非线性光学
- 格式:docx
- 大小:22.99 KB
- 文档页数:4
非线性光学论文
非线性光学综述:
现代光学的一个分支,研究介质在强相干光作用下产生的非线性现象及其应用。
激光问世之前,基本上是研究弱光束在介质中的传播,确定介质光学性质的折射率或极化率是与光强无关的常量,介质的极化强度正比于光波的电场强度E,光波叠加时遵守线性叠加原理(见光的独立传播原理)。
在上述条件下研究光学问题称为线性光学。
对很强的激光,例如当光波的电场强度可与原子内部的库仑场相比拟时,光与介质的相互作用将产生非线性效应,反映介质性质的物理量(如极化强度等)不仅与场强E的一次方有关,而且还决定于E的更高幂次项,从而导致线性光学中不明显的许多新现象。
发展过程历史:
非线性光学的早期工作可以追溯到1906年泡克耳斯效应的发现和1929年克尔效应的现像。
但是非线性光学发展成为今天这样一门重要学科,应该说是从激光出现后才开始的。
激光的出现为人们提供了强度高和相干性好的光束。
而这样的光束正是发现各种非线性光学效应所必需的(一般来说,功率密度要大于1010W/cm2(但对不同介质和不同效应有着巨大差异)。
1958年,Schawlow和Townes指出激光可以在红外和可见光频段实现在这篇文章发表之后,很多实验室立即开始竞争,去实现这一理想.1960年5月,Maiman首先发现了红宝石激光器激光的发明,引导出很多新的学科,对我们今天的科学技术以及日常生活都产生了重大影响.其中最重要的学科之一就是非线性光学,它对半个世纪以来科技的发展起了十分重要的作用.激光的光场或电场可以很强.早年,微波和射频方面的研究已经证明,当电场很大的时候,会产生非线性现象.这是因为电场与物质相互作用时,如果电场很小,表达式中的非线性项可以忽略,产生的偶极子实际上与电场成正比(即线性效应),而当电场很大时,非线性项不能再被忽略,因而可以产生二次倍频、混频等现象,这在微波和射频的实验中得到证实.我们可以预测,当光电场达到近1kV/cm时,在光波波段也会产生类似的非线性现象。
红宝石激光器出现后,人们立即想到非线性光学现象可能被观察到.1961年,Franken等用红宝石激光照射石英晶体,然后用棱镜光谱仪去分析透射的光.发现在光谱上除了基频信号外,还有一个很弱的二倍频的斑点,首次证实了二倍频的产生。
如果有了很强的光场,很容易看到非线性光学现象.在提高脉冲激光的峰值光场或强度方面,早年发展了一个所谓的调Q激光技术其原理是,当激光被泵浦时,把激光的共振腔关掉
,让泵浦源持续不断地把能量注入并存储在激光介质中,然后在短时间内把共振腔打开,使储存在介质里的能量转换成光能,出现在一个很短的激光脉冲里,这叫巨脉冲,也叫调Q脉冲激光.巨脉冲的光场就非常强.因此,一些简单的非线性光学现象都很容易被看到,例如二次谐波、和频等.当频率为ω1,ω2的光同时进入一介质时,会在介质中产出(ω1+ω2)频率的极化偶极矩,它的辐射就是和频的输出.如果要转换效率高,光的输入和输出一定要满足光的动量守恒,也就是我们说的相位匹配条件。
自从1961年,P.A.弗兰肯等人首次发现光学二次谐波以来,非线性光学的发展大致经历了三个不同的时期。
第一个时期是1961~1965年。
这个时期的特点是新的非线性光学效应大
量而迅速地出现。
诸如光学谐波、光学和频与差频、光学参量放大与振荡、多光子吸收、光束自聚焦以及受激光散射等等都是这个时期发现的。
第二个时期是1965~1969年。
这个时期一方面还在继续发现一些新的非线性光学效应,例如非线性光谱方面的效应、各种瞬态相干效应、光致击穿等等;另一方面则主要致力于对已发现的效应进行更深入的了解,以及发展各种非线性光学器件。
第三个时期是70年代至今。
这个时期是非线性光学日趋成熟的时期。
