2020初中数学中考模拟试卷
- 格式:doc
- 大小:218.23 KB
- 文档页数:9
2020年江苏省启东中学中考模拟考试(六)初中数学数学试卷本试卷分第一卷(选择题)和第二卷两部分第一卷(选择题,共32分)一、选择题(此题共10小题;第1~8题每题3分,第9~10题每题4分,共32分)以下各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.据2006年5月27日«沈阳日报»报道,〝五一〞黄金周期间2006年沈阳〝世园会〞的游客接待量累计1760000人次.用科学记数法表示为 ( ) A .176×104人次 B .17.6×105人次 C .1.76×106人次D .0.176×107人次2.在闭合电路中,电流I ,电压U ,电阻R 之间的关系为:RUI =.电压U(V)一定时,电流I(A)关于电阻R(Ω)的函数关系的大致图像是图中的 ( )3.一鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情形如下表所示:型号 22 22.5 23 23.5 24 24.5 25 数量/双351015842A .平均数B .众数C .中位数D .极差4.如下图,平行四边形ABCD 的周长是48,对角线AC 与BD 相交于点O ,△AOD 的周长比△AOB 的周长多6,假设设AD=x ,AB=y ,那么可用列方程组的方法求AD ,AB 的长,那个方程组能够是 ( )A .⎩⎨⎧=-=+648)(2y x y xB .⎩⎨⎧=-=+648)(2x y y xC .⎩⎨⎧=-=+648y x y xD .⎩⎨⎧=-=+648x y y x5.李明设计了图中的四种正多边形的瓷砖图案,用同一种瓷砖能够平面密铺的是( )A .①②④B .②③④C .①③④D .①②③6.在一个不透亮的口袋中,装有假设干个除颜色不同其余都相同的球,假如口袋中装有4 个红球且摸到红球的概率为31,那么口袋中球的总数为 ( ) A .12个 B .9个C .6个D .3个7.将一个正方形纸片依次按图a ,图b 方式对折,然后沿图c 中的虚线裁剪,最后将图d 的纸再展开铺平,所看到的图案是图e 中的 ( )8.⎩⎨⎧+=+=+12242k y x ky x 且01<-<-y x ,那么k 的取值范畴为 ( )A .211-<<-kB .210<<k C .10<<kD .121<<k 9.如下图,半径为2的两个等圆⊙O 1与⊙O 2外切于点P ,过O 1作⊙O 2的两条切线,切点分不为A 、B ,与⊙O 1分不交于C 、D ,那么APB 与CPD 的弧长之和为 ( )A .2πB .π23C .πD .π21 10.如下图,P 是Rt △ABC 斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt △ABC 相似,如此的直线能够作 ( )A .1条B .2条C .3条D .4条第二卷(共118分)二、填空题(此题共8小题;每题3分,共24分)请把最后结果填在题中横线上. 11.(33-)的相反数是 .12.函数12+=x y 中自变量x 的取值范畴是 .13.如下图,将长为20cm ,宽为2cm 的长方形白纸条,折成右图所示的图形并在其一面着色,那么着色部分的面积为 。
2019年山东省青岛市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.√2的相反数是()A. 1√2B. −√2 C. −1√2D. √22.既是轴对称图形又是中心对称图形的是()A. 等腰梯形B. 菱形C. 平行四边形D. 等边三角形3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.计算(−4m2)·(3m+2)的结果是()A. −12m3+8m2B. 12m3−8m2C. −12m3−8m2D. 12m3+8m25.如图,在Rt△ABC中,∠A=90°,BC=4,以BC的中点O为圆心分别与AB,AC相切于D、E两点,则DE⏜的长为()A. √2π4B. π2C. √2π2D. √2π6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(−1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A. (2,2)B. (1,2)C. (−1,2)D. (2,−1)7.如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数是()A. 52°B. 58°C. 60°D. 62°8.已知函数y=−(x−m)(x−n)(其中m<n)的图象如图的所示,则一次函数y=mx+n与反比例函数y=m+nx图象可能是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)9.计算:√32−√8=______.√210.一元二次方程2x2+bx+1=0有两个相等的实数根,则b=______.11.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是______分.12.如图,正五边形ABCDE为内接于⊙O的,则∠ABD=________.13.如图,将正方形ABCD沿EF折叠,使得AD的中点落在点C处,若正方形边长为2,则折痕EF的长为______.14. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为______. 三、计算题(本大题共1小题,共8.0分) 15. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.四、解答题(本大题共9小题,共70.0分) 16. 已知,∠α求作:∠AOB =2∠α.(保留作图痕迹,不写作法)17. 甲、乙两个人进行游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲得1分;否则乙得1分.这是个公平的游戏吗?请说明理由;若不公平,请你修改规则使该游戏对双方公平.18. 青岛市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据绘成如下表格.请回答下列问题:时间第一天 7:00—8:00 第二天 7:00—8:00 第三天 7:00—8:00 第四天 7:00—8:00 第五天7:00—8:00 需要租用自 行车却未租 到车的人数1500 1200 1300 1300 1200(1)表格中的五个数据(人数)的中位数是多少⊕(2)由随机抽样估计,平均每天在7:00−8:00需要租用公共自行车的人数是多少⊕19.如图,方特欢乐园中有飞越极限、恐龙危机、海螺湾三处游乐设施,分别记为A,B,C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积.(2)景区规划在恐龙危机和海螺湾的中点D处修建一个游客休息中心,并修建观景栈道AD,试求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,√2≈1.414)20.某地发生了地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?21.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F在AC上,且AE=CF,EF=BD.求证:四边形EBFD是矩形.22.某文具店购进一批单价为10元的学生用品,如果以单价12元售出,那么一个月内可售200件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少10件,当售价提高多少元时,可在一个月内获得最大的利润?最大利润是多少23.如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是______个,最少是______个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是______个,最少是______个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是______个;最少是______个.(n是正整数)24.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分别是AC、BC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动;同时,点Q从点E 出发,沿EB方向匀速运动,两者速度均为1cm/s;当其中一点停止运动时,另外一点也停止运动.连接PQ、PF,设运动时间为ts(0<t<4).解答下列问题:(1)当t为何值时,△EPQ为等腰三角形?(2)如图①,设四边形PFBQ的面积为ycm2,求y与t之间的函数关系式;(3)当t为何值时,四边形PFBQ的面积与△ABC的面积之比为2:5?(4)如图②,连接FQ,是否存在某一时刻,使得PF与QF互相垂直?若存在,求出此时t的值;若不存,请说明理由.答案和解析1.【答案】B【解析】解:√2的相反数是−√2,故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:轴对称图形有:等腰梯形,菱形,等边三角形;中心对称图形有菱形,平行四边形;∴既是轴对称图形又是中心对称图形的式菱形,故选B.根据轴对称图形和中心对称图形的定义判断即可.本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.3.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题主要单项式乘以多项式的法则和单项式乘以单项式的法则.掌握相关法则是解题的关键.【解答】解:(−4m2)·(3m+2)=(−4m2)×3m+(−4m2)×2=−12m3−8m2.故选C.5.【答案】C【解析】解:连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=1AC,2∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=4,∴由勾股定理可知AB=2√2,∴r=√2,∴DE⏜=90π×√2180=√22π,故选:C.连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.6.【答案】A【解析】解:∵点C的坐标为(−1,0),AC=2,∴点A的坐标为(−3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(−1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键.7.【答案】C【解析】【分析】本题主要考查等腰三角形的性质,设∠ADE=x°,则∠B+18°=x°+12°,可用x表示出∠B和∠C,进而可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和可求得x.【解答】解:设∠ADE=x°,且∠BAD=18°,∠EDC=12°,∴∠ADB=180°−∠ADC=180°−(x°+12°)=168°−x°∴∠B=180°−(∠ADB+∠BAD)=180°−(168°−x°+18°)=x°−6°,∵AB=AC,∴∠C=∠B=x°−6°,∴∠DEA=180°−∠DEC=180°−(180°−∠C−∠EDC)=180°−(180°−x°+6°−12°)=x°+6°,∵AD=DE,∴∠DEA=∠DAE=x°+6°,在△ADE中,由三角形内角和定理可得x+x+6+x+6=180,解得x=56,即∠ADE=56°,∴∠DAE=56°+6°=62°.故选C.8.【答案】C【解析】【分析】根据二次函数图象判断出m<−1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.【解答】解:由图可知,m<−1,n=1,所以m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=m+nx的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.9.【答案】2【解析】【分析】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.首先化简二次根式,进而求出答案.【解答】解:原式=√2−2√2√2=√2√2=2.故答案为2.10.【答案】±2√2【解析】【分析】本题主要考查了一元二次方程的根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.【解答】解:∵方程2x2+bx+1=0有两个相等的实数根,∴△=b2−2×4×1=b2−8=0,解得:b=±2√2.故答案为:±2√2.11.【答案】9.1【解析】【分析】此题主要考查了加权平均数以及条形统计图,正确掌握加权平均数求法是解题关键.直接利用条形统计图以及结合加权平均数求法得出答案.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分).故答案为9.1.12.【答案】72°【解析】【分析】本题考查了圆周角定理,正多边形的性质,熟记定理并作辅助线构造出弧AD所对的圆心角是解题的关键.连接AO、DO,根据正五边形的性质求出∠AOD,再根据同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:如图,连接AO、DO,∵五边形ABCDE是正五边形,∴∠AOD=25×360°=144°,∴∠ABD=12∠AOD=12×144°=72°;故答案为72°.13.【答案】√5【解析】解:连结CE,过E点作EG⊥CD于G,设BE为x,在Rt△CA′E中,CE=√(2−x)2+(2÷2)2,在Rt△CBE中,CE=√x2+22,√(2−x)2+(2÷2)2=√x2+22,解得x=14∴CG=14,在Rt△CD′F中,CF2=FD′2+CD′2,即CF2=(2−CF)2+(2÷2)2,解得CF=54.∴GF=54−14=1,在Rt△EFG中,EF=√22+12=√5.故答案为:√5.连结CE,过E点作EG⊥CD于G,设BE为x,根据勾股定理在Rt△CA′E中先求出CE,进一步在Rt△CBE中求出CE,列出方程求出x,可得CG,根据勾股定理在Rt△CD′F中求出CF,可求GF,再根据勾股定理在Rt△EFG中求出折痕EF的长.本题考查了翻折变换(折叠问题)、正方形的性质、勾股定理,对综合的分析问题、解决问题的能力提出了较高的要求.14.【答案】24【解析】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为:24.根据几何体表面积的计算公式,从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积,即可得出答案.此题考查了几何体的表面积,本题有多种解法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.15.【答案】解:由①得4x+4+3>x解得x>−73,由②得3x−12≤2x−10,解得x≤2,∴不等式组的解集为−73<x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.16.【答案】解:如图,∠AOB为所求.【解析】利用基本作图(作一个角等于已知)先作出∠AOC=∠α,再作∠COB=∠α,则∠AOB=2∠α.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中数字之和为3,6的情况有5种,∴P(和为3的倍数)=516,∴P(和不为3的倍数)=1−516=1116,∵5≠11∴该游戏不公平,故可以这样修改游戏规则:数字之和为奇数甲获胜,之和为偶数乙获胜.【解析】列表得出所有等可能的情况数,找出之和为6的情况数,即可求出所求的概率,找出数字之和为3的倍数的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.【答案】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300.(2)平均每天需要租用自行车却未租到车的人数是(1500+1200+1300+1300+ 1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【解析】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.19.【答案】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°−60.7°−66.1°=53.2°,∴CE=AC⋅sin53.2°≈1000×0.8=800米.∴S△ABC=12⋅AB⋅CE=12×1400×800=560000平方米.(2)连接AD,作DF⊥AB于F.,则DF//CE.∵BD=CD,DF//CE,∴BF=EF,∴DF=12CE=400米,∵AE=AC⋅cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=12EB−AE=400米,在Rt△ADF中,AD=√AF2+DF2=400√2≈565.6米,答:A,D间的距离为565.6m.【解析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF//CE.首先求出DF、AF,再在Rt△ADF中求出AD 即可.本题考查解直角三角形−方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.【答案】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:240 x −2401.5x=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得3y+2.4×550−30y20≤60解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.【解析】本题考查了分式方程的应用和一元一次不等式的应用有关知识.①先设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据加工生产240顶帐篷甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.21.【答案】证明:∵平行四边形ABCD,∴AB=CD,AB//CD,∴∠BAE=∠DCF,∠ABO=∠CDO,在△ABE与△CDF中{AB=DC∠BAE=∠DCF AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF,∠BAE=∠CDF,∴∠ABO−∠BAE=∠CDO−∠CDF,即∠EBO=∠DFO,∴BE//DF,∴四边形EBDF是平行四边形,∵EF=BD,∴平行四边形EBDF是矩形.【解析】根据矩形的判定和平行四边形的性质证明即可.此题考查矩形的判定,关键是根据全等三角形的判定得出△ABE≌△CDF.22.【答案】解:设销售单价提高x元,销售利润为y元,根据题意可得:y=(x+2)(200−10x)=−10x2+180x+400=−10(x−9)2+1210,∵−10<0,∴x=9时,y有最大值,最大值为1210,答:当售价提高9元时,可在一个月内获得最大的利润,最大利润是1210元.【解析】直接利用总利润=销量×每件利润,进而得出关系式求出答案.此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.23.【答案】(1)10;4;(2)14;5;(3)4n+2;n+2.【解析】解:(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形;第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形;第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形;…第n个图形:是一个(2n+1)×2的矩形,最多可分成n×4+2=4n+2个正方形,最少可分成n+2个正方形.故答案为:(1)10;4;(2)14;5;(3)4n+2;n+2.【分析】(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)根据上述结果找出其中的规律,然后用含字母n的式子表示这一规律即可.本题主要考查的是探究图形的变化规律,找出图形的变化规律是解题的关键.24.【答案】解:(1)∠C=90°,AC=6cm,BC=8cm,∴AB=10cm,由题意得:DP=EQ=t,∵D为AC的中点,E为BC的中点,∴DE=12AB=5cm,当EP=EQ时,5−t=t,t=52,即当t=52时,△EPQ为等腰三角形;(2)如图②,过P作PH⊥BC于H,连接PE,sin∠PEH=PHPE=DCDE,∴PH5−t =35,∴PH=3(5−t)5,设△DCE中,DE边上的高为h,1 2×3×4=12×5ℎ,ℎ=125,∴y=S△PEF+S△EFB−S△EQP,=12×125PE+12×125FB−12EQ⋅PH,=65(5−t)+65×5−12t ⋅3(5−t)5,=3t 210−2710t +12;(3)∵S 四边形PFBQS △ABC=25,∴5S 四边形PFBQ =2S △ABC , ∴5(3t 210−2710t +12)=2×12×6×8,t 2−9t +8=0, t 1=1,t 2=8(舍);(4)如图③,过P 作PG ⊥AB 于G ,过Q 作QH ⊥AB 于H ,过D 作DM ⊥AB 于M , 由(3)知:PG =DM =125,Rt △ADM 中,∵AD =3, ∴AM =√32−(125)2=95,∴FG =5−95−t =165−t ,Rt △QHB 中,BQ =4−t , sin ∠B =QH4−t =610, ∴QH =3(4−t)5,∴BH =4(4−t)5,∴FH =5−BH =9+4t 5,∵PF ⊥FQ ,易得△PGF∽△FHQ , ∴PG GF=FH QH,∴PG ⋅QH =FH ⋅GF , ∴125⋅3(4−t)5=(165−t)⋅9+4t 5,4t 2−11t =0, t 1=0(舍),t 2=114.∴当t =114时,PF 与QF 互相垂直.【解析】(1)根据EP =EQ 列方程可得t 的值;(2)如图②,作辅助线,构建高线PH ,先根据三角函数或相似表示PH 的长,利用面积法求h 的值,最后利用面积差可得y 与t 的关系式;(3)根据已知得:5S 四边形PFBQ =2S △ABC ,代入列一元二次方程解出可得t 的值,并根据0<t <4这一取值进行取舍;(4)如图③,作辅助线,构建直角三角形,证明△PGF∽△FHQ,列比例式可得t的值.本题是动点型综合题,解题关键是掌握动点运动过程中的图形形状、图形面积的表示方法.所考查的知识点涉及到勾股定理、相似三角形的判定与性质、三角形中位线定理、解方程(包括一元一次方程和一元二次方程)等,有一定的难度.注意题中求时间t的方法:最终都是转化为一元一次方程或一元二次方程求解,属于中考压轴题.。
2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。
A。
$\sqrt{2}$。
B。
$-2$。
C。
$\dfrac{1}{2}$。
D。
$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。
A。
菱形。
B。
等边三角形。
C。
平行四边形。
D。
等腰梯形3.(3分)图中立体图形的主视图是()。
A。
B。
C。
D。
4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。
A。
$10\%x=330$。
B。
$(1-10\%)x=330$。
C。
$(1-10\%)2x=330$。
D。
$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。
A。
平均数。
B。
中位数。
C。
众数。
D。
方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。
A。
B与C。
B。
C与D。
C。
E与F。
D。
7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。
A。
$x\geq1$。
B。
$x\geq2$。
C。
$x>1$。
D。
$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。
A。
B。
C。
D。
9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。
A。
$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。
B。
$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。
