2008国际小学生数学竞赛(附解答)
- 格式:doc
- 大小:128.00 KB
- 文档页数:5
体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
【例 1】 三年级四个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛? (如果参赛队每两队之间都要赛一场,这种比赛称为单循环赛)【考点】体育比赛 【难度】1星 【题型】解答【解析】 (法一)题意要求每两个点之间都连一条线段.先考虑点A (如图),它与B 、C 、D 三点能且只能连接三条线段AB 、AC 、AD ;同样,从点B 也可以连出三条线段BA 、BC 、BD ;从点C 可以连出三条线段CA 、CB 、CD ;从点D 可以连出三条线段DA 、DB ,DC .因此,从一个点可以连三条线段.从每个点都连出三条线段,共有四个点.3412⨯=(条)注意到线段AB 既是由A 点连出的,也是由B 点连出的,并且每一条线段都是这样(如图),所以,线段的总数应为:6(条).(法二)从点A 引出三条线.AB 、AC 、AD ,为避免重复计数,从B 点引出的线段只计BC 、BD 两条,由C 点引出的只有CD 一条.因此,线段的总数为3216++=(条).通过例题的讲解,对于这个问题,我们就可以很轻松地解决了.一共有四个队,每个队都要比赛413-=场,一共有比赛3426⨯÷=场.【点拨】我们可以将上面的问题如下表述:下面的四个点,每两个点之间都连一条线段,那么,从一个点可以连出几条线段?一共可以连多少条线段?【答案】6场【巩固】 市里举行足球联赛,有5个区参加比赛,每个区出2个代表队.每个队都要与其他队赛一场,这些比赛分别在5个区的体育场进行,那么平均每个体育场都要举行多少场比赛?【考点】体育比赛 【难度】1星 【题型】解答【解析】 一共有5210⨯=(个)队参加比赛,共赛10(101)245⨯-÷=(场),平均每个体育场都要举行4559÷=(场)比赛.【答案】9场【巩固】 二年级六个班进行拔河单循环赛,每个班要进行几场比赛?一共要进行几场比赛?【考点】体育比赛 【难度】1星 【题型】解答【解析】 每个班要进行5场,一共要进行65215⨯÷=(场)比赛.【答案】每个班要进行5场,一共要进行15场比赛例题精讲 知识点拨体育比赛问题【巩固】20名羽毛球运动员参加单打比赛,两两配对进行单单循环赛,那么冠军一共要比赛多少场?【考点】体育比赛【难度】1星【题型】解答【解析】假设20名羽毛球运动员中的甲是冠军,那么甲与其他19名运动员都赛过了,也就是一共赛了19场.【答案】一共赛了19场【例2】8只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?【考点】体育比赛【难度】2星【题型】解答【解析】方法一:8进4进行了4场,4进2进行2场,最后决赛是1场,因此共进行了4217++=(场)比赛.方法二:每进行一场比赛就淘汰一支球队,最后只剩下冠军了,也就是说淘汰了7只球队,因此进行了7场比赛.【答案】7场比赛【例3】学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有人参加了选拔赛.A.8B.9C.10【考点】体育比赛【难度】2星【题型】选择【关键词】2008,第四届,IMC国际数学邀请赛,新加坡,初赛【解析】三个人比赛,可以比赛3223⨯÷=场;如果有五个⨯÷=场;如果四个人比赛,可以比赛4326人比赛,那么可以比赛54210⨯÷=场,所以⨯÷=场;如果有9个人比赛,那么可以比赛98236答案是B.【答案】答案是B【巩固】朝阳区的几个学校举行篮球比赛,每两个学校都要赛一场,共赛了28场,那么有几个学校参加了比赛?【考点】体育比赛【难度】2星【题型】解答【解析】假设有n个学校参加比赛,那么就有(1)2n=,也n n⨯-÷场比赛,现在已知共赛了28场,那么8就是有8个学校参加了比赛.【答案】8个学校【例4】有8个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?【考点】体育比赛【难度】2星【题型】解答【解析】8个选手进行乒乓球单循环赛,每个选手都要参加7场比赛,而且每人获胜局数各不相同,所以每人获胜的局数分别为0~7局,那么冠军胜了7局.【答案】冠军胜了7局【例5】A、B、C、D、E五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,A已经赛4盘,B赛3盘,C赛2盘,D赛1盘.问:此时E同学赛了几盘?【考点】体育比赛【难度】2星【题型】解答【解析】画5个点表示五位同学,两点之间连一条线段表示赛一场,建议教师让学生动手按要求画一画.A根据题意,A已经赛4盘,说明A与B、C、D、E各赛一盘,A应与B、C、D、E点相连.D 赛1盘,是与A点相连的.B赛3盘,是与A、C、E点相连的.C赛2盘,是与A、B点相连的.从图上E点的连线条数可知,E同学赛了2盘.【答案】E同学赛了2盘【巩固】八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了4场,北京队赛了3场,江苏队赛了2场,山东队赛了1场.那么广东队赛了几场?【考点】体育比赛【难度】2星【题型】解答【解析】八一队赛了4场,说明八一队和其它四队都赛过了.山东队赛了1场,说明只和八一队赛过.北京队赛了3场,说明与八一队、江苏队、广东队赛过.江苏队赛了2场,说明与八一队、北京队赛过.由此可知,广东队只和八一队、北京队赛过,赛了2场.【答案】赛了2场【巩固】A、B、C、D、E、F六人赛棋,采用单循环制。
(共8套)世界少年奥林匹克数学竞赛真题 六年级至四年级专版(全)绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛(2016年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
六年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、有甲、乙两个两位数,甲数的27等于乙数的 23,这个两位数的差最多是 。
2、如果15111111111111111*=++++,242222222222*=+++,33*=3+33+333,那么7*4= 。
3、由数字0,2,8(既可全用也可不全用)组成的非零自然数,按照从小到大排列,2008排在第 个。
4、如图,正方形的边长是2(a+b ),已知图中阴影部分B 的面积是7平方厘米,则阴影部分A 和C 面积的和是 平方厘米。
5、一辆出租车与一辆货车同时从甲地出发,开往乙地出租车4小时到达,货车6小时到达,已知出租车 比货车每小时多行35千米。
甲乙两地相距 千米6、一个长方体铁块,被截成两个完全相同的正方体铁块,两个正方体铁块的棱长之和比原来长方体铁块的棱长之和增加了16厘米,则原来长方体铁块的长是 。
7、四袋水果共46个,如果第一袋增加1个,第二袋减少2个,第三袋增加1倍,第四袋减少一半,那么四袋水果的个数就相等了,则第四袋水果原先有 个。
8、有23个零件,其中有一个次品,不知它比正品轻还是重,用天平最少 次可以找出次品。
9、123A5能被55整除,则A= 。
10、在一次数学游戏中,每一次都可将黑板上所写的数加倍或者擦去它的末位数,假定一开始写的数是458,那么经过 次上述变化得到14.二、计算题。
(每题6分,共计12分)11、123200112320012002200220022002++++12、6328862363278624⨯-⨯省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题a +六年级 第3页 六年级 第4页三、解答题。
This Solutions Pamphlet gives at least one solution for each problem on this year’s exam and shows that all the problems can be solved using material normally as-sociated with the mathematics curriculum for students in eighth grade or below. These solutions are by no means the only ones possible, nor are they necessarily superior to others the reader may devise.We hope that teachers will share these solutions with their students. However, the publication, reproduction, or communication of the problems or solutions of the AMC 8 during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Dissemination at any time via copier, telephone, e-mail, World Wide Web or media of any type is a violation of the competition rules.Correspondence about the problems and solutions should be addressed to:Ms. Bonnie Leitch , AMC 8 Chair / bleitch@548 Hill Avenue, New Braunfels, TX 78130Orders for prior year Exam questions and solutions Pamphlets should be addressed to:Attn: Publications American Mathematics Competitions University of Nebraska-Lincoln P .O. Box 81606Lincoln, NE 68501-1606Copyright © 2008, The Mathematical Association of AmericaT he M aTheMaTical a ssociaTion of a MericaAmerican Mathematics Competitions 24th AnnualAMC 8(American Mathematics Contest 8)Solutions PamphletT uesday, NOvEMBER 18, 20081.Answer(B):Susan spent2×12=$24on rides,so she had50−12−24=$14to spend.2.Answer(A):Because the key to the code starts with zero,all the lettersrepresent numbers that are one less than their ing the key,C is 9−1=8,and similarly L is6,U is7,and E is1.BEST OF LUCK0123456789CLUE=86713.Answer(A):A week before the13th is the6th,which is thefirst Friday of themonth.Counting back from that,the5th is a Thursday,the4th is a Wednesday, the3rd is a Tuesday,the2nd is a Monday,and the1st is a Sunday.ORCounting forward by sevens,February1occurs on the same day of the week as February8and February15.Because February13is a Friday,February15is a Sunday,and so is February1.4.Answer(C):The area of the outer triangle with the inner triangle removedis16−1=15,the total area of the three congruent