其特点是:由以固体非线性效应为主的研究扩展到包括气体、原子蒸气、液体、固体以至液晶的非线性效应的研究;由二阶非线性效应为主的研究发展到三阶、五阶以至更高阶效应的研究;由一般非线性效应发展到共振非线性效应的研究;就时间范畴而言,则由纳秒进入皮秒领域。
这些特点都是和激光调谐技术以及超短脉冲激光技术的发展密切相关的。
基本理论:
介质极化率P与场强E的关系可写成
非线性效应是E的一次方项,以及比其更高次方的项共同起作用所产生的结果。
光与物质的线性相互作用过去的光学理论认为,介质的极化强度与入射光波的场强成正比。
于是,表征物质光学性质的许多参数,如折射率、吸收系数等都是与光强无关的常量。
普遍的光学实验证实,单一频率的光通过透明介质后频率不会发生任何变化,不同频率的光之间不会发生相互耦合作用。
激光出现后的短短的几年内,人们观察到许多用过去的光学理论无法解释的新效应。
为了解释这些新效应,产生了非线性光学理论。
激光是极强的相干光,高度比普遍光高几十亿倍,场强高次方项对介质极化的影响不能忽略。
由麦克斯韦方程可导出包括光波场强高次方项作用在内的非线性波动方程组。
这样,大部分新的光学现象都可以得到满意的解释。
已观察到的非线性光学效应主要有光二倍频、和频、差频、光参量振荡(放大)、高次倍频、自聚焦、自透明等。
和频频率为v1和v2的两束光(其中至少有一束是激光)同时入射到某些介质中时,产生频率为v=v1+v2的光束。
差频频率为v1和v2(v1>v2)的两束光(其中至少有一束是激光) 同时入射到某些介质中时,产生频率为v3=v1-v2的光束。
高次倍频频率为v的激光入射到某些介质中时,产生频率为3v的激光。
这种现象称为三倍频,或称为三次谐波发生。
类似的还有四倍频、五倍频等。
自聚焦在强激光作用下,介质的折射率不再是一个常量,而与光强有关。
这可能使平行的激光束射入介质后会聚成一束细丝,且以这种细丝状在介质中继续传播。
自透明在强激光作用下介质的吸收系数减小,即对某些频率的弱光辐射是不透明的介质,对同样频率的强激光则变成透明的。
目前发展状态:
超快光谱术通常采用的是脉冲激光泵/测的手段,光源一般用的是皮秒或飞秒的脉冲激光.首先在零时刻,泵浦的激光脉冲激发了物质,然后探测的脉冲激光,在不同时间,像照相一样可以去探讨物质被激发后的弛豫动态,用可见飞秒激光脉冲光激发一个晶体,然后用短脉冲X光去探测,就可以看到来自被激发晶体的衍射.当晶体吸
收的泵光能量开始使晶体熔解时,它的衍射强度就开始下降,这就告诉你晶体熔解的过程及时间。
相干非线性光学也是一个比较前沿的领域.相干性来自光波的相位,激光有很清楚的相位,因此相干性强.在某些非线性光激发物质的过程中有显著的影响.这类利用控制相位来控制最终结果的问题,一般称为相干调控.人们希望能由相干调控来调控物理或化学过程,譬如增加某一化学反应的效率,提高化合物生产等。
电磁感应透明是目前非线性光学里的一个热门课题.它的原理其实和当年Fano在原子物理中提出的所谓Fano共振是相似的.Fano共振出现在当一个宽带强跃迁与一个狭带弱跃迁重叠时,它们之间会产生相位干涉,在适当情况下,弱跃迁频率附近的吸收会变得很小。
用光去探测得到的吸收光谱,也与Fano共振的光谱相似.因为这里强跃迁与弱跃迁的相位相反,所以弱跃迁该吸收处,反而变得几乎
透明,这就是强光诱导出的电磁感应透明。
激光腔内锁模能让一个光脉冲在腔内放大,而每来回一次,就释放出一部分能量,因此形成一连串周期输出的短脉冲.用掺钛蓝宝石激光锁模,可以得到连续的、间隔约10-8s、脉宽仅~5×10-15s的短脉冲,这些脉冲之间都有相干性,并且载波与包络之间的相位也几乎完全固定,如图22所示.连续短脉冲的光谱来自它们的傅里叶变换,是由一列几百万条极狭窄的谱线组成,线宽可以近1Hz,邻近两线的间隔约为100MHz,谱的覆盖宽度达~5×1014Hz(~20000cm-1或~2.5eV),还可以经由介质中混频过程增宽,这样一个光源称为光梳.在原子、分子光谱精密测量上,开创了前所未有的新领域,为基础物理的探讨提供了崭新的手段。