山东省菏泽单县联考2020届数学中考模拟试卷一、选择题1.在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF翻折,点B 落在CD边上的点E处,折痕AF交BC边于点F;②把△ADH翻折,点D落在AE边长的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则EHEF的值是( )A.54B.43C.53D.322.在同一直角坐标系中,函数y=kx+1与y=kx(k≠0)的图象大致是()A.B.C.D.3.我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n个“平行四边形数”和“正六边形数”分别为a和b,若a+b=103,则ab的值是( )A.619B.837C.1093D.12914.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A .1B .34C .12D .145.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (小时),航行的路程为S (千米),则S 与t 的函数图象大致是( )A. B.C. D.6.如图,∠AOB=120o ,以点O 为圆心,以任意长为半径作弧分别交OA 、OB 于点C 、D ,分别以C 、D 为圆心,以大于CD 为的长为半径作弧,两弧相交于点P ,以O 为端点作射线OP ,在射线OP 上截取线段OM=6,则M 点到OB 的距离为( )A.3B.C.2D.67.下列正比例函数中,y 随x 的值增大而增大的是( )A.y =﹣2014xB.y ﹣1)xC.y =(﹣π﹣3)xD.y =(1﹣π2)x 8.下列关系式中,y 不是自变量x 的函数的是( ) A .y =xB .y =x 2C .y =|x|D .y 2=x 9.转动A 、B 两个盘当指针分别指向红色和蓝色时称为配紫色成功。
2020年青岛市中考模拟试题初中数学一. 填空题〔每题3分,共30分〕1. 某公司职员,月工资由m 元增长了10%后达到_______元。
2. 分解因式x x 39-=_________。
3. 在函数y xx =--23中,自变量x 的取值范畴是__________________。
4. 如图,在圆O 中,假设半径OC 与弦AB 互相平分,且AB =6cm ,那么OC =_________cm 。
5. 要做两个形状为三角形的框架,其中一个三角形框架的三边长分不为4,5,6,另一个三角形框架的一边长为2,欲使这两个三角形相似,三角形框架的两边长能够是_________。
6. 三角形纸片ABC 中,∠=︒∠=︒A B 5575,,将纸片的一角折叠,使点C 落在∆ABC 内〔如图〕,那么∠+∠12的度数为________。
7. 下面的扑克牌中,牌面是中心对称图形的是____________。
〔填序号〕8. 关于-++=210x y ,当y_______时,x >0。
9. 有两个完全相同的抽屉和3个完全相同的白色球,要求抽屉不能空着,那么第一个抽屉中有2个球的概率是________。
10. 如图,假如士○所在位置的坐标为〔-1,-2〕,相○所在位置的坐标为〔2,-2〕,那么,炮○所在位置的坐标为________。
O A B C二. 选择题〔以下每题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内,每题4分,共24分〕11. 1纳米=0.000000001米,那么2.5纳米用科学记数法表示为〔 〕 A. 25108.⨯-米 B. 25109.⨯-米C. 251010.⨯-米D. 25109.⨯米12. 点〔1,m 〕,〔2,n 〕在函数y x =-+1的图象上,那么m n 、的关系是〔 A. m n ≤B. m n =C. m n <D. m n >13. 一个形状如圆锥的冰淇淋纸筒,其底面直径为6cm ,母线长为5cm ,围成如此的冰淇淋纸筒所需纸片的面积是〔 〕 A. 662πcmB. 302πcmC. 282πcmD. 152πcm14. 如图,四边形ABCD 内接于圆O ,AB 为圆O 的直径,CM 切圆O 于点C ,∠=︒BCM 60,那么∠B 的正切值是〔 〕A. 12B. 33C. 22D. 315. 如图,在方格纸中有四个图形〔1〕、〔2〕、〔3〕、〔4〕,其中面积相等的图形是〔 〕 A. 〔1〕和〔2〕 B. 〔2〕和〔3〕 C. 〔2〕和〔4〕D. 〔1〕和〔4〕〔1〕 〔2〕 〔3〕 〔4〕16. 下面的4幅图中,通过折叠不能围成一个立体图的一幅是〔 〕A B C D 三. 解答题:17. 〔此题总分值8分〕先化简,再求x x x x x x x 2222111-+-÷-+-的值,其中x =2004,然而,甲抄错x =2004,抄成x =2040,但他的运算结果仍旧是正确的,你讲是如何回事? 18. 〔此题总分值10分〕在本学期某次考试中,某校初二〔1〕,初二〔2〕两班学生数学成绩统计如下表:分数 50 60 70 80 90 100 二(1)班 3 5 16 3 11 12 人数二(2)班251112137请依照表格提供的信息回答以下咨询题:〔1〕二〔1〕班平均成绩为________分,二〔2〕班平均成绩为_______分,从平均成绩看两个班成绩谁优谁次?〔2〕二〔1〕班众数为________分,二〔2〕班众数为________分。
深圳市2020年中考数学暨初中学业水平测试模拟试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2020的相反数的倒数是( )2020.A 2020.-B20201.C 20201.-D 2.(2019·绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为( )A .0.2×10-3B .0.2×10-4C .2×10-3D .2×10-43.如图,直线a ∥b ,直角三角形如图放置,∠DCB =90°,若∠1+∠B =65°,则∠2的度数为( )A .20°B .25°C .30°D .35°4.(2019·深圳)下列哪个图形是正方体的展开图( )5.若分式xx -2在实数范围内有意义,则x 的取值范围是( )A .x≠0B .x≠2C .x =0D .x≠2且x≠0 6.(2019·张家界)下列说法正确的是( )A .打开电视机,正在播放“张家界新闻”是必然事件B .天气预报说“明天的降水概率为65%”,意味着明天一定下雨C .两组数据平均数相同,则方差大的更稳定D .数据5,6,7,7,8的中位数与众数均为77.如图,在直角梯形ABCD 中,AD∥BC,AB⊥BC,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE ,CE ,则△ADE 的面积是( )A .1B .2C .3D .不能确定8.(2019·广州)若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 39.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( )A.12x (x -1)=380 B .x (x -1)=380C.12x (x +1)=380 D .x (x +1)=380 10.(2019潍坊 中考)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin∠CAB =,DF =5,则BC 的长为( )A .8B .10C .12D .1611.(2019潍坊 中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( ) A .2≤t <11 B .t ≥2C .6<t <11D .2≤t <612.如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =的图象上,OA =5,OC =1,则△ODE的面积为( )A .2.5B .5C .7.5D .10第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上) 13.分解因式:a 3-2a 2b +ab 2= .14.对于实数a ,b ,定义运算“*”,a *b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a≤b),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= .15.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD =120°,则CD 的最大值为 .16.(2019聊城 中考)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 (n ≥3,n 是整数).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(2019山西 中考)(本题共2个小题,每小题5分,共10分) (1)计算:02)2020(60tan 3)21(27-+︒--+-π(2)解方程组:⎩⎨⎧=+-=-②02①823y x y x18. 先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =.19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校平均数中位数众数甲校96.35 m99乙校95.85 97.5 99根据以上信息,回答下列问题:(1)m=________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.20.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.21.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?22. 如图在O中,2,BC AB AC==,点D为AC上的动点,且10 cos B=.(1)求AB的长度;(2)求AD AE⋅的值;(3)过A点作AH BD⊥,求证:BH CD DH=+.点C (0,-3),与抛物线L 2:y =-12x 2-32x +2的一个交点为A ,且点A 的横坐标为2,点P ,Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A ,C ,P ,Q 为顶点的四边形恰为平行四边形,求出点P 的坐标; (3)设点R 是抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.参考答案深圳市2020年中考数学暨初中学业水平测试模拟试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2020的相反数的倒数是( )2020.A 2020.-B 20201.C 20201.-D【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,再结合倒数的定义进而得出答案.【解答】解:-2020的相反数是2020,2020的倒数是1.故选:C.2.(2019·绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为( D )A.0.2×10-3B.0.2×10-4C.2×10-3D.2×10-43.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为( B )A.20°B.25°C.30°D.35°4.(2019·深圳)下列哪个图形是正方体的展开图( B )5.若分式xx-2在实数范围内有意义,则x的取值范围是( B )A.x≠0 B.x≠2 C.x=0 D.x≠2且x≠06.(2019·张家界)下列说法正确的是( D )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为77.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE,CE,则△ADE的面积是( A )A .1B .2C .3D .不能确定8.(2019·广州)若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( C )A .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 39.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( B )A.12x (x -1)=380 B .x (x -1)=380C.12x (x +1)=380 D .x (x +1)=380 10.(2019潍坊 中考)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin∠CAB =,DF =5,则BC 的长为( C )A .8B .10C .12D .1611.(2019潍坊 中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( D )A .2≤t <11B .t ≥2C .6<t <11D .2≤t <612.如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =的图象上,OA =5,OC =1,则△ODE的面积为()A.2.5 B.5 C.7.5 D.10【分析】过E作EF⊥OC于F,由等腰三角形的性质得到OF=DF,于是得到S△ODE=2S△OEF,由于点B、E在反比例函数y=的图象上,于是得到S矩形ABCO=k,S△OEF=k,即可得到结论.【解答】解:过E作EF⊥OC于F,∵OE=DE,∴OF=DF,∴S△ODE=2S△OEF,∵点B、E在反比例函数y=的图象上,∴S矩形ABCO=k,S△OEF=k,∴S△ODE=S矩形ABCO=5×1=5,故选:B.【点评】本题考查反比例函数系数k的几何意义,等腰三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上)13.分解因式:a3-2a2b+ab2= a(a-b)2 .14.对于实数a ,b ,定义运算“*”,a*b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a≤b),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= ±5 . 15.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD=120°,则CD 的最大值为 14 .16.(2019聊城 中考)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 4﹣(n ≥3,n 是整数).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(2019山西 中考)(本题共2个小题,每小题5分,共10分) (1)计算:02)2020(60tan 3)21(27-+︒--+-π【解析】原式=5133433=+-+ (3)解方程组:⎩⎨⎧=+-=-②02①823y x y x【解析】(2)①+②得:84-=x ,解得2-=x ,将2-=x 代入②得:022=+-y ,解得1=y ∴原方程组的解为⎩⎨⎧=-=12y x18. 先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =.解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++把2x =代入得:原式13= 19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校 平均数 中位数 众数 甲校 96.35 m 99 乙校95.8597.599根据以上信息,回答下列问题: (1)m =________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.解:(1)96.5;(2)王;(3)甲校96分以上的人数为20×6=120(人),∴乙校的96分以上的人数为2×120-100=140(人).21.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB′=∠AGD′,∵∠EAB′=∠GAD′,AB′=AD′,∴△AEB′≌△AGD′(AAS),∴EB′=GD′,AE=AG,∵AH=AH,∠HAE=∠HAG,∴△AHE≌△AHG(SAS),∴EH=GH,∵△EHB′的周长为2,∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,∴AB′=AB=2,∴菱形ABCD的周长为8.21.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?解:(1)设水果店第一次购进水果x 元,第二次购进水果y 元, 由题意得⎩⎪⎨⎪⎧x +y =2 000,y 4-1=2×x 4,解得⎩⎪⎨⎪⎧x =800y =1 200. ∴水果店第一次购进水果800元,第二次购进水果1 200元. (2)设该水果每千克售价为m 元,第一次购进800÷4=200(千克), 第二次购进1 200÷3=400(千克),由题意[200×(1-3%)+400×(1-4%)]m -2 000≥3 780. 解得m≥10.∴该水果每千克售价为10元.22. 如图在O 中,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度; (2)求AD AE ⋅的值;(3)过A 点作AH BD ⊥,求证:BH CD DH =+.22.解:(1)作AM BC⊥,,2AB AC AM BC BC =⊥=112BM CM BC ===10cos BM B AB ==,在Rt AMB ∆中,1BM = 10cos 110AB BM B ∴=÷=÷=. (2)连接DC AB AC =ACB ABC ∴∠=∠∵四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=,180ACE ACB ∠+∠=,ADC ACE ∴∠=∠CAE ∠公共EAC CAD ∴∆∆∽AC AEAD AC∴=()221010AD AE AC ∴⋅===.(3)在BD 上取一点N ,使得BN CD =在ABN ∆和ACD ∆中31AB AC BN CD =⎧⎪∠=∠⎨⎪=⎩()ABN ACD SAS ∴∆≅∆AN AD∴=,AN AD AH BD =⊥NH HD ∴=,BN CD NH HD ==BN NH CD HD BH ∴+=+=.23.(2019·连云港)如图,在平面直角坐标系xOy 中,抛物线L 1=y =x 2+bx +c 过点C(0,-3),与抛物线L 2:y =-12x 2-32x +2的一个交点为A ,且点A 的横坐标为2,点P ,Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A ,C ,P ,Q 为顶点的四边形恰为平行四边形,求出点P 的坐标; (3)设点R 是抛物线L 1上另一个动点,且CA 平分∠PCR,若OQ∥PR,求出点Q 的坐标. 解:(1)将x =2代入y =-12x 2-32x +2,得y =-3,故点A 的坐标为(2,-3),将A(2,-3),C(0,-3)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧-3=22+2b +c ,-3=0+0+c.解得⎩⎪⎨⎪⎧b =-2,c =-3.所以抛物线L 1对应的函数表达式为y =x 2-2x -3;(2)设点P 的坐标为(x ,x 2-2x -3).第一种情况:AC 为平行四边形的一条边.①当点Q 在点P 右侧时,则点Q 的坐标为(x +2,x 2-2x -3).将Q(x +2,x 2-2x -3)代入y =-12x 2-32x +2,得x 2-2x -3=-12(x +2)2-32(x +2)+2,整理得x 2+x =0,解得x 1=0,x 2=-1.因为x =0时,点P 与点C 重合,不符合题意,所以舍去,此时点P 的坐标为(-1,0);②当点Q 在点P 左侧时,则点Q 的坐标为(x -2,x 2-2x -3).将Q(x -2,x 2-2x -3)代入y =-12x 2-32x +2,得x 2-2x -3=-12(x -2)2-32(x -2)+2,整理得3x 2-5x -12=0,解得x 1=3,x 2=-43.此时点P 的坐标为(3,0)或⎝ ⎛⎭⎪⎫-43,139.第二种情况:当AC为平行四边形的一条对角线时.由AC 的中点坐标为(1,-3),得PQ 的中点坐标为(1,-3),故点Q 的坐标为(2-x ,-x 2+2x -3).将Q(2-x ,-x 2+2x -3)代入y =-12x 2-32x +2,得-x 2+2x -3=-12(2-x)2-32(2-x)+2,整理得x 2+3x =0,解得x 1=0,x 2=-3.因为x =0时,点P 与点C 重合,不符合题意,所以舍去,此时点P 的坐标为(-3,12).综上所述,点P 的坐标为(-1,0)或(3,0)或⎝ ⎛⎭⎪⎫-43,139或(-3,12);(3)点Q 坐标为(-7+652,-7+65)或(-7-652,-7-65)。
辽宁省灯塔市2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠2.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°3.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC 绕点O 按顺时针方向旋转90°,得到△A′B′O ,则点A′的坐标为( )A .(3 ,1)B .(3 ,2)C .(2 ,3)D .(1 ,3)4.若 |x | =-x ,则x 一定是( )A .非正数B .正数C .非负数D .负数5.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数45 6 7 8 人数 3 6 5 4 2 每天加工零件数的中位数和众数为( )A .6,5B .6,6C .5,5D .5,66.等腰三角形底角与顶角之间的函数关系是( )A.正比例函数B.一次函数C.反比例函数D.二次函数7.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC 的大小是()A.55°B.60°C.65°D.70°8.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣19.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C10.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=11.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩12.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB 的长等于()A.2cm B.3cm C.6cm D.7cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.14.有下列等式:①由a=b ,得5﹣2a=5﹣2b ;②由a=b ,得ac=bc ;③由a=b ,得a b c c =;④由23a b c c=,得3a=2b ;⑤由a 2=b 2,得a=b .其中正确的是_____. 15.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为_______米(结果保留根号).16.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.17.如图所示,三角形ABC 的面积为1cm 1.AP 垂直∠B 的平分线BP 于P .则与三角形PBC 的面积相等的长方形是( )A .B .C .D .18.计算:82-=_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.20.(6分)已知:如图,∠ABC ,射线BC 上一点D ,求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.21.(6分)如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB ,于点E 求证:△ACD ≌△AED ;若∠B=30°,CD=1,求BD 的长.22.(8分)如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.23.(8分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A 组50~60;B 组60~70;C 组70~80;D 组80~90;E 组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是 人,扇形C 的圆心角是 °;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?24.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.25.