trapezoids.Each trapezoid =5.has area1535.Answer(E):Barney rides1661−1441=220miles in10hours,so his average=22miles per hour.speed is220106.Answer(D):After subdividing the central gray square as shown,6of the16congruent squares are gray and10are white.Therefore,the ratio of the area of the gray squares to the area of the white squares is6:10or3:5.7.Answer (E):Note that M45=35=3·95·9=2745,so M =27.Similarly,60N =35=3·205·20=60100,so N =100.The sum M +N =27+100=127.ORNote that M45=35,so M =35·45=27.Also 60N =35,so N60=53,andN =53·60=100.The sum M +N =27+100=127.8.Answer (D):The sales in the 4months were $100,$60,$40and $120.The average sales were 100+60+40+1204=3204=$80.ORIn terms of the $20intervals,the sales were 5,3,2and 6on the chart.Their sum is 5+3+2+6=16and the average is 164=4.The average sales were4·$20=$80.9.Answer (D):At the end of the first year,Tammy’s investment was 85%of the original amount,or $85.At the end of the second year,she had 120%of her first year’s final amount,or 120%of $85=1.2($85)=$102.Over the two-year period,Tammy’s investment changed from $100to $102,so she gained 2%.10.Answer (D):The sum of the ages of the 6people in Room A is 6×40=240.The sum of the ages of the 4people in Room B is 4×25=100.The sum of the ages of the 10people in the combined group is 100+240=340,so the average age of all the people is 34010=34.11.Answer (A):The number of cat owners plus the number of dog owners is20+26=46.Because there are only 39students in the class,there are 46−39=7students who have both.ORBecause each student has at least a cat or a dog,there are 39−20=19students with a cat but no dog,and 39−26=13students with a dog but no cat.So there are 39−13−19=7students with both a cat and a dog.13197DogCat12.Answer (C):The table gives the height of each bounce.Bounce 12345Height 23·2=23·43=23·89=23·1627=in Meters 2438916273281Because 1627>1632=12and 3281<3264=12,the ball first rises to less than 0.5meters on the fifth bounce.Note:Because all the fractions have odd denominators,it is easier to doublethe numerators than to halve the denominators.So compare 1627and 3281to their numerators’fractional equivalents of 12,1632and 3264.13.Answer (C):Because each box is weighed two times,once with each ofthe other two boxes,the total 122+125+127=374poundsis twice the combined weight of thethree boxes.The combined weight is 3742=187pounds.14.Answer (C):There are only two possible spaces for the B in row 1and onlytwo possible spaces for the A in row 2.Once these are placed,the entries in theremaining spaces are determined.The four arrangementsare:ORThe As can be placed eitheror In each case,the letter next to the top A can be B or C.At that point the rest of the grid is completely determined.So there are 2+2=4possible arrangements.15.Answer(B):The sum of the points Theresa scored in thefirst8games is37.After the ninth game,her point total must be a multiple of9between37and 37+9=46,inclusive.The only such point total is45=37+8,so in the ninth game she scored8points.Similarly,the next point total must be a multiple of 10between45and45+9=54.The only such point total is50=45+5,so in the tenth game she scored5points.The product of the number of points scored in Theresa’s ninth and tenth games is8·5=40.16.Answer(D):The volume is7×1=7cubic units.Six of the cubes have5square faces exposed.The middle cube has no face exposed.So the total surface area of thefigure is5×6=30square units.The ratio of the volume to the surface area is7:30.ORThe volume is7×1=7cubic units.There arefive unit squares facing each of six directions:front,back,top,bottom,left and right,for a total of30square units of surface area.The ratio of the volume to the surface area is7:30. 17.Answer(D):The formula for the perimeter of a rectangle is2l+2w,so2l+2w=50,and l+w=25.Make a chart of the possible widths,lengths,and areas,assuming all the widths are shorter than all the lengths.Width123456789101112Length242322212019181716151413Area24466684100114126136144150154156 The largest possible area is13×12=156and the smallest is1×24=24,for a difference of156−24=132square units.Note:The product of two numbers with afixed sum increases as the numbers get closer together.That means,given the same perimeter,the square has a larger area than any rectangle,and a rectangle with a shape closest to a square will have a larger area than other rectangles with equal perimeters.18.Answer(E):The length offirst leg of the aardvark’s trip is14(2π×20)=10πmeters.The third andfifth legs are each14(2π×10)=5πmeters long.Thesecond and sixth legs are each10meters long,and the length of the fourth leg is 20meters.The length of the total trip is10π+5π+5π+10+10+20=20π+40 meters.19.Answer(B):Choose two points.Any of the8points can be thefirst choice,and any of the7other points can be the second choice.So there are8×7=56ways of choosing the points in order.But each pair of points is counted twice,so there are 562=28possible pairs.A B CDEF G H Label the eight points as shown.Only segments AB ,BC ,CD ,DE ,EF ,F G ,GH and HA are 1unit long.So 8of the 28possible segments are 1unit long,and the probability that the points are one unit apart is 828=27.ORPick the two points,one at a time.No matter how the first point is chosen,exactly 2of the remaining 7points are 1unit from this point.So the probabilityof the second point being 1unit from the first is 27.20.Answer (B):Because 23of the boys passed,the number of boys