折射率以及控制光的入射角,可以实现对特定波长光的反射和透射,从而用于光学器件和光学涂层的制备。
结论光的全反射是光从光密介质射向光疏介质时产生的一种现象。
要发生全反射,必须满足光从光密介质射向光疏介质、入射角大于临界角以及入射角小于90度等条件。
光的全反射的公式光的全反射是光线由光密介质射入光疏介质时,在一定的角度下发生的现象。
在光密介质和光疏介质的交界面上,当光线从光密介质射入光疏介质时,当入射角大于临界角时,光线将完全发生反射,不再透射到光疏介质中。
全反射的公式为:sin i / sin r = n2 / n1其中,i为入射角,r为反射角,n1为光密介质的折射率,n2为光疏介质的折射率。
光的全反射是由光在两种介质交界面上折射率不同引起的。
当光由光密介质射入光疏介质时,光线会发生弯曲,即发生折射。
根据斯涅尔定律,入射角和折射角之间满足sin i / sin r = n2 / n1的关系。
当入射角小于临界角时,折射角为正,光线会透射到光疏介质中;当入射角等于临界角时,折射角为90°,光线会沿着交界面发生全反射;当入射角大于临界角时,折射角不存在,光线完全反射回光密介质中。
全反射在光学中有着广泛的应用。
例如,光纤通信中就利用了光的全反射原理。
光纤的核心是光密介质,外包覆的是光疏介质,通过控制入射角使光线在光纤中发生多次全反射,从而实现信号传输。
光的全反射还可以用于制作光学器件,如反射镜和光学棱镜等。
除此之外,光的全反射还有一些特殊的现象。
例如,当光线由光密介质射入光疏介质时,如果入射角超过90°,光线将无法从光疏介质中透射出来,而是会被完全反射回光密介质中。
这种现象被称为超全反射。
此外,当光线由光密介质射入光疏介质时,如果入射角等于0°,光线不会发生折射,而是会沿着交界面直接传播,这种现象被称为正入射。
光的全反射是光在不同介质之间传播时的重要现象。
它不仅有着理论上的意义,也有着广泛的应用价值。
通过控制光线的入射角和介质的折射率,我们可以利用光的全反射实现信号传输、制造光学器件等。
深入理解和应用光的全反射,对于我们更好地认识光学现象和推动光学技术的发展具有重要意义。
光的全反射现象
一、概念解释
光的全反射是指光线从光密介质射向光疏介质时,入射角大于临界角时,全部反射回去的现象。
二、临界角的概念
临界角是指入射角达到一定值时,发生全反射现象的那个角度。
在两种介质之间,其大小与两种介质的折射率有关。
当入射角等于临界角时,折射角为90度。
三、全反射发生条件
1. 光线从光密介质入射到光疏介质中;
2. 入射角大于临界角。
四、实际应用
1. 全反射透镜:利用全反射原理制成的透镜,在一定条件下可以将物体放大;
2. 全反射棱镜:利用全反射原理制成的棱镜,在一定条件下可以将光线转向特定方向;
3. 全反射光纤:利用全反射原理制成的光纤,在信息传输中起到重要作用。
五、实验演示
实验材料:玻璃板、三棱镜、水。
实验步骤:
1. 将玻璃板置于水中,使其与水面垂直;
2. 将光线从空气侧射入玻璃板中,改变入射角度;
3. 观察光线在玻璃板内的传播情况。
六、结论
当入射角小于临界角时,光线会经过折射进入下一个介质;当入射角等于临界角时,折射角为90度;当入射角大于临界角时,光线将会发生全反射现象。
七、注意事项
1. 实验时要注意安全;
2. 实验材料需要精细制作和调整;
3. 实验过程中需要仔细观察和记录数据。
光的全反射知识点一、全反射现象。
1. 定义。
- 光从光密介质射入光疏介质时,当入射角增大到某一角度,使折射角达到90°时,折射光完全消失,只剩下反射光,这种现象叫做全反射。
2. 临界角。
- 光从某种介质射向真空(或空气)时的临界角C满足sin C=(1)/(n)(n为该介质的折射率)。
例如,对于水(n = 1.33),其临界角C=arcsin(1)/(1.33)≈48.8^∘。
- 注意:临界角是光从某种介质射向真空(或空气)时的特殊角度,计算时要根据具体的介质折射率准确计算。
二、发生全反射的条件。
1. 光从光密介质射入光疏介质。
- 光密介质和光疏介质是相对的概念。
例如,水相对于空气是光密介质,而玻璃相对于水又是光密介质。
折射率n_1>n_2的两种介质,n_1对应的介质就是光密介质,n_2对应的介质就是光疏介质。
2. 入射角大于或等于临界角。