(10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[求出y 与x 的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.26.(12分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?27.(12分)如图,抛物线y =ax 2+bx+c (a >0)的顶点为M ,直线y =m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____.抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (x p ,y p ),使得∠APB 为锐角,若有,请求出y p 的取值范围.若没有,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.3.D【解析】【分析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.4.A【解析】【分析】根据绝对值的性质进行求解即可得.【详解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正数,故选A.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.5.A【解析】【分析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.B【解析】【分析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.7.C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.8.B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.9.C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.10.C【解析】【分析】由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D 正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A 是公共角,∴当∠ABD=∠C 或∠ADB=∠ABC 时,△ADB ∽△ABC (有两角对应相等的三角形相似),故A 与B 正确,不符合题意要求;当AB :AD=AC :AB 时,△ADB ∽△ABC (两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB :BD=CB :AC 时,∠A 不是夹角,故不能判定△ADB 与△ABC 相似,故C 错误,符合题意要求, 故选C .11.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.12.D【解析】【分析】先求AC,再根据点D 是线段AC 的中点,求出CD ,再求BD.【详解】因为,AB=10cm ,BC=4cm ,所以,AC=AB-BC=10-4=6(cm )因为,点D 是线段AC 的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm )故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴,CD DE FN MN AB BE FB AB==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.14.①②④【解析】①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确, ③由a=b,得a b c c=,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为c 可能为0,所以本选项不正确,④由23a b c c=,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确, ⑤因为互为相反数的平方也相等,由a 2=b 2,得a=b,或a=-b,所以本选项错误,故答案为: ①②④.15.43 4【解析】【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC. 【详解】因为∠MAD=45°, AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=43.所以CD=43-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.16.127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.17.B【解析】【分析】过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=12三角形ABC的面积=12cm1,选项中只有B的长方形面积为12cm1,故选B.18【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)45;(2)710.【解析】【分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.21.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.22.(1)答案见解析;(2)45°.【解析】【分析】(1)分别以A、B为圆心,大于12AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC12∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.23.(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.【解析】【分析】(1)由D 组频数及其所占比例可得总人数,用360°乘以C 组人数所占比例可得;(2)用总人数分别乘以A 、B 组的百分比求得其人数,再用总人数减去A 、B 、C 、D 的人数求得E 组的人数可得;(3)用总人数乘以样本中A 、B 组的百分比之和可得.【详解】解:(1)抽取学生的总人数为78÷26%=300人,扇形C 的圆心角是360°×120300=144°, 故答案为300、144;(2)A 组人数为300×7%=21人,B 组人数为300×17%=51人, 则E 组人数为300﹣(21+51+120+78)=30人,补全频数分布直方图如下:(3)该校创新意识不强的学生约有2200×(7%+17%)=528人.【点睛】考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.24.(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a 的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50, a=50×0.2=10,b=1450=0.28,c=50; 故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.25.(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<,解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.26.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y 棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,依题意有 ,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y 棵乙种树苗,依题意有30×(1﹣10%)(50﹣y )+40y≤1500,解得y≤11,∵y 为整数,∴y 最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.27.(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB ,(2)2,4;(2)①y =13x 2﹣2;②在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.【解析】【分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B (m ,m ),代入抛物线解析式进而得出m 的值,即可得出AB 的值; (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y =13x 2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角,进而得出答案. 【详解】(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB , 如图1,∵△AMB 是等腰直角三角形,且N 为AB 的中点,∴MN ⊥AB ,MN =12AB , 故答案为MN ⊥AB ,MN =12AB ;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2, 则AB =2+2=4; 故答案为2,4;(2)①由已知,抛物线对称轴为:y 轴,∵抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ∴抛物线必过(2,0),代入y =ax 2﹣4a ﹣53(a >0), 得,9a ﹣4a ﹣53=0, 解得:a =13, ∴抛物线的解析式是:y =13x 2﹣2;②由①知,如图2,y=13x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,y p的取值范围是y p<﹣2或y p>2.【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.中考模拟数学试卷时量:120分钟 满分:100分注意事项:1.答题前,请按要求在答题卡上填写好自己的姓名和准考证号. 2.答题时,切记答案要填在答题卡上,答在试题卷上的答案无效. 3.考试结束后,请将试题卷和答题卡都交给监考老师.一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分) 1. 下列各式中,结果不等于2的是A. 12- B. (2)-- C. 4 D. 2-2. 下列计算中,正确的是A. 257a b ab +=B. 3263()6a a = C. 623aa a ÷= D. 32a a a -+=-3. 我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为A .23.710⨯B .3107.3⨯ C .21037⨯ D .41037.0⨯4. 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转.....120...°后,能与原图形完全重合的是A .B .C .D .5. 四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差2s 如右表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C. 丙D.丁 6. 如图,已知菱形ABCD 的边长为2,∠DAB =60°,则对角线BD 的长是A. 132 D. 237.函数y mx n =+与ny mx=,其中0,0m n≠≠,那么它们在同一坐标系中的图象可能是8. 如果二次函数2(0)y ax bx c a =++≠的图象与x 轴有两个公共点,那么一元二次方程20ax bx c ++=有两个不相等的实数根.请根据你对这句话的理解,解决下面问题:若,()m n m n <是关于x 的方程1()()0x a x b ---=的两根,且a b <,则a b m n 、、、的大小关系是 A .m a b n <<< B .a m n b <<< C .a m b n <<< D . m a n b <<<二、填空题(本题共8小题,每小题3分,共24分)9. 在平面直角坐标系中,点(2,2015)-在第 象限. 10.分解因式24(1)16x x +-= . 11. 关于x 的方程的112ax x +=--解是正数,则a 的取值范围是 . 12. 已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a 等于 .13. 如图所示,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为 .14. 一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为 米.15. 如图所示,直径为10的圆A 经过点C(0,5)和点O (0,0),B 是y 轴右侧圆A 优弧上一点,那么sin OBC ∠的值是 .16.有这样一组数据1234a a a a ,,,,......n a 。
2019-2020学年度第二学期大沥镇初中教学质量检测九 年 级 数 学 试 题命题学校:石门实验学校 命题人:农成遐 审核人:李富泉 把关人:大沥镇教育局左世良一.选择题(共10小题,每小题3分,共30分) 1.﹣2020的相反数是( ) A .B .C .2020D .﹣20202.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m ,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为( ) A .5.5×105B .55×104C .5.5×104D .5.5×1063.如图,下列结论正确的是( )A .c >a >bB .C .|a |<|b |D .abc >04.如表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是( ) A .13,11 B .13,13 C .13,14 D .14,13.5 5.在Rt △ABC ,∠C =90°,sin B =,则sin A 的值是( ) A . B . C . D . 6.下列运算中,计算正确的是( ) A .2a +3a =5a 2 B .(3a 2)3=27a 6C .x 6÷x 2=x 3D .(a +b )2=a 2+b 27.下列命题中,假命题的是()A .分别有一个角是110的两个等腰三角形相似B .若5x =8y (xy ≠0),则58y xC .如果两个三角形相似,则他们的面积比等于相似比D .有一个角相等的两个菱形相似 8.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( ) A .=B .=C .=D .=9.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB //x 轴,交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D在x 轴上,则S □ABCD 为( )A. 2B. 3C. 4D. 510.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论: ①abc >0;②2a +b =0;③若m ≠1,则a +b >am 2+bm ;④a ﹣b +c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2. 其中正确的有( )A .2个B .3个C .4个. D.5个二.填空题(共7小题,每小题4分,共28分) 11.因式分解:x 2﹣9= .12.在平面直角坐标系中点P (﹣2,3)关于x 轴的对称点在第 象限. 13.一个正数a 的平方根分别是2m ﹣1和﹣3m +,则这个正数a 为 .14.已知反比例函数y =(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是15.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n = .16.如下左图,DE ∥BC ,DF ∥AC ,AD =4cm ,BD =8cm ,DE =5cm ,则线段BF 长为 cm .17. 如上右图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为 .三.解答题(一)(第18~20题,每题6分,共18分)18.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.先化简,再求值(﹣)÷,其中a,b满足a+b ﹣=0.20.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写作法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.四.解答题(二)(第21~23题,每题8分,共24分)21.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF =,求AB的长.22.2020年4月23日是第二十五个“世界读书日”.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并将获奖人数绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.在水果销售旺季,某水果店购进一批优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?五.解答题(三)(第24~25题,每题10分,共20分)24.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB 交于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG 与的位置关系,并说明理由;(2)求证:2OB2=BC·BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2时,求DE的长.25.如图,直线23y x c=-+与x轴交于点A(3,0),与y轴交于点B,抛物线243y x bx c=-++经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m 的值.2019-2020学年度第二学期大沥镇初中教学质量检测九年级数学答案及评分标准一.选择题(共10小题,每小题3分,满分30分)1.C .2.C.3.B4.B5.B6.B7.C8.A9.D10.B二.填空题(共7小题,每小题4分,满分28分)11.(x +3)(x ﹣3).12.第三象限.13.414.k <1.15.8.16.10.17.16三.解答题(一)(第18~20题,每题6分,共18分)18.解:原式=2×﹣1+﹣1+2.............4分=1+.......................6分19.解:原式=•.............3分=, (4)分由a +b ﹣=0,得到a +b =,则原式=2...........6分20.解:(1)如图所示:CO 与⊙O 为所求....................4分(2)相切;过O 点作OD ⊥AC 于D 点,∵CO 平分∠ACB ,∴OB =OD ,即d =r ,∴⊙O 与直线AC 相切.......................6分四.解答题(二)(第21~23题,每题8分,共24分)21.解:(1)∵E 是AC 的中点,∴AE =CE ,∵AB ∥CD ,∴∠AFE =∠CDE ,................1分在△AEF 和△CED 中,.6分∵,∴△AEF ≌△CED (AAS ),∴AF =CD ,........3分又AB ∥CD ,即AF ∥CD ,∴四边形AFCD 是平行四边形;........4分(2)∵AB ∥CD ,∴△GBF ∽△GCD ,...............5分∴=,即=,解得:CD =,...............6分∵四边形AFCD 是平行四边形,∴AF =CD =,...................7分.∴AB=AF+BF=+=6................8分22.解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人)..................2分.补全条形图如下:............3分.(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;...............4分(3)树状图如图所示,∵从四人中随机抽到甲和乙两人共有12种可能性结果,每种结果的可能性相同,恰好是甲和乙的结果有两种,分别是(甲,乙),(乙,甲)..............7分∴抽取两人恰好是甲和乙的概率是=........................................................8分23.解:(1)设y与x之间的函数关系式为y=kx+b,..........................1分.将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y=﹣2x+80.......................................................................3分当x=29.6,y=25.2和x=28,y=26也满足上述关系式∴y与x之间的函数关系式为y=﹣2x+80.................................4分当x=23.5时,y=﹣2x+80=33...答:当天该水果的销售量为33千克................................5分(2)根据题意得:(x﹣20)(﹣2x+80)=150,...............................6分解得:x1=35,x2=25.∵20≤x≤32,∴x=25...............................7分答:如果某天销售这种水果获利150元,那么该天水果的售价为25元................................8分五.解答题(三)(第24~25题,每题10分,共20分)24.解:(1)CG与⊙O相切,理由如下:..........1分如图1,连接OC,∵AB是⊙O的直径,∠ACB=∠ACF=90°点G是EF的中点,∴GF=GC=GE∴∠AEO=∠GEC=∠GCE.............................2分∵OF⊥AB ∴∠OAC+∠AEO=90°∴∠OCA+∠GCE=90°∴OC⊥CG∵OC 是⊙O 的半径∴CG 是⊙O 相切...............................3分(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC ∴∠OAE=∠F 又∵∠B=∠B,∴△ABC∽△FBO .............................4分∴BC:BO=AB:BF 即OB·AB=BC·BF ..............................5分∵AB=2OB∴2OB 2=BC·BF ..................6分(3)由(1)知GC=GE=GF ∴∠F=∠GCF∴∠EGC=2∠F...........................7分∵∠DCE=2∠F ∴∠EGC=∠DCE ∵∠DEC=∠CEG ∴△ECD∽△EGC ...............................8分∴EC:EG=ED:EC ∵EC=3,DG=2∴3:(DE+2)=DE:3整理,得:DE 2+2DE-9=0....................................................9分010 1.............10DE DE >∴=- 分2(3,0)3y x c x A =-+25.(1)与轴交于∴0=-2+c,解得:c=2∴B(0,2)..............................1分24+,3y x bx c A B =-+ 抛物线经过(3,0)(0,2)两点-12+3010,223b c b c c +=⎧∴∴==⎨=⎩24102 (333)y x x ∴=-++抛物线的解析式为:分()()22123y x =-+由可知直线AB的解析式为,∵M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,2410333P ∴2(m,-m+2),N(m,-m +m+2)222410242,3,2(2)4 (433333)PM m AM m PN m m m m m ∴=-+=-=-++--+=-+分24103332M(m,0),(m,-m+2),N(m,-m +m+2)∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°当∠BNP=90°时,BN⊥MN,N 点的纵坐标为241033∴2-m +m+2=2解得:m=0或m=2.5M(2.5,0).....................................................................5分当∠NBP=90°时,过点N 作NC⊥y 轴于点C,241090, ,33NBC BNC NC m BC m m∠+∠=︒==-+则∵∠NBP=90°,∴∠NBC+∠ABO=90°∴∠ABO=∠BNC ∴Rt△NCB∽Rt△BOA∴NC:OB=BC:OA2410:2():333110811(,0) (68)m m m m m M ∴=-+==∴解得:或分综上可知当以B ,P ,N 为顶点的三角形与△AMP 相似时,点M 的坐标为或;②M ,P ,N 三点为“共谐点”,有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,2241012,3()3332P MN m m m m ++==当为线段的中点时,则有2(-m+2)=-解得:三点重合,舍去或224102)0,3()1333M PN m m m ++===-当为线段的中点时,则有-m+2+(-解得:舍去或2241012),3()3334N PM m m m ++==-当为线段的中点时,则有-m+2=2(-解得:舍去或11“” (1024)M P N m 综上可知当,,三点成为共谐点时的值为或-1或-.分。