in the class is a multiple of 3.Because 34of the girls passed,the number of girls in the classis a multiple of 4.Set up a chart and compare the number of boys who passed with the number of girls who passed to find when they are equal.Total boysBoys passed 326496Total girls Girls passed 4386The first time the number of boys who passed equals the number of girls who passed is when they are both 6.The minimum possible number of students is 9+8=17.ORBecause 23of the boys passed,the number of boys who passed must be a multiple of 2.Because 34of the girls passed,the number of girls who passed must be a multiple of 3.Because the same number of boys and girls passed,the smallestpossible number is 6,the least common multiple of 2and 3.If 6of 9boys and 6of 8girls passed,there are 17students in the class,and that is the minimum number possible.ORLet G =the number of girls and B =the number of boys.Then 23B =34G ,so 8B =9G .Because 8and 9are relatively prime,the minimum number of boysand girls is 9boys and 8girls,for a total of 9+8=17students.21.Answer (C):Using the formula for the volume of a cylinder,the bologna hasvolume πr 2h =π×42×6=96π.The cut divides the bologna in half.Thehalf-cylinder will have volume 96π2=48π≈151cm 3.Note:The value of πis slightly greater than 3,so to estimate the volume multiply 48(3)=144cm 3.The product is slightly less than and closer to answer C than any other answer.22.Answer (A):Because n3is at least 100and is an integer,n is at least 300andis a multiple of 3.Because 3n is at most 999,n is at most 333.The possible values of n are 300,303,306,...,333=3·100,3·101,3·102,...,3·111,so the number of possible values is 111−100+1=12.E F 323.Answer (C):Because the answer is a ratio,it doesnot depend on the side length of the square.Let AF =2and F E =1.That means square ABCE has side length 3and area 32=9square units.The area of BAF is equal to the area of BCD =12·3·2=3square units.Triangle DEF is an isosceles right triangle with leg lengths DE =F E =1.The area of DEF is 12·1·1=12square units.The area of BF D is equal to the area of the square minusthe areas of the three right triangles:9−(3+3+12)=52.So the ratio of the area of BF D to the area of square ABCE is 529=518.24.Answer (C):There are 10×6=60possible pairs.The squares less than60are 1,4,9,16,25,36and 49.The possible pairs with products equal to the given squares are (1,1),(2,2),(1,4),(4,1),(3,3),(9,1),(4,4),(8,2),(5,5),(6,6)and (9,4).So the probability is 1160.。
2008年国际小学数学竞赛(个人赛)1. 从下图中的中心所在的圆2出发,上,请问要经过四个圆而依序得到数码2,0,0,8的方法?2. 知3只打鸭子和2只小鸭子共重32kg ,4只打鸭子和3只小鸭子共重44kg ,请问2只大鸭子和1只小鸭子共重多少kg ?3. 操场上有一群人,其中一部分人坐在地上,其余的人站着。
如果站着的人中的25%坐下,同时原先坐着的人中25%站起来,那么站着的人数占总人数的70%。
请问原先站着的人占总人数之多少?4. 在高速公路上一辆长3m 的小轿车以每小时110km 的速度超过一辆长17m 以每小时100km 的速度行驶的卡车。
请问小轿车从追及到超越卡车的整个超车过程用了多少秒?5. 用数码0,1,2,3,4和5组成各位数码都不相同的六位数,并按从小到大的顺序排列,请问第502个数是什么?6. 一个七位数,其数码只能是2或3,且没有两个3是相邻的.请问这样的七位数共有多少个?7. 若六位数abcabc 恰有16个正约数,请问这样的 abcabc 的最小值是什么?8. 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?9. 平行四边形ABCD 中,点M ,N 分别在边AD ,AB 上,且AM=2MD ,AN=2NB ,线段DN 与BM 相交于点O 。
已知四边形ABCD 的面积为60㎝²,请问△NBO 与△MDO 之面积总和为多少cm ²? A M D 10. 两个四位数ACCC 和CCCB 满足,请问ABC 之值是什么?11.如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点。
以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点。
若图中S 1和S 2两块部分的面积之差为m π-n (cm ²)(其中m ,n 为正整数),请问m +n 之值为何?12.有2n 名男生和n 名女生参加象棋比赛,任两人都要互相比赛一场,全部比赛结束后,发现比赛中没有平局,并且女生赢得的比赛总场数与男生赢得的总场数之比为7:5。
美国数学竞赛AMC8 – 2008年真题解析(英文解析+中文解析)Problem 1Answer: BSolution:50-12-24=14中文解析:总共花的钱是:12+12*2=36元。
剩余50-36=14元。
答案是BProblem 2Answer: ASolution:We can derive that c=8,L=6, U=7,and E=1. Therefore, the answer is 8671.中文解析:这10个字母的对应关系是: B -0;E-1; S-2; ......K -9. 按照这个对应关系:C-8,L-6,U-7,E-1. 即8671. 答案是A。
Problem 3Answer: ASolution:We can go backwards by days, but we can also backwards by weeks. If we go backwards by weeks, we see that February 6 is a Friday. If we now go backwards by days, February 1 is a Sunday.中文解析:13日是周五,则13-7=6,即6日也是周五,则倒推2月1日是周日。
答案是A。
Problem 4Answer: CSolution:The area outside the small triangle but inside the large triangle is 16-1=15. This is equally distributed between the three trapezoids. Each trapezoid has an area of 15/3=5.中文解析:大三角形的面积等于小的等边三角形的面积加上3个梯形的面积。
据此,三个梯形的面积是16-1=15. 每个梯形的面积是15/3=5. 答案是C。
第十三届“华罗庚金杯”少年数学邀请赛决赛试卷(小学组)一、填空(每题10分,共80分)2008年第十三届“华罗庚金杯”决赛1、计算:416024340143214016940146+⨯+⨯+⨯+⨯= 。
答案:22008年第十三届“华罗庚金杯”决赛2、林林倒满一杯纯牛奶,第一次喝了31,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林又喝了31,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的 (用分数表示)。
答案:8165 2008年第十三届“华罗庚金杯”决赛3、下图是小明用一些半径为1厘米、2厘米、4厘米和8厘米的圆、答案:642008年第十三届“华罗庚金杯”决赛4、悉尼与北京的时差是3小时,例如:悉尼时间12:00时,北京时间是9:00,某日,当悉尼时间9:15时,小马和小杨分别乘机从悉尼和北京同时出发去对方所在地,小马于北京时间19:33分到达北京。
小马和小杨路途上时间之比为7:6,那么小杨到达悉尼时,当地时间是 。
答案:20:392008年第十三届“华罗庚金杯”决赛5、将六个自然数14,20,33,117,143,175分组,如果要求每组中的任意两个数都到质,则至少需要将这些数分成 组。
答案:32008年第十三届“华罗庚金杯”决赛6、对于大于零的分数,有如下4个结论: (1)两个真分数的和是真分数; (2)两个真分数的积是真分数;(3)一个真分数与一个假分数的和是一个假分数; (4)一个真分数与一个假分数的积是一个假分数。
其中正确结论的编号是 。
答案:(2)(3)2008年第十三届“华罗庚金杯”决赛7、记A =21+43+87+1615+…+10241023, 那么比A 小的最大自然数是 。
答案:92008年第十三届“华罗庚金杯”决赛8、黑板上写着1至2008共2008自然数,小明每次擦去两个奇偶性相同的数,再写上它们的平均数,最后黑板上只剩下一个自然数,这个数可能的最大值和最小值的差是 。
1989年小学数学奥林匹克竞赛初赛1. 计算:=。
2. 1到1989这些自然数中的所有数字之和是。
3. 把若干个自然数,2,3,……乘到一起,如果已知这个乘积的最末13位恰好都是零,那么最后出现的自然数最小应该是。
4. 在1,,,,,…,,中选出若干个数,使它们的和大于3,至少要选个数。
5. 在右边的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字,那么D+G= 。
6. 如图,ABFD和CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是平方厘米。