- 当入射角等于临界角时,开始发生全反射;当入射角大于临界角时,全反射现象更明显。
三、全反射的应用。
1. 光纤通信。
- 光纤是非常细的特制玻璃丝,由内芯和外套两层组成。
内芯的折射率比外套的大,光在内芯中传播时,在内芯与外套的界面上发生全反射,从而使携带信息的光在内芯中沿着光纤传播,减少了光在传播过程中的损失,实现了远距离的信息传输。
2. 全反射棱镜。
- 横截面是等腰直角三角形的棱镜叫全反射棱镜。
当光垂直于棱镜的一个直角边射入棱镜时,由于光在棱镜中的传播速度小于在空气中的传播速度(即棱镜相对空气是光密介质),在斜边与空气的界面上,入射角为45°,大于玻璃相对于空气的临界角(一般玻璃的临界角小于45°),所以光会发生全反射,改变传播方向。
全反射棱镜在光学仪器中常用来改变光路方向。
玻璃中的神奇现象:光的全反射公式
在日常生活中,我们经常会看到一些神奇奇妙的现象,比如太阳
下山时空气中的颜色变化、彩虹的出现等等。
今天我想给大家介绍的
是光的全反射现象。
光的全反射指的是一种现象,当光从一个密度较高的材料射向密
度较低的材料时,当入射角大于一个特定的临界角时,光线会全部反
射回去。
这种现象在我们的日常生活中非常常见,比如鱼缸里的观赏鱼,如果你从一个特定的角度看,你会发现鱼其实是反着的;再比如
照片里的文字,当你从不同的角度看照片时,文字也会反着。
那么,如何计算光的全反射公式呢?我们先假设光从玻璃射向空气,入射角为θ1,折射角为θ2,根据斯涅尔定律:
n1*sinθ1=n2*sinθ2。
当θ1大于一个特定的临界角θc时,根据正
弦函数的性质,sinθ2就会大于1,而这是不可能的,因此光线会全
部反射回去。
那么这个临界角θc的计算公式为:θc=sin^-1(n2/n1),其中n1、n2分别表示玻璃和空气的折射率。
有了光的全反射公式,我们就可以更好地理解和应用这个玻璃中
的神奇现象了。
比如我们在设计光学器件时,可以根据这个公式来计
算光从材料中出射的角度;在光纤通信中,光线在光纤之间的传输就
是一种全反射现象;在超声波成像中,可以利用全反射确保声波从体
内反射回探头。
总之,光的全反射现象在我们的生活中随处可见,而掌握光的全反射公式可以帮助我们更好地理解并应用这个神奇的现象。
光的全反射现象光的全反射是光线从光密介质射入光疏介质时,当入射角超过临界角时,光线完全被反射回光密介质内部的现象。
在这个现象中,光线不再穿透进入另一种介质,而是完全被反射回原介质,形成了一个类似镜面的效果。
全反射现象是基于光在介质之间传播时遵循折射定律的基础上产生的。
根据折射定律,当光线从光密介质射入光疏介质时,入射角i和折射角r之间的关系可以用下式表示:n1 × sin(i) = n2 × sin(r)其中,n1和n2分别代表光的入射介质和折射介质的折射率。
当入射角i小于临界角c时,式中的sin(r)存在实数解,光线能够在介质之间传播,并产生折射现象。
然而,当入射角i大于或等于临界角c时,式中的sin(r)无实数解,导致折射角r不存在。
这时,光线无法穿透光疏介质,而是被完全反射回光密介质。
为了更好地了解光的全反射现象,我们可以通过实验来验证。
在一块透明的均匀介质上方放置一束光线,将光线从介质的一侧射入,可以观察到以下现象:当入射角小于临界角时,光线从介质的另一侧折射出来;当入射角等于临界角时,光线沿着介质表面传播;而当入射角大于临界角时,光线完全被反射回原介质内部。
全反射现象在实际生活中有着广泛的应用。
例如,光纤通信中就是利用光的全反射来传输信息的。
当光线从光纤的一端射入,并通过多次的全反射到达光纤的另一端时,能够有效地减小光信号的衰减,实现信号的长距离传输。
此外,全反射也被应用在显微镜、光导器件和光学传感器等领域。
光的全反射现象背后的物理原理也可以通过数学分析来进行推导。
在接下来的部分中,我们将使用数学公式来解释光的全反射现象。
设光线从光密介质射入光疏介质的入射角为i,折射角为r。
根据折射定律,我们有:n1 × sin(i) = n2 × sin(r)在全反射条件下,折射角r不存在,即sin(r)无实数解。
此时,我们可以使用临界角c来表示入射角和折射率之间的关系,即:sin(c) = n2 / n1在全反射发生时,入射角i等于临界角c。
(选修3-4)13.7 全反射
一、针对训练
1.什么是临界角? 临界角公式怎样推导?