2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。
2020年武汉市中考模拟卷(二)—解析版数学试卷(考试时间:120分钟 满分:120分 )一.选择题(共12小题,每小题3分,共36分) 1. 6.1亿用科学记数法表示为( ).A .6.1×101B .0.61×109C .6.1×108D .61×107【解答】C .2. 式子1a +有意义,则实数a 的取值范围是( )A .a ≥﹣1B .a ≠0C .a >﹣1D .a >0【解答】A .3. 军运会设计运动中,运动员每次射击击中靶的环数为1到10,不考虑脱靶的情况下,下列事件为随机事件的是( )A .某运动员两次射击总环数大于1B .某运动员两次射击总环数等于1C .某运动员两次射击总环数大于20D .某运动员两次涉及总环数等于20 【解答】D . 4. 下列图形中不是轴对称图形的是( )A .B .C .D .【解答】B .5. 下列图形都是由大小相同的正方体搭成的,其三视图都相同的是( )A .B .C .D .【解答】C .6. 将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式为( )A .8(1)5128x x -<+<B .05128x x <+<C .05128(1)8x x <+--<D .85128x x <+< 【解答】C 7. 根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是( )A .16B .18C .112D .116【解答】C 8. 已知点M (2,3)是一次函数y =kx +1的图象和反比例函数my x=的图象的交点,当一次函数的值大于反比例函数的值时,x 的取值范围是( )A .x <﹣3或0<x <2B .x >2C .﹣3<x <0或x >2D .x <﹣3 【解答】C9.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为¶BC上一点(点P不与点B,C重合),连结AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,CFAP BP-的值始终等于32.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错【解答】A【解析】如图,作CM⊥AP于M,连接AD.∵AE⊥OD,OE=DE,∴AO=AD,∵OA=OD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠D=∠ABC=60°,∵CD⊥AB,∴AE=EB,∴CA=CB,∴△ABC是等边三角形,故①正确,∵∠CP A=∠ABC=60°,∠APB=∠ACB=60°,∴∠CPF=180°﹣60°﹣60°=60°,∵∠CPM=∠CPF=60°,CF⊥PF,CM⊥P A,∴CF=CM,∵PC=PC,∠CFP=∠CMP,∴Rt△CPF≌Rt△CPM(HL),∴PF=PM,∵AC=BC,CM=CF,∠AMC=∠CFB=90°,∴Rt△AMC≌Rt△BFC(HL),∴AM=BF,∴AP﹣PB=PM+AM﹣(BF﹣PF)=2PM=2PF,∴12PFPA PB=-,在Rt△CPF中,∵∠CPF=60°,∠CFP=90°,tan603CF PF PF∴=︒=g,3PF CF∴=,∴3CFPA PB=-,故②正确,10.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=﹣2018,a98=﹣1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为()A.1985 B.﹣1985 C.2019 D.﹣2019 【解答】B【解析】∵任意相邻三个数的和为常数,∴a1+a2+a3=a2+a3+a4,a2+a3+a4=a3+a4+a5,a3+a4+a5=a4+a5+a6,∴a1=a4,a2=a5,a3=a6,∵a7=﹣2018,a98=﹣1,7÷3=2…1,98÷3=32…2,∴a1=﹣2018,a2=﹣1,∴a1+a2+a3=﹣2018+(﹣1)+2020=1,∵100÷3=33…1,∴a100=a1=﹣2018,∴a1+a2+a3+…+a98+a99+a100=(a1+a2+a3)+…+(a97+a98+a99)+a100=1×33+(﹣2018)=﹣1985.二.填空题(共12小题,每小题3分,共36分)11.计算:32736-+==.【解答】3.12.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占60%,面试成绩占40%,应聘者小菁的笔试成绩和面试成绩分别为95分和90分,她的最终得分是分.【解答】93.13. 化简:2221a ab a b---的结果是 . 【解答】1a b+ 14. 在△ABC 中,D 、E 是边BC 上的两点,DC =DA ,EA =EB ,∠DAE =40°,则∠BAC 的度数是 .【解答】70︒或110︒ 15. 已知实数a ,b ,c 满足a ≠0,且a ﹣b +c =0,9a +3b +c =0,则抛物线y =ax 2+bx +c 图象上的一点(﹣2,4)关于抛物线对称轴对称的点为 . 【解答】(4,4). 16. 如图,在菱形ABCD 中,∠ABC =120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG =2,BG =6,则BE 的长为 .【解答】2.8【解析】作EH ⊥BD 于H ,由折叠的性质可知,EG =EA ,BD =DG +BG =8,∵四边形ABCD 是菱形,∴AD =AB ,1602ABD CBD ABC ∠=∠=∠=︒,∴△ABD 为等边三角形,∴AB =BD =8, 设BE =x ,则EG =AE =8﹣x ,在Rt △EHB 中,12BH x =,3EH x =,在Rt △EHG 中,EG 2=EH 2+GH 2,即22231(8)()(6)2x x x -=+-,解得,x =2.8,即BE =2.8,三.解答题(共8小题,共72分) 17. 计算:8a 6÷2a 2+4a 3•2a ﹣(3a 2)2 【解答】解:原式=4a 4+8a 4﹣9a 4=3a 4.18. 如图,直线AB ∥直线CD ,直线EF 分别交AB 、CD 于E 、F 两点,EM 、FN 分别平分∠BEF 、∠CFE ,求证:EM ∥FN .【解答】证明:∵直线AB ∥直线CD ,∴∠BEF =∠CFE ,又∵EM 、FN 分别平分∠BEF 、∠CFE , ∴∠FEM =∠EFN , ∴EM ∥FN .19.某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)本次调查的样本为,样本容量为;(2)在频数分布表中,a=,b=,并将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?【解答】解:(1)20÷0.1=200(人),所以本次调查的样本为200名初中毕业生的视力情况,样本容量为200;(2)a=200×0.3=60,b=10÷200=0.05;如图,故答案为200名初中毕业生的视力情况,200;60,0.05;(3)5000×(0.35+0.3+0.05)=3500(人),估计全区初中毕业生中视力正常的学生有3500人.20.如图,在平面直角坐标系中,点A(0,4)、B(﹣3,0),将线段AB沿x轴正方向平移n个单位得到菱形ABCD.(1)画出菱形ABCD,并直接写出n的值及点D的坐标;(2)已知反比例函数kyx=的图象经过点D,▱ABMN的顶点M在y轴上,N在kyx=的图象上,求点M的坐标;(3)若点A、C、D到某直线l的距离都相等,直接写出满足条件的直线解析式.【解答】解:(1)如图,∵点A(0,4)、B(﹣3,0),∴AO=4,BO=3∴AB=5∵四边形ABCD是菱形,∴AB=BC=CD=AD=5∵将线段AB沿x轴正方向平移n个单位得到菱形ABCD.∴n=5,点C坐标为(2,0),点D坐标为(5,4),(2)∵反比例函数kyx=的图象经过点D,∴k=4×5=20∵N在20yx=的图象上,∴设点20(,)N aa,如图,过点N作NH⊥OA于点H,∵四边形ABMN是平行四边形,∴AN=BM,AN∥BM,∴∠BMA=∠NAM∴∠BMO=∠NAH,且AN=BM,∠BOM=∠NHA=90°,∴△ANH≌△MBO(AAS)∴HN=BO=3,MO=AH∴HN=a=3,20203HOa==,83OM AH HO AO∴==-=,∴点8 (0,)3 M(3)∵点A、C、D到某直线l的距离都相等,∴直线l是△ACD的中位线所在直线,如图所示:若直线l过线段AC,CD中点,∴直线l的解析式为:y=2若直线l过线段AD,AC中点,即直线l过点(5(2,4),点(1,2)设直线l的解析式为:y=mx+n∴5 422m nm n⎧=+⎪⎨⎪=+⎩,解得:43m=,23n=,∴直线l的解析式为:4233y x=+若直线l过线段AD,CD中点,即直线l过点(5(2,4),点(7(2,2)设直线l解析式为:y=kx+b∴542722k bk b⎧=+⎪⎪⎨⎪=+⎪⎩,解得:k=﹣2,b=9,∴直线l的解析式为:y=﹣2x+921.如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•P A.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是¶AB的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF 的长.【解答】(1)证明:连接OC,如图1所示:∵PC2=PB•P A,即PA PCPC PB=,且∠P=∠P,∴△PBC∽△PCA,∴∠PCB=∠P AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵OC=OB,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB•P A,22204010PCPAPB∴===,∴AB=P A﹣PB=30,∵△PBC∽△PCA,∴2AC PABC PC==,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=65x=BC=65x=∵点D是¶AB AB为⊙O∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB =90°,∴DE ∥BC ,∴∠DFO =∠ABC ,∴△DOF ∽△ACB , ∴12OF BC OD AC ==,11522OF OD ∴==,即15AF =, ∵EF ∥BC ,∴14EF AF BC AB ==,1354EF BC ∴=.22. 农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x (元/千克) 30 35 40 45 50 日销售量p (千克)600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润﹣日支出费用) 【解答】 解:(1)假设p 与x 成一次函数关系,设函数关系式为p =kx +b ,则3060040300k b k b +=⎧⎨+=⎩,解得:k =﹣30,b =1500,∴p =﹣30x +1500,检验:当x =35,p =450;当x =45,p =150;当x =50,p =0,符合一次函数解析式, ∴所求的函数关系为p =﹣30x +1500;(2)设日销售利润w =p (x ﹣30)=(﹣30x +1500)(x ﹣30)即w =﹣30x 2+2400x ﹣45000,∴当2400402(30)x =-=⨯-时,w 有最大值3000元, 故这批农产品的销售价格定为40元,才能使日销售利润最大; (3)日获利w =p (x ﹣30﹣a )=(﹣30x +1500)(x ﹣30﹣a ),即w =﹣30x 2+(2400+30a )x ﹣(1500a +45000),对称轴为2400301402(30)2a x a +=-=+⨯-, ①若a >10,则当x =45时,w 有最大值,即w =2250﹣150a <2430(不合题意); ②若a <10,则当1402x a =+时,w 有最大值,将1402x a =+代入,可得2130(10100)4w a a =-+,当w =2430时,21243030(10100)4a a =-+,解得12a =,238a =(舍去),综上所述,a 的值为2.23. (1)在△ACB 中,∠ACB =90°,CD ⊥AB 于D ,点E 在AC 上,BE 交CD 于点G ,EF ⊥BE 交AB 于点F .①如图1,AC =BC ,点E 为AC 的中点,求证:EF =EG ;②如图2,BE 平分∠CBA ,AC =2BC ,试探究EF 与EG 的数量关系,并证明你的结论;(2)如图3,在△ABC 中,若3tan 3B =,点E 在边AB 上,点D 在线段BC 的延长线上,连接DE 交AC 于M ,∠CMD =60°,DE =2AC ,33CD =,直接写出BE 的长.【解答】(1)①证明:如图1,过E 作EM ⊥AB 于M ,EN ⊥CD 于N ,∵∠ACB =90°,AC =BC ,∴∠A =∠ABC =45°,∴AD =CD , ∵点E 为AC 的中点,CD ⊥AB ,EN ⊥DC ,12EN AD ∴=,12EM CD ∴=,∴EN =EM ,∵∠FEB =90°,∠MEN =90°,∴∠NEG =∠FEM , 在△EFM 和△EGN 中,NEG FEMEN EM ENG EMF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EFM ≌△EGN (ASA ),∴EF =EG ; ②解:5EF EG =,理由如下: 如图2,作EP ⊥AB 于点P ,EQ ⊥CD 于点Q ,易证:△EFP ∽△EGQ ,∴EF EPEG EQ=, ∵BE 平分∠ABC ,EC ⊥BC ,EP ⊥AB ,∴EC =EP , ∵EQ ∥AB ,∴∠CEQ =∠A ,∵∠EQC =∠ACB ,∴△ECQ ∽△ABC ,∴2EQ ACCQ BC==, 设CQ =a ,EQ =2a ,则5EC EP a ==,∴55EF a EG ==, (2)解:如图3,过C 作CF ∥DE ,过A 作AF ⊥AC ,交CF 于F ,连接EF ,3tan B =Q ,∴∠ABC =30°, ∵CF ∥DE ,∴∠ACF =∠DMC =60°,∴∠AFC =30°, ∵∠CAF =90°,∴CF =2AC , ∵DE =2AC ,∴DE =CF ,∴四边形EFCD 是平行四边形,∴EF ∥CD ,33EF CD ==,∴∠ABC =∠BEF =30°, ∵∠AFC =∠ABC =30°,∴A 、F 、B 、C 四点共圆, ∴∠FBC +∠CAF =180°,∴∠FBC =90°, ∵EF ∥BC ,∴∠BFE =90°,3cos cos30EF BEF BE ∠=︒==,23363BE ⨯∴==.24. 在平面直角坐标系中,抛物线214y x =沿x 轴正方向平移后经过点A (x 1,y 2),B (x 2,y 2),其中x 1,x 2是方程x 2﹣2x =0的两根,且x 1>x 2,(1)如图1.求A ,B 两点的坐标及平移后抛物线的解析式;(2)平移直线AB 交抛物线于M ,交x 轴于N ,且14AB MN =,求△MNO 的面积; (3)如图2,点C 为抛物线对称轴上顶点下方的一点,过点C 作直线交抛物线于E 、F ,交x 轴于点D ,探究CD CDCE CF+的值是否为定值?如果是,求出其值;如果不是,请说明理由.【解答】解:(1)解方程x 2﹣2x =0得x 1=2,x 2=0.∴点A 坐标为(2,0),抛物线解析式为21(2)4y x =-. 把x =0代入抛物线解析式得y =1.∴点B 坐标为(0,1). (2)如图,过M 作MH ⊥x 轴,垂足为H∵AB ∥MN ∴△ABO ∽△NMH ,∴14BO HN AB MH AO MN ===,∴MH =4,HN =8 将y =4代入抛物线21(2)4y x =-,可得x 1=﹣2,x 2=6∴M 1(﹣2,4),N 1(6,0),M 2(6,4),N 2(14,0) 11164122M N O S =⨯⨯=V ,221144282M N O S =⨯⨯=V(3)设C (2,m ),设直线CD 为y =kx +b将C (2,m )代入上式,m =2k +b ,即b =m ﹣2k .∴CD 解析式为y =kx +m ﹣2k ,令y =0得kx +m ﹣2k =0,∴点D 为(2(k mk-,0)联立221(2)4y kx m k y x =+-⎧⎪⎨=-⎪⎩,消去y 得,212(2)4kx m k x +-=-,化简得,x 2﹣4(k +1)x +4﹣4m +8k =0 由根与系数关系得,x 1+x 2=4k +4,x 1•x 2=4﹣4m +8k .过E 、F 分别作EP ⊥CA 于P ,FQ ⊥CA 于Q , ∴AD ∥EP ,AD ∥FQ ,∴CD CD AD AD EP FQAD CE CF EP FQ EP FQ ++=+=g g 121212()42(2)2(4)x x k m k x x x x +--=-⨯-++g (44)4(448)2(44)4m k k m k k -+-=-+-++g =1 ∴CD CD CE CF+为定值,定值为1。
2020年河南省中考数学模拟试卷(经典一)一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013 3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=45.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.58.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.129.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)二.填空题(共5小题)11.﹣3﹣1=.12.不等式组的解集是.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5150亿=515000000000=5.15×1011.故选:B.3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=4【分析】分别根据积的乘方运算法则,同底数幂的除法法则,完全平方公式以及负整数指数幂的定义逐一判断即可.【解答】解:A.(﹣a3)2=a6,故本选项不合题意;B.a8÷a2=a6,故本选项不合题意;C.(a+b)2=a2+2ab+b2,故本选项不合题意;D.(﹣)﹣2=,符合题意.故选:D.5.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:方程化为x2﹣2x﹣4=0,∵△=(﹣2)2﹣4×(﹣4)=20>0,∴方程有两个不相等的实数根.故选:A.7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:95×20%+90×30%+85×50%=19+27+42.5=88.5(分).故选:A.8.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.12【分析】设菱形的两条对角线相交于点D,如图,根据菱形的性质得OB⊥AC,BD=OD =2,CD=AD=3,再由菱形ABCD的对角线OB在y轴上得到AC∥x轴,则可确定C (﹣3,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:设菱形的两条对角线相交于点D,如图,∵四边形ABCD为菱形,∴OB⊥AC,BD=OD=2,CD=AD=3,∵菱形ABCO的对角线OB在y轴上,∴AC∥x轴,∴C(﹣3,2),∴k=﹣3×2=﹣6.故选:B.9.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S=CD•OE,四边形OCED但不能得出∠OCD=∠ECD,故选:C.10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).故选:D.二.填空题(共5小题)11.﹣3﹣1=.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:﹣3﹣1=3﹣=故答案为:.12.不等式组的解集是x<5.【分析】此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.【解答】解:解不等式①得:x<5,解不等式②得:x≤9,∴不等式组的解集为x<5,故答案为:x<5.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.【分析】列举出所有情况,看出现数字之积为奇数的情况数占所有情况数的多少即可.【解答】解:根据题意列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等情况数,其中数字之积为奇数的有9种情况,所以“出现数字之积为奇数”的概率是=;故答案为:.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【分析】根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积﹣小扇形CBC′的面积.【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)解:∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)6000×=1800(人),答:在试卷评讲课中,“独立思考”的初三学生约有1800人.19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.【分析】(1)先把A(1,a)代入y=2x中求出a得到A(1,2);再把A点坐标代入y=中可确定k的值,然后利用反比例函数和正比例函数图象的性质确定B点坐标;(2)设C(1,t),根据两点间的距离公式和勾股定理得到(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,求出t得到C(1,﹣3),从而得到AC的长,然后关键三角形面积公式求得即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2);把A(1,2)代入y=得k=1×2=2,∵点A与点B关于原点对称,∴B(﹣1,﹣2);(2)∵CA∥y轴,∴C点的横坐标为1,设C(1,t),∵∠ABC=90°.∴BC2+AC2=AB2,即(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,解得t=﹣3,∴C(1,﹣3),∴AC=5,=AC(x A﹣x B)==5.∴S△ABC22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【分析】(1)点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c 经过B,C两点,则3c=12,将点C的坐标代入抛物线表达式,即可求解;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=﹣2x2+12x,即可求解;(3)分AM是边、AM是对角线两种情况,分别求解即可.【解答】解:(1)直线y=﹣2x+12与x轴交于点C,与y轴交于点B,则点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c经过B,C两点,则3c=12,故抛物线的表达式为:y=3ax2+10x+12,将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣2x2+10x+12;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=(﹣2x2+10x+12)﹣(﹣2x+12)=﹣2x2+12x,∵﹣2<0,故EM有最大值,最大值为18,此时x=3;(3)y=﹣2x2+10x+12,令y=0,则x=﹣1或6,故点A(﹣1,0),由(2)知,x=3,则点M(3,6),设点P的横坐标为:m,点Q的坐标为:(,s),①当AM是边时,当点A向右平移4个单位向上平移6个单位得到点M,同样,点P(Q)向右平移4个单位向上平移6个单位得到点得到点Q(P),即m±4=,解得:m=﹣或,故点P(﹣,﹣)或(,﹣);②当AM是对角线时,由中点公式得:﹣1+2=m+,解得:m=﹣,故点P(﹣,);综上,点P的坐标为:(﹣,﹣)或(,﹣)或(﹣,).。