7. 甲乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲乙两包糖的重量比变为7:5,那么两包糖重量的总和是克。
8. 设1,3,9,27,81,243是六个给定的数,从这六个数中每次或者取一个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数。
如果把它们从小到大依次排列起来是1,3,4,9,12……那么第60个数是。
9. 有甲、乙、丙三辆汽车各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙。
甲比乙又晚出发20分钟,出发后1小时40分追上丙,那么甲出发后需用分钟才能追上乙。
10.有一个俱乐部,里面的成员可以分成两类,第一类是老实人,永远说真话;第二类是骗子,永远说假话。
某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。
记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。
李四说:张三是老实人。
那么张三是老实人还是骗子?张三是。
11.某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天完成;如果由第二、四、五小队合干4天完成;如果由第一、三、四小队合干需要42天才能完成。
那么这五个小队一起合干需要天才能完成这项工程。
12.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方,这个和数是。
2008年第4届“两岸四地”少年儿童数学邀请赛夏季赛决赛试卷(六年级个人赛)2008年第4届“两岸四地”少年儿童数学邀请赛夏季赛决赛试卷(六年级个人赛)一、填空题:(将正确答案填在每题的括号里,每题6分,共60分.)1.(6分)÷2=_________.2.(6分)一个同学把他的生日的月份乘以31,日期乘以12,然后加起来的和是170,那么,这位同学的生日是_________月_________日.3.(6分)有一列数、、、、、…,请问第2008个数是_________.4.(6分)18世纪末,有人提出十进制钟的想法,这种钟每天有10“小时”,每小时有100“分钟”.假定这种钟从午夜0:00开始转动,在我们常见的钟到达早上9点时,它显示的时间是_________.5.(6分)有一个数除以5余数是2,除以7余数是3,这个数除以35的余数是_________.6.(6分)有一天,唐僧师徒四人来到一个被称为“长寿岛”的地方,迎面走来一位青年,他自称有101岁了,孙悟空灵机一动,出了几道算术题给他算:1+1=?;1+1+1=?;1+1+1+1=?;2×3=?.这位青年的计算结果是:1+1=2,1+1+1=3,1+1+1+1=4,2×3=10.孙悟空仰天一笑,大声说,我知道你是_________岁.7.(6分)从1~16这16个数中挑出15个数填入图中的小方格中,使每一横行五数之和相等,使每一竖列三数之8.(6分)有三个数字能组成6个不同的三位数.这6个三位数的和是2442,则这6个三位数中最小的三位数是_________.9.(6分)在长方形ABCD中,E是AD边上的三等分点,DE=2AE,BD、CE将长方形分成四部分,两个三角形的面积已给出,则阴影部分的面积是_________.10.(6分)某校六年级原有两个班,现在要重新编为三个班.将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班人数有_________人.二、简答题:(要求写出简要的解答过程,每题8分,共16分.)11.(8分)在桌面上摆有一些大小一样的小正方体木块,从前往后看如图1,从右往左看如图2,要摆出这样的图形,最多能用多少块小正方体木块?最少需要多少块小正方体木块?12.(8分)某城市南北走向的地铁1号线与东西走向的地铁2号线恰好相互垂直,如图,某时刻甲列车恰好从B 站出发向北开去,乙列车恰好从A站出发向西开去,4分钟后,它们离A站的距离相等;如果它们不停顿地继续行驶,再过24分钟它们离A站的距离又会相等,已知乙列车的速度是每分钟1.5千米,问AB两站的距离是多少千米?三、详解或论述题:(要求写出详细的解答或论述过程,每题12分,共24分.)13.(12分)如图,若规定对图1中任意一行或一列中的数字都同时加1或减1算作一次操作,如果经过若干次操作后,图1变成了图2,问图2中“育”字代表什么数?14.(12分)一个正三角形ABC的边长为10厘米,现将相邻的两条边各平均分成20等份,然后把对应的等分点连起来,请问连起来的线段总长是多少厘米?2008年第4届“两岸四地”少年儿童数学邀请赛夏季赛决赛试卷(六年级个人赛)参考答案与试题解析一、填空题:(将正确答案填在每题的括号里,每题6分,共60分.)1.(6分)÷2=.÷故答案为:2.(6分)一个同学把他的生日的月份乘以31,日期乘以12,然后加起来的和是170,那么,这位同学的生日是2月9日.y=3.(6分)有一列数、、、、、…,请问第2008个数是.故答案为:4.(6分)18世纪末,有人提出十进制钟的想法,这种钟每天有10“小时”,每小时有100“分钟”.假定这种钟从午夜0:00开始转动,在我们常见的钟到达早上9点时,它显示的时间是3:75.5.(6分)有一个数除以5余数是2,除以7余数是3,这个数除以35的余数是17.6.(6分)有一天,唐僧师徒四人来到一个被称为“长寿岛”的地方,迎面走来一位青年,他自称有101岁了,孙悟空灵机一动,出了几道算术题给他算:1+1=?;1+1+1=?;1+1+1+1=?;2×3=?.这位青年的计算结果是:1+1=2,1+1+1=3,1+1+1+1=4,2×3=10.孙悟空仰天一笑,大声说,我知道你是37岁.7.(6分)从1~16这16个数中挑出15个数填入图中的小方格中,使每一横行五数之和相等,使每一竖列三数之8.(6分)有三个数字能组成6个不同的三位数.这6个三位数的和是2442,则这6个三位数中最小的三位数是128.+++9.(6分)在长方形ABCD中,E是AD边上的三等分点,DE=2AE,BD、CE将长方形分成四部分,两个三角形的面积已给出,则阴影部分的面积是11.ADAD×=AD10.(6分)某校六年级原有两个班,现在要重新编为三个班.将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班人数有48人.﹣)()二、简答题:(要求写出简要的解答过程,每题8分,共16分.)11.(8分)在桌面上摆有一些大小一样的小正方体木块,从前往后看如图1,从右往左看如图2,要摆出这样的图形,最多能用多少块小正方体木块?最少需要多少块小正方体木块?12.(8分)某城市南北走向的地铁1号线与东西走向的地铁2号线恰好相互垂直,如图,某时刻甲列车恰好从B 站出发向北开去,乙列车恰好从A站出发向西开去,4分钟后,它们离A站的距离相等;如果它们不停顿地继续行驶,再过24分钟它们离A站的距离又会相等,已知乙列车的速度是每分钟1.5千米,问AB两站的距离是多少千米?①×﹣三、详解或论述题:(要求写出详细的解答或论述过程,每题12分,共24分.)13.(12分)如图,若规定对图1中任意一行或一列中的数字都同时加1或减1算作一次操作,如果经过若干次操作后,图1变成了图2,问图2中“育”字代表什么数?14.(12分)一个正三角形ABC的边长为10厘米,现将相邻的两条边各平均分成20等份,然后把对应的等分点连起来,请问连起来的线段总长是多少厘米?菁优网 ©2010-2014 菁优网参与本试卷答题和审题的老师有:xuetao ;似水年华;languiren ;王亚彬;WX321;whgcn ;林清涛;李斌;nywhr ;齐敬孝(排名不分先后)菁优网2014年7月4日。
2008年数学奥林匹克竞赛2008年的数学奥林匹克竞赛是中国数学界的一次盛事。
在这场比赛中,来自各个国家的数学精英齐聚一堂,争夺数学的荣誉。
本文将重点介绍在这场竞赛中的一些内容和亮点。
一、竞赛概述2008年数学奥林匹克竞赛于7月在中国浙江省杭州市举行。
来自约100个国家和地区的400多名中学生参加了比赛。
竞赛分为两天进行,每天有三个题目需要参赛者解答。
这些题目涵盖了数论、代数、几何和组合数学等各个领域。
二、2016年题目回顾以下是其中一些有代表性的题目:1. 第一天的第一题:证明存在一个22位的自然数,其中每位数字都是从1到9中选择而来,且任意相邻两位数字之差的绝对值为0或1。
2. 第一天的第二题:在直角坐标系中,给定一个点O(0, 0),一条直线L以y=x-2为斜率经过点O,另一条直线L'垂直于直线L,并经过坐标点(60, y),若该点到直线L的距离恰好等于6,则求y的所有可能值。
3. 第二天的第一题:在一个正方形的四个顶点上分别放置了红、黄、蓝、绿四种颜色的灯泡。
每次可以选择一个角上的灯泡,然后改变该灯泡以及相邻两个角上的灯泡的颜色(即红变黄,黄变蓝,蓝变绿,绿变红)。
问是否存在某种操作方式,使得无论从哪一种初始灯泡颜色出发,经过若干次操作后,四个角上的灯泡都变成同一颜色。
4. 第二天的第二题:证明对于任意正整数n,都存在一个长度为n的序列{a1, a2, ..., an},满足以下条件:1)ai为1到n之间的整数,且ai与ai+1的最大公约数为ai(1≤i<n)2)a1和an是互质的这些题目既有综合性的思维题,也有需要运用数学原理的计算题。
参赛选手们需要在有限的时间内,灵活运用自己所学的数学知识和解题技巧。
三、赛事亮点2008年的数学奥林匹克竞赛不仅仅是一场数学比赛,还充满了学术交流和合作的氛围。
各国选手在竞赛之余,互相切磋,分享数学思维和解题技巧。
这种交流不仅促进了彼此的成长,也丰富了数学的发展。
全国小学生数学奥林匹克竞赛真题及答案收集目录2006 年小学数学奥林匹克预赛试卷及答案 (1)2006 年小学数学奥林匹克决赛试题 (4)2007 年全国小学数学奥林匹克预赛试卷 (7)2008 年小学数学奥林匹克决赛试题 (8)2008 年小学数学奥林匹克预赛试卷 (10)2006 年小学数学奥林匹克预赛试卷及答案1、计算4567-3456+1456-1567=__________2、计算 5 ×4+ 3 ÷4=___________3、计算12345 ×12346-12344×12343=__________ 。
4、三个连续奇数的乘积为1287,则这三个数之和为 _________ 。
5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。
计算(4※5)※(5※6)= ________ 。
6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着 A 、B 、C、D、E、F六个字母,其中 A 与D,B与E,C与F相对。
将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是_________ 。
7、如图:在三角形ABC中,BD= BC ,AE=ED ,图中阴影部分的面积为250.75平方厘米,则三角形ABC面积为________ 平方厘米。
8、一个正整数,它与 13的和为 5的倍数,与 13的差为 3的倍数。
那么这个正整数最小是 _______ 。
9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S 数 ”,(例:561, 6=5+ 1),则最大的三位数 “S 数”与最小的三位数 “S 数”之差为 __ 。
10、某校原有男女同学 325人,新学年男生增加 25人,女生减少 5%,总人数增加 16人, 那么该校现有男同学 _____ 人。
11、小李、小王两人骑车同时从甲地出发,向同一方向行进。
(共8套)世界少年奥林匹克数学竞赛真题 六年级至四年级专版(全)绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛(2016年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
六年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、有甲、乙两个两位数,甲数的27等于乙数的 23,这个两位数的差最多是 。
2、如果15111111111111111*=++++,242222222222*=+++,33*=3+33+333,那么7*4= 。
3、由数字0,2,8(既可全用也可不全用)组成的非零自然数,按照从小到大排列,2008排在第 个。
4、如图,正方形的边长是2(a+b ),已知图中阴影部分B 的面积是7平方厘米,则阴影部分A 和C 面积的和是 平方厘米。