空气时入射角为60°,其正确的光路图如图1中哪一幅所示?
3.一束平行单色光从真空射向一块半圆形的玻璃块,入射方向垂直直径平面,如图,已知该玻璃的折射率为2,下列判断中正确的是:
A.所有光线都能通过玻璃块
B.只有距圆心两侧R/2范围内的光线才能通过玻璃块
C.只有距圆心两侧R/2范围内的光线不能通过玻璃块
D.所有光线都不能通过玻璃块
4.介质Ⅰ中光速为v1=c,介质Ⅱ中的光速为v2=c/2,临界角为30°,如果光线a,b如图中所示射到Ⅰ、Ⅱ两介质的分界面上,那么正确的是
A.a,b均不能发生全反射B.a,b均能发生全反射C.a能发生全反射D.b能发生全反射
5.用临界角为42°的玻璃制成的三棱镜ABC,∠B=15°,∠C=90°,一束光线垂直AC面射入,如图5它在棱镜内发生全反射的次数为
A.2次B.3次C.4次D.5次
6.如图所示,入射光线1经45°的直角三棱镜折射,反射后,沿着与入射光相反的方向射出,如图中光线Ⅱ所示,现将棱镜顺时针方向转过一个小角α,如图虚线所示,则
A.出射光线应与光线Ⅰ平行
B.出射光线也顺时针方向转过α角
C.出射光线逆时针方向转过α角
D.出射光线顺时针方向转过2α角
7.光由空气以45°的入射角射向介质时,折射角是30°,则光由介质射向空气的临界角是____。
8.如图所示的三棱镜中,BC面镀有反射膜,一束白光斜射入AB面,经棱镜后在屏幕的bc 段形
成彩色光带,则b点颜色是____色(屏幕距棱镜的AC面较近且与AC面平行)。
9、水的折射率n=4
3
,当在水面下h=2m深处放一强点光源时,看到透光水面的最大直径是
多大?当此透光水面的直径变大时,光源正在上浮还是正在下沉?
10.如图所示,图中的水的折射率n=1.414,在水面下有一点光源A,则点光源能够照亮的区域是哪一部分? 它的面积多大?
答案:
1、略
2.D
3.B
4.D
5.B
6.A
7、45°
8、红
9.4.54m,下沉
10、略
二、知识拓展——蜃景的倒立和正立由谁来定
蜃景,又叫海市蜃楼。
它不仅会在夏日的海面上出现,还能在内陆沙漠上出现。
但,出现在这两处的蜃景,却有正立和倒立的差异,这是为什么?
根据光的折射原理可知:当光从光密介质射到光疏介质的界面上时,如果入射角等于或大于临界角,就会发生全反射。
我们知道,空气密度随温度的升高而减小,由于海水和沙石的比热不同,造成其上方空气的密度分布不均匀,形成一层层折射率不同的介质。
夏日白天,靠近海面的空气比上方空气温度低,空气的折射率由下向上逐渐减小,形成层层折射率不同的介质层。
当远处景物发出的光线射向空中时,经过层层折射,入射角不断增大,当大于临界角时,就会发生全反射。
若反射光线进入观察者的眼里,就会看到远处像悬在空中的正立的景物。
而沙漠地带形成蜃景的过程正好相反:由于阳光的照射,靠近地面的空气温度比上层高,空气的折射率由下向上逐渐增大,远处景物射出的光线射向地面时,经过层层折射,入射角逐渐增大,当达到临界角时,就会发生全反射,这时观察者看到贴近地面的景物全是倒立的。
综上所述,所谓蜃景不管倒立还时正立,都是光在密度不均匀的空气中传播时发生的全反射现象,其原理都是相同的。