第三步,输入X3
WT(2)X3= [0.7 0.8 -0.6 0] [-1 -1 1 0.5]T =-2.1 Y3(2)=sgn(-2.1)=-1
W(3)=W(2)+ η[d3-y3(2)]X3
=[0.5 0.6 -0.4 0.1]T
第四步,返回到第一步,继续训练,直到dp-yp=0
p=1,2,3
11.5 前馈神经网络的反向传播算1982
1982
1987
1984
学习方式
有监督
有监督
有监督
无监督
无监督
无监督
有监督
拓扑结构
前向
前向
前向
前向
反馈
反馈
反馈
活动方式 确定型 确定型 确定型 确定型 确定型 确定型 随机型
11.2 生物神经元的机理
生物神经元的构成
枝蔓(Dendrite)
胞体(Soma)
轴突(Axon) 胞体(Soma)
枝 蔓 ( Dendrite )
胞体(Soma)
轴突(Axon 胞体(So)ma)
突触(Synapse)
生物神经元
枝蔓
x1
w1
轴突
x2
w2
wn 胞体 y
xd
人工神经元
人工神经元:
是构成人工神经网络的最基本单元,是对生物神经元 的模拟,它具备生物神经元的部分特征。
人工神经元的基本概念(续)
输入: x x(1) , , xi, xd T
能够将样本正确分类的权向量并不唯一,一般初始权向量不同, 训练过程和所得到的结果也不同,但都可满足误差为零的要求.
例. 单计算节点感知器有3个 输入,现给定3对训练样本: X1=[-1 1 -2 0]T d1=-1; X2=[-1 0 1.5 -0.5]T d2=-1; X3=[-1 -1 1 0.5]T d3=1.