5、一辆出租车与一辆货车同时从甲地出发,开往乙地出租车4小时到达,货车6小时到达,已知出租车 比货车每小时多行35千米。
甲乙两地相距 千米6、一个长方体铁块,被截成两个完全相同的正方体铁块,两个正方体铁块的棱长之和比原来长方体铁块的棱长之和增加了16厘米,则原来长方体铁块的长是 。
7、四袋水果共46个,如果第一袋增加1个,第二袋减少2个,第三袋增加1倍,第四袋减少一半,那么四袋水果的个数就相等了,则第四袋水果原先有 个。
8、有23个零件,其中有一个次品,不知它比正品轻还是重,用天平最少 次可以找出次品。
9、123A5能被55整除,则A= 。
10、在一次数学游戏中,每一次都可将黑板上所写的数加倍或者擦去它的末位数,假定一开始写的数是458,那么经过 次上述变化得到14.二、计算题。
(每题6分,共计12分)11、123200112320012002200220022002++++12、6328862363278624⨯-⨯省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题a +六年级 第3页 六年级 第4页三、解答题。
2008女子数学奥林匹克第一天2008年8月15日 上午 8:00 ~ 12:00 广东中山数学竞赛像其他竞赛活动一样,是青少年学生的一种智力竞赛. 在类似的以基础科学为竞赛内容的智力竞赛活动中,数学竞赛的历史最悠久、国际性强,影响也最大.──王元1.(a) 问能否将集合{}1,2,,96 分拆为32个三元子集,使得每个三元子集的元素之和都相等;(b) 问能否将集合{}1,2,,99 分拆为33个三元子集,使得每个三元子集的元素之和都相等.(刘诗雄供题)解:(a)不能。
因为96(961)32|129648972⨯++++==⨯ 。
(b)能。
每个三元集的元素和为129999(991)15033332+++⨯+==⨯ 。
将1,2,3,,66 每两个一组,分成33个组,,每组两数之和可以排成一个公差为1的等差数列:150,349,,3334,+++ 266,465,,3251+++ .故如下33组数,每组三个数之和均相等:{}{}{}1,50,99,3,49,98,,33,34,83, {}{}{}2,66,82,4,65,81,,32,51,67. .注:此题的一般情况是设集合{}1,2,3,,3M n = 的三元子集族{},,i i i i A x y z =,1,2,i n = 满足12n A A A M ⋃⋃⋃= 。
记i i i i s x y z =++,求所有的整数n ,使对任意,(1)i j i j n ≤≠≤,i j s s =。
解:首先,|1233n n ++++ ,即3(31)2|312n n nn +⇒+.所以,n 为奇数。
又当n 为奇数时,可将1,2,3,,2n 每两个一组,分成n 个组,每组两数之和可以排成一个公差为1的等差数列:111(),3(),,(1)22n n n n n n +-++++++ ; 322,4(21),,(1)()2n n n n n +++--++. 其通项公式为1121(1)1,2213[12(1)][2(1)].22k n n k n k k a n n n k n k k n ++⎧-+++-≤≤⎪⎪=⎨++⎪-+-++--≤≤⎪⎩易知93312k n a n k +++-=为一常数,故如下n 组数每组三个数之和均相等:1111,,3,3,,31,,,1,31222n n n n n n n n n n +-+⎧⎫⎧⎫⎧⎫++-++-⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭ ;332,2,31,,1,,2122n n n n n n n ++⎧⎫⎧⎫+--++⎨⎬⎨⎬⎩⎭⎩⎭。
美国数学竞赛AMC8 – 2008年真题解析(英文解析+中文解析)Problem 1Answer: BSolution:50-12-24=14中文解析:总共花的钱是:12+12*2=36元。
剩余50-36=14元。
答案是BProblem 2Answer: ASolution:We can derive that c=8,L=6, U=7,and E=1. Therefore, the answer is 8671.中文解析:这10个字母的对应关系是: B -0;E-1; S-2; ......K -9. 按照这个对应关系:C-8,L-6,U-7,E-1. 即8671. 答案是A。
Problem 3Answer: ASolution:We can go backwards by days, but we can also backwards by weeks. If we go backwards by weeks, we see that February 6 is a Friday. If we now go backwards by days, February 1 is a Sunday.中文解析:13日是周五,则13-7=6,即6日也是周五,则倒推2月1日是周日。
答案是A。
Problem 4Answer: CSolution:The area outside the small triangle but inside the large triangle is 16-1=15. This is equally distributed between the three trapezoids. Each trapezoid has an area of 15/3=5.中文解析:大三角形的面积等于小的等边三角形的面积加上3个梯形的面积。
据此,三个梯形的面积是16-1=15. 每个梯形的面积是15/3=5. 答案是C。
2008年“陈省身杯”国际青少年数学邀请赛三年级1、计算:28+208+2008+20008=2、找出下面图形变化的规律,并在横线上画出第四幅图。
3、有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是___。
4、如果新华书店上午9:00开始营业,下午5:30停止营业,则该店全天的营业时间是____小时___分。
5、一项工程,若由10人―起工作则15天可以完成。
若要在6天之内完成这项工作,应该至少安排____人一起工作。
6、在下面的算式中,不同的汉字代表不同的数字,则其中“太好了”=7.如果□×▣=36,□÷▣=4,那么□=____,▣=____。
8,小马虎在做一道减法题时,把被减数的个位上的3错写成了8.把减数工位上的1错写成了2,这样算得的差是78,那么正确的答案是____。
9,小朋友们排成方阵做广播体操.小明恰好站在方阵的正中心,此时无论是从前往后或者从后往前数时他都排在第5个,无论是从左往右或者是从右到左数时他都排在第6个,则这个方阵中一共有___位小朋友。
10、如右图,若每个小正方形的周长为12cm,则它们组合而成的“十”字图形的周长为____cm。
11、华英学校三年级有两个班”如果从一班调3人去二班后,一班比二班还多1人,那么原来一班比二班多____人。
12.工程队要修一条小路,第一天修了全长的一半多6米,第二天修了余下的一半少20米,第三天修了30米,此时还剩下14米没有修。
则这条小路长____米。
I3.30名学生参加数学竞赛,已知这30名参赛者的任何10人皇都至少有一名男生,那么男生至少有____人。
I4。
已知▤、■、▢代表三个不同的整数,它们都大于0,并且满足:▤+2=■-2=▢×2那么▤+■十▢的最小值是___。
15.在右图中,共有____个不同的三角形。
16.在乘法算式A×B=C中,若保持A不变,而B增加5,则C增加60;若保持B不变,而A 减少4,则C减少24。
1.Calculating,2+3+42×3×4=924=38.Answer:(E)2.Since3x−9=12,then3x=12+9=21.Since3x=21,then6x=2(3x)=2(21)=42.(Note that we did not need to determine the value of x.)Answer:(A)3.Calculating,√52−42=√25−16=√9=3.Answer:(B)4.Solution1Since JLMR is a rectangle and JR=2,then LM=2.Similarly,since JL=8,then RM=8.Since RM=8and RQ=3,then QM=8−3=5.Since KLMQ is a rectangle with QM=5and LM=2,its area is5(2)=10.Solution2Since JL=8and JR=2,then the area of rectangle JLMR is2(8)=16.Since RQ=3and JR=2,then the area of rectangle JKQR is2(3)=6.The area of rectangle KLMQ is the difference between these areas,or16−6=10.Answer:(C) 5.Since x=12and y=−6,then3x+y x−y =3(12)+(−6)12−(−6)=3018=53Answer:(C)6.Solution1Since∠P QS is an exterior angle of QRS,then∠P QS=∠QRS+∠QSR,so136◦=x◦+64◦or x=136−64=72.Solution2Since∠P QS=136◦,then∠RQS=180◦−∠P QS=180◦−136◦=44◦.Since the sum of the angles in QRS is180◦,then44◦+64◦+x◦=180◦or x=180−44−64=72.Answer:(A) 7.In total,there are5+6+7+8=26jelly beans in the bag.Since there are8blue jelly beans,the probability of selecting a blue jelly bean is826=413.Answer:(D)8.Since Olave sold108apples in6hours,then she sold108÷6=18apples in one hour.A time period of1hour and30minutes is equivalent to1.5hours.Therefore,Olave will sell1.5×18=27apples in1hour and30minutes.Answer:(A)9.Since the length of the rectangular grid is 10and the grid is 5squares wide,then the side length of each square in the grid is 10÷5=2.There are 4horizontal wires,each of length 10,which thus have a total length of 4×10=40.Since the side length of each square is 2and the rectangular grid is 3squares high,then the length of each vertical wire is 3×2=6.Since there are 6vertical wires,the total length of the vertical wires is 6×6=36.Therefore,the total length of wire is 40+36=76.Answer:(E)10.Solution 1Since Q is at 46and P is at −14,then the distance along the number line from P to Q is 46−(−14)=60.Since S is three-quarters of the way from P to Q ,then S is at −14+34(60)=−14+45=31.Since T is one-third of the way from P to Q ,then T is at −14+13(60)=−14+20=6.Thus,the distance along the number