2020年呼和浩特模拟试卷(三)(考试时间:120分钟试卷满分:120分)题号一二三总分总分人核分人得分一、选择题(本大题共10小题,每小题3分,共30分)1.检查四个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:篮球编号 1 2 3 4 与标准质量的差(g) +4 +7 -3 -8其中质量最好的是()A.1号B.2号C.3号D.4号2.下列计算正确的是()A.3a-a=2B.a2+2a2=3a2C.a4·a3=a6D.(a+b)2=a2+b23.在关于x的函数y=√x+2+(x-1)0中,自变量x的取值X围是()A.x≥-2B.x≥-2且x≠0C.x≥-2且x≠1D.x≥14.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采用全面调查的方式B.一组数据1,2,5,5,5,3,3的中位数和众数都是5C.抛掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定5.对于一次函数y=kx+k-1(k≠0),下列叙述正确的是()A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定经过点(-1,-2)6.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是() A.19B.16C.13D.237.在数轴上,实数a,b对应的点的位置如图M3-1所示,且这两个点关于原点对称,下列结论中,正确的是()图M3-1A.a+b=0B.a-b=0C.|a|<|b|D.ab>08.已知关于x的一元二次方程x2+4x-k=0,当-6<k<0时,该方程解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.不能确定9.如图M3-2,在平面直角坐标系中,四边形ABCD是平行四边形,A(-1,3),B(1,1),C(5,1).规定“把▱ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2018次变换后,▱ABCD的顶点D的坐标变为()图M3-2A.(-2015,3)B.(-2015,-3)C.(-2016,3)D.(-2016,-3)10.如图M3-3,线段AB是☉O的直径,弦CD⊥AB,垂足为H,点M是xxx⏜ 上任意一点,AH=2,CH=4,则cos∠CMD的值为()图M3-3A.12B.34C.45D.35二、填空题(本大题共6小题,每小题3分,共18分)11.如图M3-4,直线a∥b,一块含45°角的直角三角板ABC按如图所示放置.若∠1=66°,则∠2的度数为.图M3-412.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000 合格品数m 96 282 382 570 949 1906 2850 合格品频率0.960 0.940 0.955 0.950 0.949 0.953 0.950 则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)13.已知二次函数y=ax2+bx+c中,其函数值y与自变量x之间的部分对应值如下表所示:x…0 1 2 3 4 …y… 4 1 0 1 4 …点A(x1,y1),B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系是.14.如图M3-5,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.图M3-515.如图M3-6,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=4,则莱洛三角形的面积(即阴影部分面积)为.图M3-616.如图M3-7,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.图M3-7三、解答题(本大题共9小题,满分72分)17.(10分)(1)计算:2-1+√3cos30°+|-5|-(π-2012)0; (2)解分式方程:2xx+1+3x-1=2.18.(6分)如图M3-8,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.图M3-819.(6分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域的养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员的方案?20.(7分)已知关于x ,y 的不等式组{x +x ≤5-2x ,4(x -34)≥x -1.(1)若该不等式组的解集为23≤x ≤3,求k 的值;(2)若该不等式组的解集中整数只有1和2,求k 的取值X 围.21.(7分)某购物广场要修建一个地下停车场,停车场的入口设计示意图如图M3-9所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米. (1)为保证斜坡倾斜角为18°,应在地面上距点B 多远的A 处开始斜坡的施工?(精确到0.1米) (2)给该购物广场送货的货车高度为2.5米,那么按这样的设计,能否保证货车顺利进入地下停车场?请说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)图M3-922.(8分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图M3-10所示:图M3-10大赛结束一个月后,再次调查这部分学生“一周诗词诵背数量”,绘制成统计表: 一周诗词诵背数量3首 4首 5首 6首 7首 8首 人数101015402520请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛一个月后该校学生一周诗词诵背6首以上(含6首)的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(8分)如图M3-11,在平面直角坐标系中,直线l 与x 轴相交于点M ,与y 轴相交于点N ,Rt△MON 的外心为点A32,-2,反比例函数y=xx (x>0)的图象过点A.(1)求直线l 的解析式;(2)在函数y=x x(x>0)的图象上取异于点A 的一点B ,作BC ⊥x 轴于点C ,连接OB 交直线l 于点P ,若△ONP 的面积是△OBC 面积的3倍,求点P 的坐标.图M3-1124.(8分)如图M3-12,△ABC 中,AB=AC ,以AB 为直径的☉O 交BC 于点D ,交AC 于点E ,过点D 作FG ⊥AC 于点F ,交AB 的延长线于点G. (1)求证:FG 是☉O 的切线; (2)若tan C=2,求xx xx 的值.图M3-1225.(12分)如图M3-13,点A ,B ,C 都在抛物线y=ax 2-2amx +am 2+2m -5其中-14<a<0上,AB ∥x轴,∠ABC=135°,AB=4.(1)填空:抛物线的顶点坐标为(用含m 的代数式表示); (2)求△ABC 的面积(用含a 的代数式表示);(3)若△ABC 的面积为2,当2m -5≤x ≤2m -2时,y 的最大值为2,求m 的值.图M3-13【参考答案】1.C2.B3.C4.D5.C[解析]A .当0<k<1时,函数图象经过第一、三、四象限,所以A 选项错误;B .当k>0时,y 随x 的增大而增大,所以B 选项错误;C .当k<1时,函数图象一定交于y 轴的负半轴,所以C 选项正确;D .把x=-1代入y=kx +k -1得y=-k +k -1=-1,则函数图象一定经过点(-1,-1),所以D 选项错误.故选C . 6.C[解析]将三个小区分别记为A,B,C, 列表如下:ABCA (A,A) (B,A) (C,A)B (A,B) (B,B) (C,B)C (A,C) (B,C) (C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种, 所以两个组恰好抽到同一个小区的概率为39=13,故选C . 7.A[解析]由数轴上点的位置,得a<0<b ,|a|=|b|,A .a +b=0,故A 符合题意;B .a -b<0,故B 不符合题意;C .|a|=|b|,故C 不符合题意;D .ab<0,故D 不符合题意.故选A .8.D9.A[解析]∵四边形ABCD 是平行四边形,A (-1,3),B (1,1),C (5,1),∴D (3,3), 把▱ABCD 先沿x 轴翻折,再向左平移1个单位后,D 点坐标为(2,-3),观察,发现规律:D 0(3,3),D 1(2,-3),D 2(1,3),D 3(0,-3),D 4(-1,3),…,∴D 2018(-2015,3). 故选A .10.D[解析]连接OC ,由线段AB 是☉O 的直径,弦CD ⊥AB ,AH=2,CH=4,可得∠CMD=∠AOC , 在Rt △OCH 中,设OC 为x ,可得:x 2=42+(x -2)2,解得x=5,∴cos ∠AOC=xx xx =5-25=35,∵∠CMD=∠AOC ,∴cos ∠CMD=35,故选D .11.111°[解析]如图,∵直线a ∥b ,∴∠3=∠2.∵∠4=∠1,而∠1=66°,∴∠4=66°, ∴∠3=∠A +∠4=45°+66°=111°,∴∠2=∠3=111°.故答案为:111°.12.0.9513.y 1<y 2[解析]∵y=ax 2+bx +c ,x=0时,y=4;x=1时,y=1;x=2时,y=0, ∴{x =4,x +x +x =1,4x +2x +x =0,解得{x =1,x =-4,x =4,∴此抛物线的解析式为y=x 2-4x +4,∴抛物线开口向上,对称轴为直线x=2, ∴抛物线顶点坐标为(2,0),∵1<x 1<2,3<x 2<4,∴y 1<y 2.故答案为y 1<y 2. 14.√342[解析]∵四边形ABCD 为正方形,∴∠BAE=∠D=90°,AB=AD ,在△ABE 和△DAF 中,∵{xx =xx ,∠xxx =∠x ,xx =xx ,∴△ABE ≌△DAF (SAS), ∴∠ABE=∠DAF ,∵∠ABE +∠BEA=90°,∴∠DAF +∠BEA=90°,∴∠AGE=∠BGF=90°, ∵点H 为BF 的中点,∴GH=12BF , ∵BC=5,CF=CD -DF=5-2=3,∴BF=√xx 2+xx 2=√34,∴GH=12BF=√342, 故答案为:√342. 15.8π-8√3[解析]过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=4,∠BAC=∠ABC=∠ACB=60°, ∵AD ⊥BC ,∴BD=CD=2,AD=√3BD=2√3, ∴△ABC 的面积为12BC ·AD=4√3,S 扇形BAC =60π×42360=83π,∴莱洛三角形的面积S=3×83π-2×4√3=8π-8√3,故答案为8π-8√3.16.2√5-2[解析]如图,取BC 中点G ,连接HG ,AG ,∵CH ⊥DB ,点G 是BC 中点, ∴HG=CG=BG=12BC=2,在Rt △ACG 中,AG=√xx 2+xx 2=2√5,∵AH ≥AG -HG ,∴当点H 在线段AG 上时,AH 最小,最小值为2√5-2,故答案为2√5-2. 17.解:(1)原式=12+√3×√32+5-1=12+32+5-1=6. (2)去分母,得2x (x -1)+3(x +1)=2(x -1)(x +1), 解得x=-5,检验:当x=-5时,(x -1)(x +1)≠0, 所以原方程的解为x=-5.18.解:(1)证明:∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F , ∴∠CFD=90°,∠CEB=90°,CE=CF , ∵BC=CD ,∴Rt △BCE ≌Rt △DCF.(2)由(1)得,Rt △BCE ≌Rt △DCF ,∴DF=EB ,设DF=EB=x , ∵∠CFD=90°,∠CEB=90°,CE=CF ,AC=AC , ∴Rt △AFC ≌Rt △AEC (HL), ∴AF=AE ,即AD +DF=AB -BE ,∵AB=21,AD=9,DF=EB=x ,∴9+x=21-x ,解得x=6, 在Rt △DCF 中,∵DF=6,CD=10,∴CF=8,∴Rt △AFC 中,AC 2=CF 2+AF 2=82+(9+6)2=289,∴AC=17.19.解:(1)设清理养鱼网箱的人均支出费用为x 元,清理捕鱼网箱的人均支出费用为y 元, 根据题意,得:{15x +9x =57000,10x +16x =68000,解得:{x =2000,x =3000.答:清理养鱼网箱的人均支出费用为2000元,清理捕鱼网箱的人均支出费用为3000元. (2)设m 人清理养鱼网箱,则(40-m )人清理捕鱼网箱, 根据题意,得:{2000x +3000(40-x )≤102000,x <40-x ,解得:18≤m<20, ∵m 为整数, ∴m=18或m=19,则分配清理人员的方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱; 方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 20.解:(1){x +x ≤5-2x ,①4(x -34)≥x -1,② 由①得:x ≤5-x 3,由②得:x ≥23,∵不等式组的解集为23≤x ≤3, ∴5-x 3=3,解得k=-4. (2)由题意得2≤5-x 3<3,解得-4<k ≤-1.21.解:(1)∵斜坡的倾斜角为18°, ∴∠BAD=18°, ∵BD=CD -CB=1.8(米),∴在Rt △ABD 中,AB=xxtan18°≈1.80.32≈5.6(米).答:应在地面上距点B 约5.6米的A 处开始斜坡的施工. (2)过C 作CE ⊥AD ,垂足为E , ∴∠DCE +∠CDE=90°, ∵∠BAD +∠ADB=90°, ∴∠DCE=∠BAD=18°,在Rt △CDE 中,CE=CD ·cos18°≈2.8×0.95≈2.7(米), ∵2.5<2.7,∴货车能进入地下停车场.22.解:(1)4.5首 (2)1200×40+25+20120=850(人).答:大赛一个月后该学校学生一周诗词诵背6首以上(含6首)的人数大约为850人.(3)①中位数:启动之初,“一周诗词诵背数量”的中位数为4.5首;大赛后,“一周诗词诵背数量”的中位数为6首.②平均数:启动之初,易得样本中数量为4首的有45人,x =1120(3×15+4×45+5×20+6×16+7×13+8×11)=5(首). 大赛后,x =1120(3×10+4×10+5×15+6×40+7×25+8×20)=6(首).综上分析,从中位数、平均数可看出,学生在大赛之后“一周诗词诵背数量”都好于启动之初.根据样本估计总体,该校大赛之后“一周诗词诵背数量”好于启动之初,说明活动效果明显. 23.解:(1)∵点A 为Rt △MON 的外心,∴点A 为MN 的中点, ∵点A 的坐标为32,-2,∴M (3,0),N(0,-4).设直线l 的解析式为y=ax +b , ∵直线l 经过点M ,N ,∴{3x +x =0,x =-4,解得{x =43,x =-4, ∴直线l 的解析式为y=43x -4.(2)将A32,-2代入y=xx得k=-3,∵点B 在y=-3x (x>0)的图象上,BC ⊥x 轴, ∴S △OBC =12OC ·BC=12|x B |·|y B |=32,∴S △ONP =3S △OBC =92,即12ON ·|x P |=92,又∵点P 在第四象限,∴x P =94,在直线y=43x -4中,当x=94时,y=-1,∴点P 的坐标为94,-1. 24.解:(1)证明:连接AD ,OD.∵AB 是☉O 的直径,∴∠ADB=90°,即AD ⊥BC , ∵AC=AB ,∴CD=BD , ∵OA=OB ,∴OD ∥AC , ∵DF ⊥AC ,∴OD ⊥DF , ∴FG 是☉O 的切线. (2)∵tan C=xxxx=2,BD=CD ,∴BD ∶AD=1∶2, ∵∠GDB +∠ODB=90°,∠ADO +∠ODB=90°, ∴∠ADO=∠GDB.∵OA=OD ,∴∠OAD=∠ODA ,∴∠GDB=∠GAD ,∵∠G=∠G ,∴△GDB ∽△GAD.∴xx xx =xx xx =xx xx =12,设BG=a.∴DG=2a ,AG=4a , ∴BG ∶GA=1∶4.25.解:(1)(m ,2m -5)[解析] ∵y=ax 2-2amx +am 2+2m -5=a (x -m )2+2m -5, ∴抛物线的顶点坐标为(m ,2m -5). 故答案为:(m ,2m -5).(2)过点C 作直线AB 的垂线,交线段AB 的延长线于点D ,如图所示.∵AB ∥x 轴,且AB=4,∴点B 的坐标为(m +2,4a +2m -5).∵∠ABC=135°,∴∠DBC=45°,BD=CD.设BD=t ,则CD=t ,∴点C 的坐标为(m +2+t ,4a +2m -5-t ). ∵点C 在抛物线y=a (x -m )2+2m -5上,∴4a +2m -5-t=a (2+t )2+2m -5,整理,得:at 2+(4a +1)t=0, 解得t 1=0(舍去),t 2=-4x +1x,∴S △ABC =12AB ·CD=-8x +2x.(3)∵△ABC 的面积为2,∴-8x +2x=2,解得a=-15,∴抛物线的解析式为y=-15(x -m )2+2m -5. 分三种情况考虑:①当m>2m -2,即m<2时,有-15(2m -2-m )2+2m -5=2, 整理,得m 2-14m +39=0,解得:m 1=7-√10(舍去),m 2=7+√10(舍去); ②当2m -5≤m ≤2m -2,即2≤m ≤5时,有2m -5=2, 解得m=72;③当m<2m -5,即m>5时,有-15(2m -5-m )2+2m -5=2, 整理,得:m 2-20m +60=0,解得m 3=10-2√10(舍去),m 4=10+2√10. 综上所述:m 的值为72或10+2√10.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:已知实数a,b,若a>b,则下列结论正确的是 ( )A.a-5<b-5B.2+a<2+bC.<D.3a>3b试题2:解分式方程=4时,去分母后得( )A.3-x=4(x-2)B.3+x=4(x-2)C.3(2-x)+x(x-2)=4D.3-x=4试题3:不等式组的解集在数轴上表示正确的是 ( )试题4:不等式组的所有整数解的和是 ( )A.2B.3C.5D.6试题5:关于x的一元二次方程x2+(a2-2a)x+a-1=0的两个实数根互为相反数,则a的值为 ( )A.2B.0C.1D.2或0试题6:关于x的不等式x-m>0恰有两个负整数解,则m的取值范围可以是 ( )A.-3<m<-2B.-3≤m<-2C.-3≤m≤-2D.-3<m≤-2试题7:若关于x的方程=2-无解,则m的值为 ( )A.5B.4C.3D.2试题8:一个等腰三角形的两边长分别是方程x2-7x+10=0的两根,则该等腰三角形的周长是 ( )A.12B.9C.13D.12或9试题9:已知关于x,y的二元一次方程组若x+y>3,则m的取值范围是( )A.m>1B.m<2C.m>3D.m>5试题10:若关于x,y的方程组的解是则关于x,y的方程组的解是 ( )A. B.C. D.试题11:一元二次方程y2-y-=0配方后可化为.试题12:数学文化我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛,1个大桶、1个小桶分别可以盛酒多少斛?据此可得1个大桶可以盛酒斛,1个小桶可以盛酒斛.试题13:如果单项式-3x m y n-1和mx2n+1y m是同类项,那么n m的值是.试题14:关于x的两个方程x2-x-2=0与=有一个解相同,则a= .试题15:关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是.试题16:若2n(n≠0)是关于x的方程x2-2mx+2n=0的一个根,则m-n的值为.试题17:解分式方程:=1.试题18:解不等式组并把它的解集在数轴上表示出来.试题19:关于x的一元二次方程kx2-(2k-2)x+(k-2)=0(k≠0).(1)求证:无论k取何值时,方程总有两个不相等的实数根;(2)要使得方程的两个实数根都是整数,求整数k可能的取值.试题20:某中学现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2016年的单价为200元,2018年的单价为162元.(1)求2016年到2018年该品牌足球单价平均每年降低的百分率.(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:A商场买十送一,B商场全场九折.去哪个商场购买足球更优惠?试题21:为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送.若两车合作,各运12趟才能完成,需支付运费共4800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元.(1)分别求出甲、乙两车每趟的运费.(2)若单独租用甲车运完此堆垃圾,需运多少趟?(3)若同时租用甲、乙两车,则甲车运x趟、乙车运y趟,才能运完此堆垃圾,其中x,y均为正整数.①当x=10时,y= ;当y=10时,x= .②用含x的代数式表示y.探究:(4)在(3)的条件下:①用含x的代数式表示总运费.②要想总运费不超过4000元,甲车最多需运多少趟?试题1答案:D试题2答案:A试题3答案:A试题4答案:D试题5答案:B解析:根据“根与系数的关系”得x1+x2=-(a2-2a),∴-(a2-2a)=0,解得a1=0,a2=2,∵当a=2时,原方程x2+1=0是无解的,∴a=0.试题6答案:B试题7答案:C试题8答案:A试题9答案:D解析:①+②得:4x=4m-6,即x=,①-②×3得:4y=-2,即y=-,根据x+y>3得:>3,去分母得:2m-3-1>6,解得:m>5.试题10答案:B试题11答案:y-2=1试题12答案:试题13答案:试题14答案:-5试题15答案:解析:根据题意得a-1≠0且Δ=(-2)2-4×(a-1)×3≥0,解得a≤且a≠1,所以整数a的最大值为0.试题16答案:解析:∵2n(n≠0)是关于x的方程x2-2mx+2n=0的一个根,∴(2n)2-2m×2n+2n=0,原方程整理得:4n2-4mn+2n=0,∴2n(2n-2m+1)=0,∵n≠0,∴2n-2m+1=0,即2n-2m=-1,∴m-n=.试题17答案:解:方程两边同乘(x-3),得2-x-1=x-3,解得x=2,经检验,x=2是原方程的解.试题18答案:解:由3x≥4x-1,得x≤1,由>x-2,得x>-1,所以原不等式组的解集为-1<x≤1. 解集在数轴上表示为:试题19答案:解:(1)证明:∵kx2-(2k-2)x+(k-2)=0(k≠0),∴Δ=[-(2k-2)]2-4k(k-2)=4>0,∴无论k取何值时,方程总有两个不相等的实数根.(2)由求根公式可求得x1=1,x2=1-,要使得方程的两个实数根都是整数,则整数k为2的因数,∴k=±1或k=±2.试题20答案:解:(1)设2016年到2018年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1-x)2=162,解得:x=0.1=10%或x=1.9(舍去).答:2016年到2018年该品牌足球单价平均每年降低的百分率为10%.(2)100×≈90.91(个),在A商场需要的费用为162×91=14742(元),在B商场需要的费用为162×100×0.9=14580(元),14742>14580.答:去B商场购买足球更优惠.试题21答案:解:(1)设甲、乙两车每趟的运费分别为m元、n元,由题意得解得答:甲、乙两车每趟的运费分别为300元、100元.(2)设单独租用甲车运完此堆垃圾,需运a趟,由题意得12=1,解得a=18. 经检验,a=18是原方程的解,且符合题意.答:单独租用甲车运完此堆垃圾,需运18趟.(3)①16 13 ②由=1,得y=36-2x.(4)①总运费:300x+100y=300x+100(36-2x)=100x+3600.②∵100x+3600≤4000,∴x≤4.答:甲车最多需运4趟.。