强非线性光学效应指的是当光与物质间的作用不能再用微扰理论来描述,这相当于其他物理领域里的强耦合的情形,都是物理中最难的问题.可是在非线性光学里,有很多强耦合问题.例如,红外多光子激发和分子分解,一个分子可以吸收几十个到上百个红外光子,然后分解,以及多光子电离等,都可以用相当简单的物理图像来把它们讲清楚。
现在世界上不少发达国家都在建自由电子激光或者高能激光器,主要是希望能够得到高能量飞秒X射线脉冲或极高能量激光脉冲.斯坦福的Linac Coherent LightSource(LCLS)已能输出波长0.15-1.5nm,脉宽
80fs,能量2mJ/pulse的脉冲硬X射线.在美国利弗莫尔的National Ignition Facility是目前世界上最大的激光装置,它产生192条20ns 宽的激光脉冲,同时聚在一个目标上,可以达到1-2mJ/pulse.现在已经开始运转,一天打一次,在2016年的时候期望可以一天打700次.大能量的脉冲激光,主要是希望用它来实现惯性核聚变.其实这样的激光打在物质上,新的物理现象会出现.现在有个新的研究领域叫高能密度物理.如果能用内爆方式来把物质压缩到很高密度状态,其原子间的距离接近或小于原子核的德布罗意波长或玻尔半径,那么所有我们现在了解的关于原子与原子间的相互作用行为如化学键等都不再成立,需要建立新的理论和图像去描述.这个新的科研领域就是高能密度物理,是一个全新的极有意义和相当令人振奋的基础科研领域。
待开发领域:
现在有了X光激光,在X光频段的非线性光学也将成为一个新领域。
冷原子和分子中的非线性光学现象是一个能发展的领域.发展新的激光光学技术是很重要的.用激光来探讨光与物质的相互作用,相位有一定的重要性,测量相位可以得到更多信息.用非线性光学手段去表征新型材料可以帮助了解这些材料。
光梳是一个非常优质的光源,但是现在的应用还局限在原子、分子光谱上,考虑如何把光梳应用到凝聚态物理上,是对我们的一个挑战。
此外,不寻常的非线性光学效应,例如非线性磁光效应应用到自旋电子学、激光操纵物质(如相干控制、激光致相变)等,也都是很有意思的问题.看来非线性光学的发展前景仍是很美好的。
应用:
(1)利用倍频和混频效应、可调谐光参量振荡以及受激散射等效应可产生强相干光辐射,开创了产生新的激光辐射光源的物理途径.它在许多实际工程技术中得到了较成熟的应用,人们正在利用这种途径来填补各类激光器件发射激光波长的空白光谱区.例如:
①在光通讯技术中的应用.由于激光技术的出现,通过非线性光学效应获得的相干光的频带极其宽广,使其在通讯技术中由原来的微波电缆同时传送几十万路,到现在利用激光通讯的光缆可同时传送数百万路电话或几千万套电视节目,解决了无线电通讯的容量小、频带过分拥挤的难题.
②频率上转换效应在红外外差式探测器上的应用.红外接收是不可见的低频信号和另一束可见的强激光通过在晶体中混频,使红外信号频率上转到可见光频率,再经过光放大等过程实现了对红外信号的观察和探测.目前用此效应的红外探测器已得到普遍的应用。
(2)非线性光学的研究成果为光信息处理提供了新的方法和新的技术.例如:
一些染料在高功率激光束通过时发生自感透明效应已被用来设计时间很短的“光开关”.使用这种Q开关的激光器的输出功率可提高2—3个数量级.又如,光学双稳态效应的激光感应折射率变化用于信息存贮以及制成双稳态元件(双稳态光学开关、光学“三极管”放大元件、光学记亿元件等);光学相位共扼效应用于波面畸变补偿等等.目前有些成果已得到实际应用.对非线性光学的深入研究,为集成光学、纤维光学、光学逻辑回路与光学计算机技术的发展提供了有关光信息处理与控制的新方法和新技术。