line from T to S is 31−6=25.Solution 2Since Q is at 46and P is at −14,then the distance along the number line from P to Q is 46−(−14)=60.Since S is three-quarters of the way from P to Q and T is one-third of the way from P to Q ,then the distance from T to S is 60 34−13 =60 912−412 =60 512 =25.Answer:(D)11.In total,30+20=50students wrote the Pascal Contest at Mathville Junior High.Since 30%(or 310)of the boys won certificates and 40%(or 410)of the girls won certificates,then the total number of certificates awarded was 310(30)+410(20)=9+8=17.Therefore,17of 50participating students won certificates.In other words,1750×100%=34%of the participating students won certificates.Answer:(A)12.Since the perimeter of the rectangle is 56,then2(x +4)+2(x −2)=562x +8+2x −4=564x +4=564x=52x =13Therefore,the rectangle is x +4=17by x −2=11,so has area 17(11)=187.Answer:(B)ing exponent rules,23×22×33×32=23+2×33+2=25×35=(2×3)5=65.Answer:(A)14.Solution 1The wording of the problem tells us that a +b +c +d +e +f must be the same no matter what numbers abc and def are chosen that satisfy the conditions.An example that works is 889+111=1000.In this case,a +b +c +d +e +f =8+8+9+1+1+1=28,so this must always be the value.Solution 2Consider performing this “long addition”by hand.Consider first the units column.Since c +f ends in a 0,then c +f =0or c +f =10.The value of c +f cannot be 20or more,as c and f are digits.Since none of the digits is 0,we cannot have c +f =0+0so c +f =10.(This means that we “carry”a 1to the tens column.)Since the result in the tens column is 0and there is a 1carried into this column,then b +e ends in a 9,so we must have b +e =9.(Since b and e are digits,b +e cannot be 19or more.)In the tens column,we thus have b +e =9plus the carry of 1,so the resulting digit in the tens column is 0,with a 1carried to the hundreds column.Using a similar analysis in the hundreds column to that in the tens column,we must have a +d =9.Therefore,a +b +c +d +e +f =(a +d )+(b +e )+(c +f )=9+9+10=28.Answer:(D)15.Each of P SQ and RSQ is right-angled at S ,so we can use the Pythagorean Theorem inboth triangles.In RSQ ,we have QS 2=QR 2−SR 2=252−202=625−400=225,so QS =√225=15since QS >0.In P SQ ,we have P Q 2=P S 2+QS 2=82+225=64+225=289,so P Q =√289=17since P Q >0.Therefore,the perimeter of P QR is P Q +QR +RP =17+25+(20+8)=70.Answer:(E)16.Suppose the radius of the circle is r cm.Then the area M is πr 2cm 2and the circumference N is 2πr cm.Thus,πr 22πr =20or r 2=20or r =40.Answer:(C)17.Solution 1The large cube has a total surface area of 5400cm 2and its surface is made up of 6identical square faces.Thus,the area of each face,in square centimetres,is 5400÷6=900.Because each face is square,the side length of each face is √900=30cm.Therefore,each edge of the cube has length 30cm and so the large cube has a volume of 303=27000cm 3.Because the large cube is cut into small cubes each having volume 216cm 3,then the number of small cubes equals 27000÷216=125.Solution 2Since the large cube has 6square faces of equal area and the total surface area of the cube is 5400cm 2,then the surface area of each face is 5400÷6=900cm 2.Since each face is square,then the side length of each square face of the cube is √900=30cm,and so the edge length of the cube is 30cm.Since each smaller cube has a volume of 216cm 3,then the side length of each smaller cube is 3√216=6cm.Since the side length of the large cube is 30cm and the side length of each smaller cube is 6cm,then 30÷6=5smaller cubes fit along each edge of the large cube.Thus,the large cube is made up of 53=125smaller cubes.Answer:(B)18.Solution1Alex has265cents in total.Since265is not divisible by10,Alex cannot have only dimes,so must have at least1quarter.If Alex has1quarter,then he has265−25=240cents in dimes,so24dimes.Alex cannot have2quarters,since265−2(25)=215is not divisible by10.If Alex has3quarters,then he has265−3(25)=190cents in dimes,so19dimes.Continuing this argument,we can see that Alex cannot have an even number of quarters,since the total value in cents of these quarters would end in a0,making the total value of the dimes end in a5,which is not possible.If Alex has5quarters,then he has265−5(25)=140cents in dimes,so14dimes.If Alex has7quarters,then he has265−7(25)=90cents in dimes,so9dimes.If Alex has9quarters,then he has265−9(25)=40cents in dimes,so4dimes.If Alex has more than9quarters,then he will have even fewer than4dimes,so we do not need to investigate any more possibilities since we are told that Alex has more dimes than quarters.So the possibilities for the total number of coins that Alex has are1+24=25,3+19=22, 5+14=19,and7+9=16.Therefore,the smallest number of coins that Alex could have is16.(Notice that each time we increase the number of quarters above,we are in effect exchanging 2quarters(worth50cents)for5dimes(also worth50cents).)Solution2Suppose that Alex has d dimes and q quarters,where d and q are non-negative integers.Since Alex has$2.65,then10d+25q=265or2d+5q=53.Since the right side is odd,then the left side must be odd,so5q must be odd,so q must be odd.If q≥11,then5q≥55,which is too large.Therefore,q<11,leaving q=1,3,5,7,9which give d=24,19,14,9,4.The solution with d>q and d+q smallest is q=7and d=9,giving16coins in total.Answer:(B) 19.From the definition,thefirst and second digits of an upright integer automatically determinethe third digit,since it is the sum of thefirst two digits.Considerfirst those upright integers beginning with1.These are101,112,123,134,145,156,167,178,and189,since1+0=1,1+1=2,and so on.