江苏省镇江市九年级中考模拟测试数学冲刺卷(考试时间:120分钟 试卷满分:120分)第Ⅰ卷(选择题 共12分)一、选择题(共6小题,每小题2分,计12分,每小题只有一个选项是符合题意的)1.成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( ) A .46×10﹣7 B .4.6×10﹣7C .4.6×10﹣6D .0.46×10﹣5【答案】C【解析】0.0000046=4.6×10﹣6. 故选:C .2.下列运算正确的是( ) A .2325a a a += B .232a a a -= C .325()()a a a --=-gD .324222(24)(2)2a b ab ab b a -÷-=- 【答案】D【解析】 A 、325a a a +=,故此选项错误; B 、232a a -,无法计算,故此选项错误;C 、325()()a a a --=g ,故此选项错误;D 、324222(24)(2)2a b ab ab b a -÷-=-,正确.故选:D .3.有理数8-的立方根为( ) A .2- B .2C .2±D .4±【答案】A【解析】 有理数8-2=-.故选:A . 4. 下列各数中,小于﹣2的数是( ) A .﹣B .﹣C .﹣D .﹣1【答案】A【解析】 比﹣2小的数是应该是负数,且绝对值大于2的数, 分析选项可得,﹣<﹣2<﹣<﹣<﹣1,只有A 符合.故选:A .5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是 A .a>b B .|a| < |b| C .a+b>0 D .ba <0【答案】D【解析】 a 是负数,b 是正数,异号两数相乘或相除都得负.故选:D6.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A.B.C.D.【答案】A【解析】过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF =.故选:A .第Ⅱ卷(非选择题 共108分)二、填空题(共10小题,每小题2分,计20分)7. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2()a b -的值是 .【答案】1【解析】 根据勾股定理可得2213a b +=,四个直角三角形的面积是:14131122ab ⨯=-=,即:212ab =,则222()213121a b a ab b -=-+=-=. 故答案为:1.8.数轴上表示﹣3的点到原点的距离是 . 【答案】3【解析】在数轴上表示﹣3的点与原点的距离是|﹣3|=3.故答案为:3.9.分解因式:ax2﹣ay2=.【答案】a(x+y)(x﹣y)【解析】ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).10.若在实数范围内有意义,则x的取值范围为.【答案】x≥2【解析】由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.11.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是.【答案】48°【解析】∵a∥b,∴∠2=∠1+∠CAB=18°+30°=48°,故答案为:48°12. 如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.【答案】3【解析】结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.【答案】90【解析】由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.14.a 是方程2x 2=x +4的一个根,则代数式4a 2﹣2a 的值是 . 【答案】8【解析】 ∵a 是方程2x 2=x +4的一个根, ∴2a 2﹣a =4,∴4a 2﹣2a =2(2a 2﹣a )=2×4=8. 故答案为:8.15. 如图,AB 是O e 的弦,OC AB ⊥,垂足为点C ,将劣弧¶AB 沿弦AB 折叠交于OC 的中点D ,若AB =,则O e 的半径为 .【答案】【解析】 连接OA ,设半径为x ,Q 将劣弧¶AB 沿弦AB 折叠交于OC 的中点D ,23OC x ∴=,OC AB ⊥, 12AC AB ∴=, 222OA OC AC -=Q ,∴222()103x x -=,解得,x =故答案为:16.如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)【答案】①③④【解析】 ∵四边形ABCD 是平行四边形, ∴CD ∥AB ,OD =OB ,OA =OC , ∴∠DCB +∠ABC =180°, ∵∠ABC =60°, ∴∠DCB =120°, ∵EC 平分∠DCB , ∴∠ECB =∠DCB =60°,∴∠EBC =∠BCE =∠CEB =60°, ∴△ECB 是等边三角形, ∴EB =BC , ∵AB =2BC ,∴EA=EB=EC,∴∠ACB=90°,∵OA=OC,EA=EB,∴OE∥BC,∴∠AOE=∠ACB=90°,∴EO⊥AC,故①正确,∵OE∥BC,∴△OEF∽△BCF,∴==,∴OF=OB,∴S△AOD=S△BOC=3S△OCF,故②错误,设BC=BE=EC=a,则AB=2a,AC=a,OD=OB==a,∴BD=a,∴AC:BD=a:a=:7,故③正确,∵OF=OB=a,∴BF=a,∴BF2=a2,OF•DF=a•(a+a)=a2,∴BF2=OF•DF,故④正确,故答案为①③④.三、解答题(共11小题,计88分.解答应写出过程) 17.(7分)化简:(12)2(1)(1)a a a a -++- 【解析】 原式2222(1)a a a =-+- 22222a a a =-+-2a =-18.(7分) 解方程:2121xx x +=+- 【解析】 ab (3a ﹣2b )+2ab 2 =3a 2b ﹣2ab 2+2ab 2 =3a 2b .19.(7分)如图,在矩形ABCD 中,点E ,F 在对角线BD .请添加一个条件,使得结论“AE =CF ”成立,并加以证明.【解析】添加的条件是BE =DF (答案不唯一). 证明:∵四边形ABCD 是矩形, ∴AB ∥CD ,AB =CD ,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.20.(8分)如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题(1)这个班级有多少名同学?并补全条形统计图;(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.【解析】(1)这个班级的学生人数为15÷30%=50(人),选择C饮品的人数为50﹣(10+15+5)=20(人),补全图形如下:(2)=2.2(元),答:该班同学每天用于饮品的人均花费是2.2元;(3)画树状图如下:由树状图知共有20种等可能结果,其中恰好抽到2名班长的有2种结果,所以恰好抽到2名班长的概率为=.21.(7分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.【解析】(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;(2)由(1)得FM∥AD,EM∥CD,∴===,∴AF=2.4,CE=2.4,∵△MFN≌△MEC,∴FN=EC=2.4,∴AN=4.8,BN=6﹣4.8=1.2,∴AN=4BN;(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH,∠DCM=∠BCH=45°,∴∠MBH=90°,∠MCH=90°,∵MC=MN,MC⊥MN,∴△MNC是等腰直角三角形,∴∠MNC=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为6,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGC∽△NGB,∴=,∴CG•NG=BG•MG=.22.(8分)如图,在Rt ABC∠的平分线AD交BC于点D,点E在AC上,∆中,90B∠=︒,BAC以AE为直径的Oe经过点D.(1)求证:①BC是Oe的切线;②2=g;CD CE CA(2)若点F是劣弧AD的中点,且3CE=,试求阴影部分的面积.【解析】 (1)①连接OD ,AD Q 是BAC ∠的平分线,DAB DAO ∴∠=∠,OD OA =Q ,DAO ODA ∴∠=∠, DAO ADO ∴∠=∠, //DO AB ∴,而90B ∠=︒,90ODB ∴∠=︒, BC ∴是O e 的切线;②连接DE ,BC Q 是O e 的切线,CDE DAC ∴∠=∠,C C ∠=∠,CDE CAD ∴∆∆∽, 2CD CE CA ∴=g ;(2)连接DE 、OE ,设圆的半径为R ,Q 点F 是劣弧AD 的中点,∴是OF 是DA 中垂线,DF AF ∴=,FDA FAD ∴∠=∠,//DO AB Q ,PDA DAF ∴∠=∠, ADO DAO FDA FAD ∴∠=∠=∠=∠,AF DF OA OD ∴===,OFD ∴∆、OFA ∆是等边三角形,30C ∴∠=︒, 1()2OD OC OE EC ∴==+,而OE OD =,3CE OE R ∴===, 260333602DFO S S ππ==⨯⨯=阴影扇形. 23.(8分)如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣,0),(,1),连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【解析】 (1)如图,过点B 作BH ⊥x 轴 ∵点A 坐标为(﹣,0),点B 坐标为(,1)∴|AB |==2∵BH =1 ∴sin ∠BAH ==∴∠BAH =30° ∵△ABC 为等边三角形 ∴AB =AC =2∴∠CAB+∠BAH=90°∴点C的纵坐标为2∴点C的坐标为(,2)(2)由(1)知点C的坐标为(,2),点B的坐标为(,1),设直线BC的解析式为:y =kx+b则,解得故直线BC的函数解析式为y=x+24.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【解析】作CE⊥AB于E,则四边形CDBE 为矩形, ∴CE =AB =20,CD =BE , 在Rt △ADB 中,∠ADB =45°, ∴AB =DB =20,在Rt △ACE 中,tan ∠ACE =,∴AE =CE •tan ∠ACE ≈20×0.70=14, ∴CD =BE =AB ﹣AE =6,答:起点拱门CD 的高度约为6米.25.(8分)现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A 的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A 的纵坐标,试用画树状图或列表的方法求出点A 在直线y=2x 上的概率. 【解析】(1)∵抽取的负数可能为-2,-1,∴抽取出数字为负数的概率为P=2142 (2)列表如下∵共有16种等可能结果,其中点A 在直线y=2x 上的结果有2种 ∴点A 在直线y=2x 上的概率为81162=='P 26.(9分)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p =t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣(t ﹣h )2+0.4刻画.(1)求h 的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m .(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【解析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得,0.3=﹣(25﹣h)2+0.4,解得:h=29或h=21,∵h>25,∴h=29;(2)①由表格可知,m是p的一次函数,∴m=100p﹣20;②当10≤t≤25时,p=t﹣,∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4,∴m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t﹣200,∴增加利润为600m+[200×30﹣w(30﹣m)]=40t2﹣600t﹣4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[200×30﹣w(30﹣m)]=900×(﹣)×(t﹣29)2+15000=﹣(t﹣29)2+15000;∴当t=29时,增加的利润最大值为15000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为15000元.27.(11分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【解析】(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).。
河北省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m表示向东走30 m,那么向西走40 m表示为( ▲)A.+30 m B.-30 m C.+40 m D.-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲)A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10-4吨a 的值为( ▲)3. 已知点A(a,2013)与点A′(-2014,b)是关于原点O的对称点,则bA . 1B . 5C . 6D .44.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135 D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4B .3,3.5C . 3.5,3D .4,36.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.0 0 3 5 3 5 1414ABCDA .4nB . 5n-4C .4n-3D . 3n-29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ ) A .4 B .3 C .2 D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个B.3个C.4个D.5个13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥ABCDP图114.已知,△ABC 中,∠A=90°,∠ABC=30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A .15个B .13个C .11个D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=ya 则y x a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 河北省初中毕业生升学文化课模拟考试(第14题)总 分 核分人(第15题)数学试卷卷II(非选择题,共78分)注意事项:1.答卷II前,将密封线左侧的项目填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三21 22 23 24 25 26得分得分评卷人二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是▲ .18.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是▲.19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA=OB=6,点C 在第一象限,∠A=30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。
2020年常州市新北区中考数学模拟试卷(4月份)一、选择题(共8小题).1.已知α=60°,则cosα等于()A.B.C.D.2.在平面直角坐标系xOy中,点A的坐标为(﹣2,1),则点A关于x轴的对称点的坐标为()A.(﹣2,﹣1)B.(2,﹣1)C.(2,1)D.(﹣1,2)3.数据2、8、3,5,5,4的众数、中位数分别是()A.4.5、5B.5、4.5C.5、4D.5、54.一次函数y=kx+b的图象经过点(﹣1,2),则k﹣b的值是()A.﹣1B.2C.1D.﹣25.在平面直角坐标系xOy中,点A的坐标为(1,2),如果射线OA与x轴正半轴的夹角为α,那么sinα的值是()A.B.2C.D.6.如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是A、B,若∠P=60°,PA =4,则⊙O的半径长是()A.B.2C.4D.27.将一副三角尺如图放置,∠ACB=∠CBD=90°,∠A=30°,∠D=45°,边AB、CD 交于O,若OB=1,则OA的长度是()A.B.2C.1D.8.如图,在平面直角坐标系xOy中,四边形ABCD是矩形,点A的坐标为(2,0),点B的坐标为(0,4),顶点C在反比例函数y=的图象上,若AD:AB=1:2,则k的值是()A.8B.10C.12D.6二、填空题(本大题共10小题.每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应的位置上)9.若反比例函数y=的图象经过点A(1,2),则k=.10.若,则=.11.学校朗诵比赛,参加决赛的是3名女生和2名男生,现抽签决定比赛顺序,那么第一个出场为女生的概率是.12.如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE 与△ABC的面积的比为.13.二次函数y=﹣x2+4x﹣3图象的顶点坐标为.14.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为.15.如图,AB是⊙O的直径,点C、D是圆上位于AB两侧的点,若∠BAC=58°,则∠D=°.16.已知扇形的面积是π,圆心角120°,则这个扇形的半径是.17.在研究一次函数y1=kx+b与反比例函数y2=时,列表如下:x…﹣2﹣11234…y1=kx+b…653210…y2=…﹣331…由此可以推断,当y1>y2,自变量x的取值范围是.18.如图,在⊙O中,C是弦AB上一点,AC=2,CB=4.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为.三、解答题(本大题共有10小题,共84分.解答时应写出必要的文字说明、证明过程或演算步骤)19.化简:(1);(2).20.解方程:(1)x2﹣1=3(x﹣1);(2)x2﹣4x=﹣1.21.为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.22.一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.23.如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB=AD.(1)判断三角形△FDB与△ABC是否相似,并说明理由;(2)若AF=2,求DF的长.24.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.25.如图,已知AB为⊙O的直径,C为⊙O上一点,BG与⊙O相切于点B交AC的延长线于点D(点D在线段BG上),AC=8,tan∠BDC=.(1)求⊙O的直径;(2)当DG=时,过G作GE∥AD,交BA的延长线于点E,证明GE与⊙O相切.26.根据完全平方公式可以作如下推导(a、b都为非负数):∵a﹣2+b=(﹣)2≥0,∴a﹣2+b≥0.∴a+b≥2∴≥.其实,这个不等关系可以推广,≥;;;…(以上a n都是非负数).我们把这种关系称为:算术﹣几何均值不等式.例如:x为非负数时,x+=2,则x+有最小值.再如:x为非负数时,x+x+=3.我们来研究函数:y=.(1)这个函数的自变量x的取值范围是;(2)完成表格并在坐标系中画出这个函数的大致图象;x…﹣3﹣2﹣1123…y…838459…(3)根据算术﹣几何均值不等式,该函数在第一象限有最值,是;(4)某同学在研究这个函数时提出这样一个结论:当x>a时,y随x增大而增大,则a 的取值范围是.27.如图,一次函数y=kx+b的图象与x轴交于点B(6,0),与y轴交于点A,与二次函数y=ax2的图象在第一象限内交于点C(3,3).(1)求此一次函数与二次函数的表达式;(2)若点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠ADO =∠OED,求点D坐标.28.二次函数y=(x﹣h)2+k的顶点在x轴上,其对称轴与直线y=x交于点A(1,1),点P是抛物线上一点,以P为圆心,PA长为半径画圆,⊙P交x轴于B、C两点.(1)h=,k=;(2)①当点P在顶点时,BC=;②BC的值是否随P点横坐标的变化而变化?如果变化,请说明理由,如果不变化,请求出这个值.参考答案一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,恰有一项是正确的,请把答案直接填涂在答题卡相应的位置上)1.已知α=60°,则cosα等于()A.B.C.D.【分析】直接根据cos60°=进行解答即可.解:∵cos60°=,α=60°,∴cosα=.故选:C.2.在平面直角坐标系xOy中,点A的坐标为(﹣2,1),则点A关于x轴的对称点的坐标为()A.(﹣2,﹣1)B.(2,﹣1)C.(2,1)D.(﹣1,2)【分析】根据关于x轴的对称点的坐标特点可得答案.解:点A关于x轴的对称点的坐标为(﹣2,﹣1),故选:A.3.数据2、8、3,5,5,4的众数、中位数分别是()A.4.5、5B.5、4.5C.5、4D.5、5【分析】根据众数和中位数的定义求解.解:5出现了2次,出现次数最多,所以这组数据的众数是5,数据按从小到大排列为:2,3,4,5,5,8,这组数据的中位数=4.5,故选:B.4.一次函数y=kx+b的图象经过点(﹣1,2),则k﹣b的值是()A.﹣1B.2C.1D.﹣2【分析】把点(﹣1,2)代入y=kx+b解得即可.解:∵一次函数y=kx+b的图象经过点(﹣1,2),∴2=﹣k+b,∴k﹣b=﹣2,故选:D.5.在平面直角坐标系xOy中,点A的坐标为(1,2),如果射线OA与x轴正半轴的夹角为α,那么sinα的值是()A.B.2C.D.【分析】如图,作AH⊥x轴于H.利用勾股定理求出OA即可解决问题.解:如图,作AH⊥x轴于H.∵A(1,2),∴OH=1.AH=2,∵∠AHO=90°,∴OA=,∴sinα=,故选:D.6.如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是A、B,若∠P=60°,PA =4,则⊙O的半径长是()A.B.2C.4D.2【分析】连接OA,OP,根据切线长定理知∠APO=30°,由此求得OA的长.解:连接OA,OP,∵PA、PB都是⊙O的切线,∴OA⊥PA,∠APO=∠BPO,又∵∠APB=60°,∴∠APO=30°,∵PA=4,∴OA=×4=4.故选:C.7.将一副三角尺如图放置,∠ACB=∠CBD=90°,∠A=30°,∠D=45°,边AB、CD 交于O,若OB=1,则OA的长度是()A.B.2C.1D.【分析】根据含30°的直角三角形的边长关系和等腰直角三角形的边长关系解答即可.解:∵∠ACB=∠CBD=90°,∠A=30°,∠D=45°,设BC=a,可得:BD=a,AC=a,∵∠ACB=∠CBD=90°,∴BD∥CA,∴△BDO∽△ACO,∴,即,解得:OA=,故选:A.8.如图,在平面直角坐标系xOy中,四边形ABCD是矩形,点A的坐标为(2,0),点B的坐标为(0,4),顶点C在反比例函数y=的图象上,若AD:AB=1:2,则k的值是()A.8B.10C.12D.6【分析】作CE⊥y轴于E,易证得△AOB∽△BEC,求得C的坐标,然后根据待定系数法即可求得.解:作CE⊥y轴于E,∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC,∴∠ABO+∠EBC=90°=∠ABO+∠BAO,∴∠EBC=∠BAO,∵∠BEC=∠AOB,∴△AOB∽△BEC,∴==,∵点A的坐标为(2,0),点B的坐标为(0,4),AD:AB=1:2,∴OA=2,OB=4,BC:AB=1:2,∴==,∴BE=1,EC=2,∴OE=OB+BE=1+4=5,∴C(2,5),∵顶点C在反比例函数y=的图象上,∴k=2×5=10,故选:B.二、填空题(本大题共10小题.每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应的位置上)9.若反比例函数y=的图象经过点A(1,2),则k=2.【分析】根据反比例函数图象上点的坐标特点可得k=1×2=2.解:∵反比例函数y=的图象经过点A(1,2),∴k=1×2=2,故答案为:2.10.若,则=.【分析】先用b表示出a,然后代入比例式进行计算即可得解.解:∵=,∴a=,∴=.故答案为:.11.学校朗诵比赛,参加决赛的是3名女生和2名男生,现抽签决定比赛顺序,那么第一个出场为女生的概率是.【分析】直接利用概率公式计算.解:第一个出场为女生的概率==.故答案为.12.如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE 与△ABC的面积的比为1:9.【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故答案为:1:9.13.