2015年天津高考数学试题及图片答案
- 格式:doc
- 大小:319.50 KB
- 文档页数:3
2015年普通高等学校招生全国统一考试(天津卷)
数 学(理工类)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)全集{}1,2,3,4,5,6,7,8U = ,{}2,3,5,6A = ,{}1,3,4,6,7B = ,则集合
为
(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8 (2)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩
,则目标函数6z x y =+的最大值为
(A )3(B )4(C )18(D )40
(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为
(A )10- (B )6(C )14(D )18
(4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的
(A )充分而不必要条件
(B )必要而不充分条件
(C )充要条件
(D )既不充分也不必要条件
(5)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为 (A )83 (B )3(C )103 (D )52
(6)已知双曲线()22
2210,0x y a b a b -=>> 的一条渐近线过点(3 ,且双曲线的 一个焦点在抛物线27y x = 的准线上,则双曲线的方程为
(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22
143
x y -= (7)已知定义在R 上的函数()2
1x m f x -=- (m 为实数)为偶函数,记()()0.52log 3,log 5,2a b f c f m === ,
则,,a b c 的大小关系为
(A )a b c << (B )a c b << (C )c a b << (D )c b a << (8)已知函数()()22,2,2,2,
x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是
(A )7,4⎛⎫+∞ ⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫ ⎪⎝⎭
二、填空题:本大题共6小题,每小题5分,共30分.
(9)i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .
(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积
为 3
m .
(11)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . (12)在614x x ⎛⎫- ⎪⎝
⎭ 的展开式中,2x 的系数为 . (13)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆
的面积为,12,cos ,4b c A -==- 则a 的值为 .
(14)在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=o
,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ
==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r 的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
15.(本小题满分13分)已知函数()22sin sin 6f x x x π⎛
⎫=-- ⎪⎝⎭
,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34
p p -上的最大值和最小值. 16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(I)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率; (II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.
17. (本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =
,12,AC AA AD CD ===且点M 和N 分别为11C D B D 和的中点.
(I)求证:MN ABCD P 平面; (II)求二面角11D -AC B -的正弦值;
(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13
,求线段1E A 的长 18. (本小题满分13分)已知数列{}n a 满足*212(q )n N ,1,2n n a qa a a +=≠∈==为实数,且q 1,,且
233445,,a a a a a a +++成等差数列.
(I)求q 的值和{}n a 的通项公式;
(II)设*2221
log ,n n n a b n N a -=∈,求数列n {b }的前n 项和. 19. (本小题满分14分)已知椭圆2222+=1(0)x y a b a b
>>的左焦点为F -c (,0),
离心率为3,点M 在椭圆上且位于第一象限,直线FM 被圆4
22
+4b x y =截得的线段的长为c
,. (I)求直线FM 的斜率; (II)求椭圆的方程;