(The second digit cannot be9,otherwise the last“digit”would be1+9=10,which is impossible.)There are9such numbers.Beginning with2,the upright integers are202,213,224,235,246,257,268,and279.There are8of them.We can continue the pattern and determine the numbers of the upright integers beginning with 3,4,5,6,7,8,and9to be7,6,5,4,3,2,and1.Therefore,there are9+8+7+6+5+4+3+2+1=45positive3-digit upright integers.Answer:(D) 20.The sum of the six given integers is1867+1993+2019+2025+2109+2121=12134.The four of these integers that have a mean of2008must have a sum of4(2008)=8032.(We do not know which integers they are,but we do not actually need to know.)Thus,the sum of the remaining two integers must be12134−8032=4102.=2051.Therefore,the mean of the remaining two integers is41022(We can verify that1867,2019,2025and2121do actually have a mean of2008,and that1993 and2109have a mean of2051.)Answer:(D)21.The maximum possible value of pqis when p is as large as possible(that is,10)and q is as smallas possible(that is,12).Thus,the maximum possible value of pqis1012=56.The minimum possible value of pqis when p is as small as possible(that is,3)and q is as largeas possible(that is,21).Thus,the maximum possible value of pqis321=17.The difference between these two values is 56−17=3542−642=2942.Answer:(A)22.Suppose that the distance from Ginger’s home to her school is d km.Since there are60minutes in an hour,then33minutes(or15minutes)is15×1=1of anhour.Since Ginger walks at4km/h,then it takes her d4hours to walk to school.Since Ginger runs at6km/h,then it takes her d6hours to run to school.Since she saves116of an hour by running,then the difference between these times is116of anhour,sod 4−d6=1163d 12−2d12=116d12=116d=1216=34Therefore,the distance from Ginger’s home to her school is34km.Answer:(E)23.Suppose that the distance from line M to line L is d m.Therefore,the total length of piece W to the left of the cut is d m.Since piece X is3m from line M,then the length of piece X to the left of L is(d−3)m, because3of the d m to the left of L are empty.Similarly,the lengths of pieces Y and Z to the left of line L are(d−2)m and(d−1.5)m.Therefore,the total length of lumber to the left of line L isd+(d−3)+(d−2)+(d−1.5)=4d−6.5mSince the total length of lumber on each side of the cut is equal,then this total length is1 2(5+3+5+4)=8.5m.(We could insteadfind the lengths of lumber to the right of line L to be5−d,6−d,7−d,and 5.5−d and equate the sum of these lengths to the sum of the lengths on the left side.) Therefore,4d−6.5=8.5or4d=15or d=3.75,so the length of the part of piece W to the left of L is3.75m.Answer:(D)24.We label the five circles as shown in the diagram.P QRS TWe note that there are 3possible colours and that no two adjacent circles can be coloured the same.Consider circle R .There are three possible colours for this circle.For each of these colours,there are 2possible colours for T (either of the two colours that R is not),since it cannot be the same colour as R .Circles Q and S are then either the same colour as each other,or are different colours.Case 1:Q and S are the same colourIn this case,there are 2possible colours for Q (either of the colours that R is not)and 1pos-sibility for S (the same colour as Q ).For each of these possible colours for Q /S ,there are two possible colours for P (either of the colours that Q and S are not).P Q R S T3 choices2 choices2 choices1 choice2 choices In this case,there are thus 3×2×2×1×2=24possible ways of colouring the circles.Case 2:Q and S are different coloursIn this case,there are 2possible colours for Q (either of the colours that R is not)and 1possibility for S (since it must be different from R and different from Q ).For each of these possible colourings of Q and S ,there is 1possible colour for P (since Q and S are different colours,P is different from these,and there are only 3colours in total).P Q R S T3 choices2 choices1 choice1 choice In this case,there are thus 3×2×2×1×1=12possible ways of colouring the circles.In total,there are thus 24+12=36possible ways to colour the circles.Answer:(D)25.Since P Q =2and M is the midpoint of P Q ,then P M =MQ =12(2)=1.Since P QR is right-angled at P ,then by the Pythagorean Theorem,RQ = P Q 2+P R 2= 22+(2√3)2=√4+12=√16=4(Note that we could say that P QR is a 30◦-60◦-90◦triangle,but we do not actually need this fact.)Since P L is an altitude,then ∠P LR =90◦,so RLP is similar to RP Q (these triangles have right angles at L and P respectively,and a common angle at R ).Therefore,P L QP =RP RQ or P L =(QP )(RP )RQ =2(2√3)4=√3.Similarly,RL RP =RP RQ so RL =(RP )(RP )RQ =(2√3)(2√3)4=3.Therefore,LQ =RQ −RL =4−3=1and P F =P L −F L =√3−F L .So we need to determine the length of F L .Drop a perpendicular from M to X on RQ .RP QM LFX Then MXQ is similar to P LQ ,since these triangles are each right-angled and they share a common angle at Q .Since MQ =12P Q ,then the corresponding sides of MXQ are half as long as those of P LQ .Therefore,QX =12QL =12(1)=12and MX =12P L =12(√3)=√32.Since QX =12,then RX =RQ −QX =4−12=72.Now RLF is similar to RXM(they are each right-angled and share a common angle at R).Therefore,F LMX=RLRXso F L=(MX)(RL)RX=√32(3)72=3√3.Thus,P F=√3−3√37=4√37.Answer:(C)。
国际小学生数学竞赛
1、从下图中的中心所在的圆2出发,每一步都移动到所相接触的圆上,请问要经过四个圆而依序得到数码2,0,0,8共有多少种不同的方法?