二次函数y=﹣x2+4x﹣3图象的顶点坐标为(2,1).【分析】利用配方法将y=﹣x2+4x﹣3进行配方得出顶点形式,即可得出顶点坐标.解:y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴二次函数y=x2﹣4x+3的图象的顶点坐标是:(2,1),故答案为:(2,1).14.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为x(16﹣2x)=30.【分析】可设宽为x m,则长为(16﹣2x)m,根据等量关系:面积是30m2,列出方程即可.解:设宽为x m,则长为(16﹣2x)m.由题意,得x(16﹣2x)=30,故答案为:x(16﹣2x)=30.15.如图,AB是⊙O的直径,点C、D是圆上位于AB两侧的点,若∠BAC=58°,则∠D=32°.【分析】先根据圆周角定理得到∠ACB=90°,则利用互余可计算出∠B=32°,然后根据圆周角定理得到∠D的度数.解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠BAC=90°﹣58°=32°,∴∠D=∠B=32°.故答案为32.16.已知扇形的面积是π,圆心角120°,则这个扇形的半径是.【分析】设该扇形的半径是r,再根据扇形的面积公式即可得出结论.解:设该扇形的半径是r,则π=,解得r=.故答案是:.17.在研究一次函数y1=kx+b与反比例函数y2=时,列表如下:x…﹣2﹣11234…y1=kx+b…653210…y2=…﹣331…由此可以推断,当y1>y2,自变量x的取值范围是x<0或1<x<3.【分析】根据图象知,两个函数的图象的交点是(1,3),(3,1).由图象可以直接写出当y1>y2时所对应的x的取值范围.解:由列表知,一次函数y1=kx+b与反比例函数y2=的交点是(1,3),(3,1),画出简图如下:由图象可知当y1>y2时,x<0或1<x<3;故答案为x<0或1<x<3.18.如图,在⊙O中,C是弦AB上一点,AC=2,CB=4.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为2.【分析】延长DC交⊙O于点E.由相交弦定理构建方程即可解决问题.解:延长DC交⊙O于点E.∵OC⊥DE,∴DC=CE,∵AC•CB=DC•CE(相交弦定理,可以证明△ADC∽△EBC得到),∴DC2=2×4=8,∵DC>0,∴DC=2,故答案为2.三、解答题(本大题共有10小题,共84分.解答时应写出必要的文字说明、证明过程或演算步骤)19.化简:(1);(2).【分析】(1)原式利用特殊角的三角函数值计算即可求出值;(2)原式利用零指数幂、负整数指数幂法则,以及二次根式性质计算即可求出值.解:(1)原式=+=+=;(2)原式=2﹣2+1=1.20.解方程:(1)x2﹣1=3(x﹣1);(2)x2﹣4x=﹣1.【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.解:∵(x+1)(x﹣1)=3(x﹣1),∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,解得x1=2,x2=1.(2)∵x2﹣4x+1=0,∴(x﹣2)2=3,∴.21.为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%﹣40%)=3600(人),答:估计该市初中学生这学期课外阅读超过2册的人数是3600人.22.一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.【分析】(1)根据袋子中球的个数和球面上分别标有的数字,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所以等可能的结果数和2次摸出的乒乓球球面上数字之和为偶数的结果数,然后根据概率公式求解即可.解:(1)∵共有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4,∴摸出的乒乓球球面上数字为1的概率是;(2)根据题意画树状图如下:共有12种等可能的结果,两次摸出的乒乓球球面上的数字的和为偶数的有4种情况,则两次摸出的乒乓球球面上的数字的和为偶数的概率为=.23.如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB=AD.(1)判断三角形△FDB与△ABC是否相似,并说明理由;(2)若AF=2,求DF的长.【分析】(1)由AD=AB知∠ABD=∠ADB,由ED垂直平分BC知EB=EC,据此得∠EBC=∠ECB,继而得证;(2)由△FBD∽△ABC知,根据ED垂直平分BC知,从而得.结合AB=AD可以得出答案.【解答】证明:(1)△FBD∽△ABC,理由如下:∵AD=AB,∴∠ABD=∠ADB,∵ED垂直平分BC,∴EB=EC,∴∠EBC=∠ECB,∴△FBD∽△ABC;(2)∵△FBD∽△ABC,∴,∵ED垂直平分BC,∴,∴.∴FD=FA=2.24.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC=.25.如图,已知AB为⊙O的直径,C为⊙O上一点,BG与⊙O相切于点B交AC的延长线于点D(点D在线段BG上),AC=8,tan∠BDC=.(1)求⊙O的直径;(2)当DG=时,过G作GE∥AD,交BA的延长线于点E,证明GE与⊙O相切.【分析】(1)由直径所对的圆周角为直角及同角的余角相等证得∠BDC=∠ABC,结合AC=8,tan∠BDC=,可求得BC的长,由勾股数可得直径AB的长;(2)过点D作DF⊥GE于F,过点O作OH⊥GE于H交AD于M,先由平行线的性质证得∠G=∠BDC,利用勾股定理解得DF=2,再由平行线的性质得出DF=MH=2,OM⊥AM,然后由三角形的中位线定理得出OM的长,从而可知OH的长等于⊙O的半径,则由切线的判定定理得出结论.解:(1)∵AB为⊙O的直径,C为⊙O上一点,∴∠ACB=90°,∵BG与⊙O相切于点B,∴∠ABD=90°,∴∠BDC+∠BAC=90°,∠ABC+∠BAC=90°,∴∠BDC=∠ABC,∵tan∠BDC=,∴tan∠ABC=.∵AC=8,∴=,∴=,∴BC=6,∴由勾股定理得:AB=10,∴⊙O的直径为10;(2)过点D作DF⊥GE于F,过点O作OH⊥GE于H交AD于M,GE∥AD,∴∠G=∠BDC,∴tan∠G=tan∠BDC=,∴设DF=4x,FG=3x,∵DG=,∴由勾股定理得:(4x)2+(3x)2=,解得:x=,∴DF=4x=2,∵GE∥AD,DF⊥GE,OH⊥GE,∴DF=MH=2,OM⊥AM,又∵O为AB中点,∴OM=BC=3,∴OH=5,又∵⊙O的直径为10,从而半径r=5,∴OH=r,∴EG与⊙O相切.26.根据完全平方公式可以作如下推导(a、b都为非负数):∵a﹣2+b=(﹣)2≥0,∴a﹣2+b≥0.∴a+b≥2∴≥.其实,这个不等关系可以推广,≥;;;…(以上a n都是非负数).我们把这种关系称为:算术﹣几何均值不等式.例如:x为非负数时,x+=2,则x+有最小值.再如:x为非负数时,x+x+=3.我们来研究函数:y=.(1)这个函数的自变量x的取值范围是x≠0;(2)完成表格并在坐标系中画出这个函数的大致图象;x…﹣3﹣2﹣1123…y…83﹣184359…(3)根据算术﹣几何均值不等式,该函数在第一象限有最小值,是3;(4)某同学在研究这个函数时提出这样一个结论:当x>a时,y随x增大而增大,则a 的取值范围是a≥1.【分析】(1)根据题目中的函数解析式,可以写出x的取值范围;(2)根据题目中的函数解析式,将x=﹣1和x=1代入函数解析式,即可得到相应的y 的值,然后根据表格中的数据,可以将函数图象在坐标系中画出来;(3)根据算术﹣几何均值的计算方法,可以求得题目中的函数在第一象限的最值;(4)根据函数图象,可以得到a的取值范围.解:(1)∵y=.∴x≠0,故答案为:x≠0;(2)当x=﹣1时,y=+(﹣1)2=﹣1,当x=1时,y=+12=3,故答案为:﹣1,3,函数图象如右图所示;(3)当x>0时,=≥3=3,此时x=1,故答案为:小,3;(4)由图象可得,当x≥1时,y随x的增大而增大,∵当x>a时,y随x增大而增大,∴a的取值范围是a≥1,故答案为:a≥1.27.如图,一次函数y=kx+b的图象与x轴交于点B(6,0),与y轴交于点A,与二次函数y=ax2的图象在第一象限内交于点C(3,3).(1)求此一次函数与二次函数的表达式;(2)若点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠ADO =∠OED,求点D坐标.【分析】(1)利用待定系数法可求解析式;(2)设点D(m,﹣m+6),则点E(m,m2),可得DE=﹣m+6﹣m2,通过证明△ODA∽△DEO,可得OD2=OA•DE,可求m的值,即可求解.解:(1)∵二次函数y=ax2的图象过点C(3,3),∴3=9a,∴a=,∴二次函数的表达式为y=x2,∵一次函数y=kx+b的图象经过点B(6,0)点C(3,3),∴,解得:,∴一次函数的表达式为y=﹣x+6;(2)∵一次函数的表达式为y=﹣x+6与y轴交于点A;∴点A(0,6),∴OA=6,设点D(m,﹣m+6),则点E(m,m2),∴DE=﹣m+6﹣m2,∵DE∥y轴.∴∠AOD=∠ODE,又∵∠ADO=∠OED,∴△ODA∽△DEO,∴,∴OD2=OA•DE,∴m2+(﹣m+6)2=6×(﹣m+6﹣m2)∴m=0(不合题意)或m=,∴点D坐标为(,).28.二次函数y=(x﹣h)2+k的顶点在x轴上,其对称轴与直线y=x交于点A(1,1),点P是抛物线上一点,以P为圆心,PA长为半径画圆,⊙P交x轴于B、C两点.(1)h=1,k=0;(2)①当点P在顶点时,BC=2;②BC的值是否随P点横坐标的变化而变化?如果变化,请说明理由,如果不变化,请求出这个值.【分析】(1)由题意可求k=0,h=1;(2)①先求点P(1,0),可求BP=CP=1,即可求解;②设P(m,(m﹣1)2),利用两点距离公式分别求出PC2=PA2=(m﹣1)2+[(m﹣1)2﹣1]2,PH2=[(m﹣1)2]2,由勾股定理可求CH2=1,可得CH=1,由垂径定理可得BC=2CH=2,即可求解.解:(1)∵二次函数y=(x﹣h)2+k的顶点在x轴上,其对称轴与直线y=x交于点A(1,1),∴k=0,h=1,故答案为:h=1,k=0;(2)①当点P在顶点,即点P(1,0),∴PA=1,∵以P为圆心,PA长为半径画圆,⊙P交x轴于B、C两点.∴PB=PC=1,∴BC=2,故答案为:2;②BC的值不随P点横坐标的变化而变化;如图,过P作PH⊥x轴于H,∵k=0,h=1,∴二次函数解析式为:y=(x﹣1)2,设P(m,(m﹣1)2),∴PC2=PA2=(m﹣1)2+[(m﹣1)2﹣1]2,PH2=[(m﹣1)2]2,∴CH2=PC2﹣PH2=1,∴CH=1,∵PH⊥BC,∴BC=2CH=2,∴BC的值不随P点横坐标的变化而变化.。
河南省2020年中考模拟数学试卷 (一)一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10123.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.28.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x﹣h﹣3)2+k+3=x+n的两根为.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,A级人数占本次抽取人数的百分比为%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.3.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°【分析】依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05;由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10.故选:C.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式进而得出不等式组的解集,进而得出答案.【解答】解:,解①得:x>﹣6,解②得:x≤13,故不等式组的解集为:﹣6<x≤13,在数轴上表示为:.故选:B.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.2【分析】判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.【解答】解:由得,∴A(2,3),由一次函数y=x+,令y=0,解得x=﹣2,∴(﹣2,0),∴S△AOB=OB•|y A|==3,AB==5,∵当OP⊥AB时,OP最小,∴S△AOB=AB•OP最小,∴×5OP最小=3∴OP最小=,故选:C.8.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN =∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE∽△FGC便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC=BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.【分析】分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.【解答】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=,①当P在OB上时,即0≤x≤1,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•OP=×2x(1﹣x)=﹣x2+x;②当P在OD上时,即1<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2﹣x):1,∴EF=4﹣2x,∴y=EF•OP==﹣x2+3x﹣2,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.根据题意可知符合题意的图象只有选项B.故选:B.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=0 .【分析】直接利用负指数幂的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣4+4=0.故答案为:0.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.【分析】用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图展示所有9种等可能的结果数,找出某一初三男学生同时选择篮球和立定跳远这两项的结果数,然后根据概率公式求解.【解答】解:用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d 分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图为:共有12种等可能的结果数,其中某一初三男学生同时选择篮球和立定跳远这两项的结果数为1,所以某一初三男学生同时选择篮球和立定跳远这两项的概率=.故答案为.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x ﹣h﹣3)2+k+3=x+n的两根为2或6 .【分析】根据函数与方程的关系及函数平移的规律,变形要求的方程,利用平移规律可解.【解答】解:由方程a(x﹣h﹣3)2+k+3=x+n得a(x﹣h﹣3)2+k=x+n﹣3①方程①可看作左边是二次函数y=a(x﹣h﹣3)2+k,右边是一次函数y=x+n﹣3根据平移知识,可知方程①相当于关于x的一元二次方程a(x﹣h)2+k=x+n②,左右两边都向右平移3个单位而方程②的两根为x1=﹣1,x2=3∴方程①的两根为x1=2,x2=6故答案为2或6.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.【分析】连接B1、B2、B3、B4点,显然它们共线且平行于AC1,依题意可知△B1B2C1与△C1AA1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AA2=1:2,所以B2C2:C2A=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S6的值,即可求解.【解答】解:解:连接B1、B2、B3、B4.∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴=×1×1=,=×2×1=1,=×3×1=,…==3,连接B1、B2、B3点,显然它们共线且平行于AA1易知S1=,∵B2B3∥AA2,∴△B2C2B3∽△A2C2A,∴=,∴S2==,同理可求,S3==,S4=×2=,S5==,S6==,∴S1+S2+S3+S4+S5+S6==,故答案为:.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=1或﹣.【分析】分两种情形:①如图1中,当∠DGF=90°时,作DH⊥BC于H.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.【解答】解:①如图1中,当∠DGF=90°时,作DH⊥BC于H.在Rt△ACB中,∵∠ACB=90°,AC=2,BC=4,∴AB===2,∵AD=DB,∴CD=AB=,∵DH∥AC,AD=DB,∴CH=BH,∴DH=DG=AC=1,∴CG=﹣1,∵DC=DB,∴∠DCB=∠B,∴cos∠DCB=cos∠B=,∴CE=CG÷cos∠DCB=﹣.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.易证四边形DKEH是正方形,可得EH=DH=1,∵CH=BH=2,∴CE=1,综上所述,满足条件的CE的值为1或﹣.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.【分析】根据分式的减法和除法可以化简题目中的式子,然后由方程a2+a﹣6=0可以求得a的值,然后将a的值代入化简后的式子即可解答本题,注意代入a的值必须使得原分式有意义.【解答】解:====,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式==.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1 时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB=60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50 名学生,A级人数占本次抽取人数的百分比为24 %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72 度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:1000×=80(人),答:该校D级学生有80人.19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)【分析】过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,求DE的问题就可以转化为求∠DBE的度数或三角函数值的问题.Rt△DCE中根据三角函数就可以求出CD的长.【解答】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景点C与景点D之间的距离约为4km.20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=;(2)不等式2x+6<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴>0∴S△BMN=|MN|×|y M|==(n﹣3)2+,∴n=3时,△BMN的面积最大,最大值为.21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?【分析】(1)首先设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,然后根据题意,即可得方程,解方程即可求得答案;(2)设至少需购进B种台灯x盏,然后由该商场销售这批台灯的总利润不少于1400元,即可得一元一次不等式35y+20(50﹣y)≥1400,解此不等式即可求得答案;(3)首先设该商场购进A种台灯m盏,由该商场预计用不多于2600元的资金购进这批台灯,可通过不等式组求得m的取值范围,然后求得该商场获得的总利润与该商场购进A种台灯的盏数的一次函数,由10<a<20,根据一次函数的增减性即可求得答案.【解答】解:(1)设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,由题意得:40x+65(50﹣x)=2500,解得:x=30,∴该商场购进A种台灯30盏,购进B种台灯20盏.(2)设购进B种台灯y盏,由题意得:35y+20(50﹣y)≥1400,解得:y≥,∴y的最小整数解为27,∴至少需购进B种台灯27盏;(3)设该商场购进A种台灯m盏,由题意得:40m+65(50﹣m)≤2600,解得:m≥26,∴26≤m30,设该商场获得的总利润为w元,则w=20m+(35﹣a)(50﹣m)=(a﹣15)m+1750﹣50a,∵10<a<20,∴当10<a≤15时,m=26,即购进A种台灯26盏,购进B种台灯24盏,该商场获得的总利润最大,当15<a<20时,m=30,即购进A种台灯30盏,购进B种台灯20盏,该商场获得的总利润最大.22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为 1 ;②∠DBE的度数为90°.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.【分析】(1)由直角三角形的性质可得∠ABC=45°,可得∠DBE=90°,通过证明△ACD ∽△BCE,可得的值;(2)通过证明△ACD∽△BCE,可得的值,∠CBE=∠CAD=60°,即可求∠DBE的度数;(3)分点D在线段AB上和BA延长线上两种情况讨论,由直角三角形的性质可证CM=BM=,即可求DE=2,由相似三角形的性质可得∠ABE=90°,BE=AD,由勾股定理可求BE的长.【解答】解:(1)∵∠ACB=90°,∠CAB=45°∴∠ABC=∠CAB=45°∴AC=BC,∠DBE=∠ABC+∠CBE=90°∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且∠CAB=∠CDE=45°,∴△ACD∽△BCE∴故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,且△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.【分析】(1)利用抛物线的对称性得到B(3,0),则设交点式为y=a(x+1)(x﹣3),把C(0,﹣3)代入求出a即可得到抛物线解析式,然后把解析式配成顶点式即可得到D 点坐标;(2)设P(m,m2﹣2m﹣3),先确定直线BC的解析式y=x﹣3,再确定E(1,﹣2),则可根据三角形面积公式计算出S△BDC=S△BDE+S△CDE=3,然后分类讨论:当点P在x轴上方时,即m>3,如图1,利用S=S△PAB+S△CAB=S△BCD得到2m2﹣4m=;当点P在x轴下方时,即1<m<3,如图2,连结OP,利用S=S△AOC+S△COP+S△POB=S△BCD得到﹣m2+m+6=,再分别解关于m的一元二次方程求出m,从而得到P点坐标;(3)存在.直线x=1交x轴于F,利用两点间的距离公式计算出BD=2,分类讨论:①如图3,EQ⊥DB于Q,证明Rt△DEQ∽Rt△DBF,利用相似比可计算出DQ=,则BQ=BD﹣DQ=;②如图4,ED′⊥BD于H,证明Rt△DEQ=H∽Rt△DBF,利用相似比计算出DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,则利用勾股定理可得x2+(2﹣)2=(﹣x)2,解得x=1﹣,于是BQ=BD﹣DH+HQ﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,利用①得结论可得EI=,BI=,而BE=2,则BG=BE﹣EG=2﹣,根据折叠性质得∠EQD=∠EQD′,则根据角平分线性质得EG=EI=,接着证明△BQG∽△BEI,利用相似比可得BQ=﹣,所以当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ 的重叠部分图形为直角三角形.【解答】解:(1)∵点A与点B关于直线x=1对称,∴B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得﹣3a=﹣3,解得a=1,∴抛物线就笑着说为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=(x﹣1)2﹣4,∴抛物线顶点D的坐标为(1,﹣4);(2)设P(m,m2﹣2m﹣3),易得直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣3,则E(1,﹣2),∴S△BDC=S△BDE+S△CDE=×3×(﹣2+4)=3,当点P在x轴上方时,即m>3,如图1,S=S△PAB+S△CAB=•3•(3+1)+•(3+1)•(m2﹣2m﹣3)=2m2﹣4m,∵S=S△BCD,∴2m2﹣4m=,整理得4m2﹣8m﹣15=0,解得m1=,m2=(舍去),∴P点坐标为(,);当点P在x轴下方时,即1<m<3,如图2,连结OP,S=S△AOC+S△COP+S△POB=•3•1+•3•m+•3•(﹣m2+2m+3)=﹣m2+m+6,∵S=S△BCD,∴﹣m2+m+6=,整理得m2﹣3m+1=0,解得m1=,m2=(舍去)∴P点坐标为(,),综上所述,P点坐标为(,)或(,);(3)存在.直线x=1交x轴于F,BD==2,①如图3,EQ⊥DB于Q,△DEQ沿边EQ翻折得到△D′EQ,∵∠EDQ=∠BDF,∴Rt△DEQ∽Rt△DBF,∴=,即=,解得DQ=,∴BQ=BD﹣DQ=2﹣=;②如图4,ED′⊥BD于H,∵∠EDH=∠BDF,∴Rt△DEQ=H∽Rt△DBF,∴==,即==,解得DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,∴x2+(2﹣)2=(﹣x)2,解得x=1﹣,∴BQ=BD﹣DQ=BD﹣(DH﹣HQ)=BD﹣DH+HQ=2﹣+1﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,由①得EI=,BI=,∵BE==2,∴BG=BE﹣EG=2﹣,∵△DEQ沿边EQ翻折得到△D′EQ,∴∠EQD=∠EQD′,∴EG=EI=,∵∠GBQ=∠IBE,∴△BQG∽△BEI,∴=,即=,∴BQ=﹣,综上所述,当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ的重叠部分图形为直角三角形.。
2020年中考模拟试题(八)数学注意事项:1. 本试卷共8页,26个小题,满分为120分,考试时间为120分钟。
2. 根据阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。
3. 考试结束后,将本试卷保管好并将答题卡上交。
一、选择题(本大题包括10个小题,每小题3分,共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣12.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b23.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105 4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12 B.6C.4D.38.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.29.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4 10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.在函数y=中,自变量x的取值范围是.12.分解因式:a2b+4ab+4b=.13.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为.三、解答题(本题包括9个小题,共69分,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;19.先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地458024.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.2020年中考数学模拟试题(八)参考答案一.选择题(共10小题)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣2020与﹣1即可.【解答】解:∵﹣2020<﹣1<0<,∴最小的数是﹣2020.故选:A.2.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b2【分析】根据合并同类项、积的乘方、单项式的除法和完全平方公式判断即可.【解答】解:A、5ab与﹣3b不是同类项,不能合并,选项错误,不符合题意;B、(﹣3a2b)2=9a4b2,选项错误,不符合题意;C、a3•b÷a=a2b,选项正确,符合题意;D、(2a+b)2=4a2+4ab+b2,选项错误,不符合题意;故选:C.3.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:19.71万=19710000=1.971×105,故选:D.4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.【分析】根据几何体的主视图确定A、B、C选项,然后根据俯视图确定D选项即.【解答】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用6个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣6,由此可得到所求的方程.【解答】解:根据题意,得:.故选:C.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.6C.4D.3【分析】设点A的坐标,利用矩形的面积,表示矩形的边长,再根据对称中心表示E的坐标,由点A、E都在反比例函数的图象上,由反比例函数k的几何意义求解即可.【解答】解:设矩形的对称中心为E,连接OA、OE,过E作EF⊥OC垂足为F,∵点E是矩形ABCD的对称中心,∴BF=FC=BC,EF=AB,设OB=a,AB=b,∵ABCD的面积为12,∴BC=,BF=FC=,∴点E(a+,b),∵S△AOB=S△EOF=k,∴ab=(a+)×b=k,即:ab=6=k,故选:B.8.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.2【分析】根据矩形的性质和折叠的性质可得∠ADE=∠EDF=∠CDF=30°,再根据三角形面积公式可求AD的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵直线PQ是矩形ABCD的一条对称轴,∴∠DGF=90°,CD∥PQ,DG=AD,由折叠得∠EFD=∠A=90°,DF=AD,∠EDF=∠ADE,∴∠CFD=90°,∵EF=CF,∴∠EDF=∠CDF,∴∠ADE=∠EDF=∠CDF=30°,∴EF=DF,∴EC=AD,∵S△DEC=4,∴AD×AD÷2=4,解得AD=2.故选:D.9.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2±(舍去负数),则x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.【分析】根据图象的对称性,确定图象的对称性即可求解.【解答】解:由题意知,FP+PB1关于BB1对称,故可知y关于x的函数图象关于直线x=1对称,故选:B.二.填空题(共7小题)11.在函数y=中,自变量x的取值范围是x≥0且x≠3.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.分解因式:a2b+4ab+4b=b(a+2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2+4a+4)=b(a+2)2,故答案为:b(a+2)213.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为π.【分析】连接OB,根据菱形性质求出OB=OC=BC,求出△BOC是等边三角形,求出∠COB=60°,根据弧长公式求出即可.【解答】解:连接OB,∵四边形OABC是菱形,∴OC=BC=AB=OA=2,∴OC=OB=BC,∴△OBC是等边三角形,∴∠COB=60°,∴劣弧的长为=π,故答案为:π.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为16或22.【分析】先计算判别式的值得到△=(k﹣1)2≥0,利用求根公式得到x1=k+1,x2=2k,根据等腰三角形的性质讨论:当k+1=2k或k+1=6或2k=6时,分别计算出对应的k的值得到b、c的值,然后根据三角形三边的关系和三角形周长的定义求解.【解答】解:根据题意得△=(3k+1)2﹣4(2k2+2k)=(k﹣1)2≥0,所以x=,则x1=k+1,x2=2k,当k+1=2k时,解得k=1,则b、c的长为2,而2+2<6,不合题意舍去;当k+1=6时,解得k=5,则2k=10,此时三角形的周长为6+6+10=22;当2k=6时,解得k=3,则k+1=4,此时三角形的周长为6+6+4=16.综上所述,△ABC的周长为16或22.故答案为16或22.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.【分析】根据AB是⊙O的直径,OF⊥CD,和垂径定理可得CF=DF,再根据30度角所对直角边等于斜边一半,和勾股定理即可求出EF的长,进而可得CD的长.【解答】解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为2.【分析】依据S△P AB=S△PCD,即可得出点P在BC的垂直平分线上,进而得到PB=PC,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,依据勾股定理求得BD的长,即可得到PC+PD的最小值为2.【解答】解:∵点P是矩形ABCD内一动点,且S△P AB=S△PCD,AB=CD,∴点P到AB的距离等于点P到CD的距离,∴点P在BC的垂直平分线上,∴PB=PC,∴PC+PD=BP+PD,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,又∵AB=CD=4,BC=6,∴对角线BD===2,∴PC+PD的最小值为2,故答案为:2.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为()2019.【分析】根据图形的变化发现规律即可求解.【解答】解:∵菱形OAA1B的边长为1,∠AOB=60°,对角线OA1为:2cos30°•OA=;∴菱形OA1A2B2的边长为:菱形OA2A3B3的边长为()2菱形OA3A4B4的边长为()3……,发现规律:则菱形OA2019A2020B2020的边长为()2019.故答案为:()2019.三.解答题(共23小题)18.(1)计算:(﹣)﹣1+﹣|π﹣3|﹣;(2)因式分解:a3﹣2a2b+ab2.【分析】(1)原式利用负整数指数幂法则,绝对值的代数意义,二次根式性质,以及特殊角的三角函数值计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣3+﹣(π﹣3)﹣=﹣3+﹣π+3﹣=﹣π;(2)原式=a(a2﹣2ab+b2)=a(a﹣b)2.19.(1)计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;(2)先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.【分析】(1)直接利用零指数幂的性质以及二次根式的性质、负整数指数幂的性质分别化简得出答案;(2)直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=1+﹣1﹣2×+﹣1=﹣1;(2)原式====,由不等式组,解得:﹣2≤x≤2,∵x+1≠0,(2+x)(2﹣x)≠0,∴x≠﹣1,x≠±2,∴当x=0时,原式==1.(或当x=1时,原式==).20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意豆花的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵DC=13m,BD=5m,∴CB==12(m).答:CB的长度为12m.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?【分析】(1)求出参加高中声乐的人数即可补充条形统计图;由参加器乐和声乐的总人数看分别求出其所占的百分比则扇形统计图可补充完整;(2)首先求出参加各个项目的初中总人数即可得到参加“书法”项目的学生所占的百分比;(3)求出参加“器乐”项目的高中学生所占百分比,即可估计1500名学生中参加“器乐”项目的高中学生的人数;(4)记两名高中学生为A,B,两名初中学生为a,b.列表得到所有可能结果,进而可求出正好抽到一名初中学生和一名高中学生的概率.【解答】解:(1)补全条形统计图和扇形统计图如下:(2).答:该校初中学生中,参加“书法”项目的学生占45%.(3)(人).答:该校参加“器乐”项目的高中学生约有375人.(4)记两名高中学生为A,B,两名初中学生为a,b.列表如下:A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)由上表可知,共有12种等可能结果,其中能抽到一名初中学生和一名高中学生的结果有8种,∴P(抽到一名初中学生和一名高中学生)=.答:正好抽到一名初中学生和一名高中学生的概率是.22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【解答】解:过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=32cm,∠CBM=30°,∴CM=BC•sin∠CBM=16cm.在Rt△ABF中,AB=42cm,∠BAD=60°,∴BF=AB•sin∠BAD=21cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+21+2=21+18(cm).答:此时灯罩顶端C到桌面的高度CE是(21+18)cm.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地4580【分析】(1)根据题意即可得调运16吨消毒液的总运费y关于x的函数关系式;(2)根据一次函数的性质即可求出总运费最低的调运方案和最低运费.【解答】解:(1)由题意可知:y=70x+120(7﹣x)+45(6﹣x)+80[(9﹣(6﹣x)]=﹣15x+1350(0<x≤6).(2)由(1)的函数可知:k=﹣15<0,所以函数的值随x的增大而减小,当x=6时,有最小值y=﹣15×6+1350=1260(元).答:总运费最低的调运方案是从M地调运6吨到A地,1吨到B地,最低运费为1260元.24.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:DE∥BC,DE=BC.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.【分析】(1)利用“边角边”证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质可得;(2)先判断出△AEG≌△DEH(ASA)进而判断出EF垂直平分GH,即可得出结论.【解答】解:DE∥BC,DE=BC,证明:如图,延长DE到点F,使得EF=DE,连接CF在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.故答案为:DE∥BC,DE=BC.(2)如图2,延长GE、FD交于点H,∵E为AD中点,∴EA=ED,且∠A=∠EDH=90°,在△AEG和△DEH中,,∴△AEG≌△DEH(ASA),∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,∴GF=HF=DH+DF=2+3=5.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,利用等角的余角相等证明∠MFG=∠MGF即可解决问题.(2)连接EF.证明△EGF∽△FGM,可得结论,(3)连接OB.证明∠M=∠FOD,推出tan∠M=tan∠FOD==,由DF=6,推出OF=8,再由tan∠M=tan∠ABH==,假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,根据OH2+BH2=OB2,构建方程即可解决问题.【解答】(1)证明:连接OF.∵DM是⊙O的切线,∴DM⊥OF,∴∠MFG+∠OF A=90°,∵BM⊥AD,∴∠AHG=90°,∴∠OAF+∠AGH=90°,∵OF=OA,∴∠OF A=∠OAF,∵∠MGF=∠AGH,∴∠MFG=∠AGF,∴MF=MG,∴△MFG是等腰三角形.(2)证明:连接EF.∵AB∥DM,∴∠MF A=∠F AB,∵∠F AB=∠FEG,∠MFG=∠MGF,∴∠FEG=∠MFG,∵∠EGF=∠MGF,∴△EGF∽△FGM,∴=,∴FG2=EG•GM,∵MF=MG,∴FG2=EG•MF.(3)解:连接OB.∵∠M+∠D=90°,∠FOD+∠D=90°,∴∠M=∠FOD,∴tan M=tan∠FOD==,∵DF=6,∴OF=8,∵DM∥AB,∴∠M=∠ABH,∴tan M=tan∠ABH==,∴可以假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,∵OH2+BH2=OB2,∴(8﹣3k)2+(4k)2=82,解得k=,∴AG=.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,解方程可求出点A坐标为(a,0),点B坐标为(1,0);(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,再由△ABC 的面积得到a的值即可;②本题分两种情况讨论:当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点P可求出;当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则直线与抛物线的交点P即可求出.【解答】解:(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a.∵点A位于点B的左侧,与y轴的负半轴交于点C,∴a<0,∴点B坐标为(1,0).(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,∴AB=1﹣a,OC=﹣a,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.。
2)2018中考数学模拟试卷(______________________考号:姓名:___________班级:学校:___________
小题)一.选择题(共12
)1.下列各组数中,互为相反数的是
(
3与D.C.33与2
A.﹣2 与B.2与2
2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()
3345吨106.75×吨D.67.5×106.75吨C.×10A.6.75×10.吨B
3.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()
.CAD.B..
4.下列计算正确的是()
33326=a).÷2a=3a D(﹣.B(﹣2a)a=﹣6a C.6a2aA.×3a=5a
5.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()
A.第一次左拐30°,第二次右拐30°
B.第一次右拐50°,第二次左拐130°
C.第一次右拐50°,第二次右拐130°
D.第一次向左拐50°,第二次向左拐120°
6.下列曲线中不能表示y是x的函数的是()
.D.A.B.C
7.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()
第1页(共7页)
A.对小明有利B.对小亮有利
C.游戏公平D.无法确定对谁有利
8.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()
.D..B .AC
.已知不等式组,其解集在数轴上表示正确的是()9
.C.. B A
.D
10.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元
11.如图为某大楼一、二楼水平地面间的楼梯台阶位置图,共20阶水平台阶,每台阶的高度均为a公尺,宽度均为b公尺(a≠b).求图中一楼地面与二楼地面的距离为多少公尺?()
第2页(共7页)
2020 D×20a B.20b C..×.A
2的图象如图所示.下列结论:+bx+12.已知二次函数y=axc
22b;④(a+c)<+﹣①abc>0;②2ab<0;③4a﹣2bc<0
)其中正确的个数有
(
4.DC.3 BA.1 .2
小题)4二.填空题(共
232 13.分解因式:3m﹣18m+n27mn=.
14.用6块相同的长方形地砖拼成一个矩形,如图所示,那么每个长方形地砖的2.cm面积是
15.如图,矩形ABCD中,BC=6,∠BAC=30°,E点为CD的中点.点P为对角线AC上的一动点.则①AC=;②PD+PE的最小值等
于.
1234567=128,2…,=322.通=64,.观察下列等式:162,=22,=42,=82,=1622009的个位数字是过观察,用你所发现的规律确定2 .
三.解答题(共8小题)
17.先化简,再求值:()÷(x+1),其中x=tan60°+1.
第3页(共7页)
BD交,△BCE都是等边三角形,AE18.如图,A、B、C在同一直线上,且△ABD,求证:交BE于点N于点M,CD
;)∠BDN=∠BAM(1
是等边三角形.2)△BMN
(
米跑成绩情况,教育部万名大、中、小学生501019.为了了解2014年某地区的学生进行检测,整理样本数据,并结合门从这三类学生群体中各抽取了10%年抽样结果,得到下列统计图:2010
名;名,其中小学生(1)本次检测抽取了大、中、小学生共
米跑万名大、中、小学生中,50)根据抽样的结果,估计22014年该地区10(名;成绩合格的中学生人数为
(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.
20.2013年9月23日强台风“天兔”登陆深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,
AD=3m.求这棵大树折断前的高度.(结果保留根号)
第4页(共7页)
,3)(4,四边形AOBC是矩形,点C的坐标为21.如图1,在平面直角坐标系中,
,F分别相交于点E、)的图象与矩形AOBC的边AC、反比例函数BCy=(k>0上.OB对折后,C点恰好落在将△CEF沿EF
的面积相等;BOFAOE与△)求证:△(1
)求反比例函数的解析式;2
(
、My=3),在反比例函数的图象上是否存在点点坐标为((3)如图2,P2,﹣为顶点的四边形是平行四边形?若存、N、P、M的左侧)N(M在N,使得以O 的坐标;若不存在,请说明理由.、N在,求出点M
立方三地的垃圾50B、C22.在眉山市开展城乡综合治理的活动中,需要将A、D 两地进行处理.已知运往D、E立方米全部运往垃圾处理场米、40立方米、50立方米.10地的数量的2倍少地的数量比运往E
)求运往两地的数量各是多少立方米?1(
地运立方米,CDB地运往地30地2)若A地运往Da立方米(a为整数),(地E 地,且EC地运往地的数量小于DA地运往D地的2倍.其余全部运往往两地哪几种方案?ED、A12立方米,则、C两地运往不超过
两地处理所需费用如下表:E三地把垃圾运往D、CA(3)已知从、B、
地CBA地地
页)7页(共5第
222020立方米)地(元/运往D
212220立方米)地(元/运往E
在(2)的条件下,请说明哪种方案的总费用最少?
23.如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD ⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切
线.
)若,求∠E(2的度
数.
CD=2)的条件下,若)连接AD,在((,求AD的长.3
24.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x 之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理
由.
第6页(共7页)
2018年04月25日春华秋实的初中数学组卷
参考答案
一.选择题(共12小题)
1.A;2.C;3.D;4.D;5.A;6.C;7.C;8.C;9.B;10.B;11.A;12.D;
二.填空题(共4小题)
2;14.200;15.123n);9;16.2;﹣.133m(m
三.解答题(共8小题)
17.;18.;19.10000;4500;36000;20.;21.;22.;23.;24.;第7页(共7页)。