解答:和2相连的0有6个和0相连的0有2个
和0相连的8有3个6×2×3=36种
2、农场里所有大鸭子的重量均相同,所有小鸭子的重量均相同。
已知3只大鸭子和2只小鸭子共重32kg,4只大鸭子和3只小鸭子共重44kg,请问2只大鸭子和1只小鸭子共重多少kg?
解答:6只大鸭子和4只小鸭子共重:32×2=64千克
64-44=20千克
3、操场上有一群人,其中一部分人坐在地上,其余的人站着。
如果站着的人中的25%坐下,同时原先坐着的人中25%站起来,那么站着的人数占总人数的70%。
请问原先站着的人占总人数之多少?
解答:设原来坐在地上的有A人,站着的有B人
75%B+25%A=70%(A+B)A:B=1:9
9÷(9+1)=90%
4、在高速公路上一辆长3m的小轿车以每小时110km的速度超过一辆长17m以每小时100km的速度行驶的卡车。
请问小轿车从追及到超越卡车的整个超车过程用了多少秒?解答:17+3=20米110-100=10千米/小时=25
9
米/秒
20÷25
9=7.2秒
5、用数码0,1,2,3,4和5组成各位数码都不相同的六位数,并按从小到大的顺序排列,请问第502个数是什么?
解答:1开头共有:5×4×3×2×1=120个120×4=480个502-480=22个50开头共有:4×3×2×1=24个504321 504312 504231
6、一个七位数,其数码只能是2或3,且没有两个3是相邻的。
请问这样的七位数共有多少个?
解答:0个3有:1个1个3有:7个
2个3有:6×5÷2=15个3个3有:5×4×3÷(3×2×1)=10个
4个3有:1个1+7+15+10+1=34个
7、若六位数abcabc恰有16个正约数,请问这样的abcabc的最小值是什么?
解答:abcabc=abc×1001=abc×7×11×13 abc是质数,且等于101 abcabc=101101
8、请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?
解答:五位数中3的倍数有:90000÷3=30000个
一个3都没有的:8×9×9×9×3=17496个
30000-17496=12504个
9、平行四边形ABCD 中,点M ,N 分别在边AD ,AB 上,且AM=2MD ,AN=2NB ,线段DN 与BM 相交于点O 。
已知四边形ABCD 的面积为60㎝²,请问△NBO 与△MDO 之面积总和为多少cm ²?
解答:连接AO
ABM 的面积:2
3
×1×12×60=20平方厘米
BNO 的面积:ANO 的面积:AOM 的面积=1:2:2
20×1
122
++×2=8平方厘米
10、两个四位数ACCC 和CCCB 满足
2
5
ACCC CCCB =,请问A ×B ×C 之值是什么? 解答:5(1000A+111C )=2(1110C+B ) 1000A=333C+2 C=6 A=2 B=5 6×2×5=60
11、如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点。
以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点。
若图中S 1和S 2两块部分的面积之差为m π-n (平方厘米)(其中m ,n 为正整数),请问m +n 之值为何? 解答:S 2+CDGF+BFH=4×2+π×22÷4=8+π
S 1+CDGF+BFH=π×42÷4=4π
S 1- S 2=4π-(8+π)=3π-8
m+n=3+8=11
O
N A C
D B
M S S 2
S 1
G H F
E
D
C
B
A
O
N
A
C
D
B
M
12、在以下数字谜中,不同的图案代表不同的数码。
请问此算式之和是什么?
解答:千位:3■+2=■+20 ■=9
百位:3▲+1= +20 3▲= +19
▲=7 =2
=2×3+2=8
29750×3=89250
13、在下图中,将正整数依照箭头所指示的方式依序填入小方格中,例如:数8填入第二列(Row)第三行(Column);数9填入第三列第二行。
请问数2008应填入第几列第几行?
解答:1+2+3+…+62=1954
2008-1954=54
63是从下往上数
63-54=9列63+1-9=55行
第9列第55行
14、某日下午当我回到家时,我发现24
钟面上的前三位数码正好与后三位数码相同,且其顺序也相同。
请问在一天24小时之中这个数字钟共会出现多少次这种情况?(注:此数字钟一天中所显示的数码从00:00:00到23:59:59,它的前两位数代表“时”;中间两位数代表“分”;后两位数代表“秒”。
)
解答:0时和1时:2×6×6=72种2时:4×6=24种
72+24=96种
15、已知正整数N是一个五位数,在N的最右侧添加一个数码“1”而得到一个六位数P;在N的最左侧添加一个数码“1”而得到另一个六位数Q。
已知P=3×Q,请问这个五位数N是什么?
解答:113
N N
=⨯10N+1=300000+3N 7N=299999
N=42857
16、A、B两地相距950m,甲乙两人同时从A地出发,往返A、B两地跑步90分钟。
甲跑步的速度是每分钟40cm;乙跑步的速度是每分钟150m。
在这段时间内她们面对面相遇了数次,请问在第几次相遇是他们离B点的距离最近?
解答:2×950÷(40+150)=10分钟90÷10=9次
第一次:950-10×40=550米第二次:950-40×20=150米
第三次:40×30-950=250米第四次:40×40-950=650米
第五次:950×3-40×50=850米第六次:850-400=450米
第七次:450-400=50米第八次:400-50=350米
第九次:350+400=750米
第七次离B点最近
17、有A、B、C三组数,A={1
6,1
12
,1
20
,1
30
,1
42
},B={1
8
,1
24
,1
48
,1
80
},
C={2.82,2.76,2.18,2.24}从每一组中各取一个数,相乘得到一个乘积。
请问所有这80个乘积的总和是多少?
解答:(1
6+1
12
+1
20
+1
30
+1
42
)×(1
8
+1
24
+1
48
+1
80
)×(2.82+2.76+2.18+2.24)
=5 14×1
5
×10=5
7。