第二章统计量、参数估计与区间估计
- 格式:ppt
- 大小:2.65 MB
- 文档页数:90
统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。
通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。
本文将介绍几种常用的参数估计方法及其应用。
一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。
最常用的点估计方法是最大似然估计和矩估计。
1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。
它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。
最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。
2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。
矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。
二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。
常见的区间估计方法有置信区间估计和预测区间估计。
1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。
置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。
2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。
预测区间估计在预测和判断未来观测值时具有重要的应用价值。
三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。
贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。
贝叶斯估计方法的关键是设定先验分布和寻找后验分布。
作者 | CDA数据分析师参数估计(parameter estimation)是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。
人们常常需要根据手中的数据,分析或推断数据反映的本质规律。
即根据样本数据如何选择统计量去推断总体的分布或数字特征等。
统计推断是数理统计研究的核心问题。
所谓统计推断是指根据样本对总体分布或分布的数字特征等作出合理的推断。
它是统计推断的一种基本形式,分为点估计和区间估计两部分。
一、点估计点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。
简单的来说,指直接以样本指标来估计总体指标,也叫定值估计。
通常它们是总体的某个特征值,如数学期望、方差和相关系数等。
点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。
构造点估计常用的方法是:①矩估计法,用样本矩估计总体矩②最大似然估计法。
利用样本分布密度构造似然函数来求出参数的最大似然估计。
③最小二乘法。
主要用于线性统计模型中的参数估计问题。
④贝叶斯估计法。
可以用来估计未知参数的估计量很多,于是产生了怎样选择一个优良估计量的问题。
首先必须对优良性定出准则,这种准则是不唯一的,可以根据实际问题和理论研究的方便进行选择。
优良性准则有两大类:一类是小样本准则,即在样本大小固定时的优良性准则;另一类是大样本准则,即在样本大小趋于无穷时的优良性准则。
最重要的小样本优良性准则是无偏性及与此相关的一致最小方差无偏估计,其次有容许性准则,最小化最大准则,最优同变准则等。
大样本优良性准则有相合性、最优渐近正态估计和渐近有效估计等。
下面介绍一下最常用的矩估计法和最大似然估计法。
1、矩估计法矩估计法也称“矩法估计”,就是利用样本矩来估计总体中相应的参数。
它是由英国统计学家皮尔逊Pearson于1894年提出的,也是最古老的一种估计法之一。
对于随机变量来说,矩是其最广泛,最常用的数字特征,主要有中心矩和原点矩。
由辛钦大数定律知,简单随机样本的原点矩依概率收敛到相应的总体原点矩,这就启发我们想到用样本矩替换总体矩,进而找出未知参数的估计,基于这种思想求估计量的方法称为矩法。
第二章 参数估计【学习目标】1、掌握矩估计的替代原则;会求已知分布中未知参数的矩估计(值)2、熟练掌握极大似然估计的思想及求法3、估计量的评价标准:无偏性、有效性、相合性的定义4、统计量的无偏性的判断;两个无偏估计的有效性判断;会用Fisher 信息量及c-R 下界进行统计量的UMVUE 充分性判断5、掌握区间估计的定义6、单个正态总体均值的区间估计(包括方差已知、方差未知);单个正态总体方差的区间估计(包括均值已知、均值未知)7、两个正态总体均值差的区间估计(方差未知);两个正态总体方差比的区间估计 8、单侧置信区间的求法 【典型例题讲解】例1、设1,,n X X 是来自均匀分布(,1)U θθ+的总体的容量为n 的样本,其中θ-∞<<+∞为未知参数,试证:θ的极大似然估计量不止一个,例如1(1)ˆXθ=,2()ˆ1n X θ=-,3(1)()11ˆ()22n XXθ=+-都是θ的极大似然估计。
解:(,1)U θθ+分布的密度函数为11()0x f x θθ≤≤+⎧=⎨⎩其他似然函数(1)()11()0n x x L θθθ≤≤≤+⎧=⎨⎩其他由于在(1)()1n x x θθ≤≤≤+上()L θ为常数,所以凡是满足:(1)()ˆˆ1n x x θθ≤≤≤+的ˆθ均为θ的极大似然估计。
从而(1)1(1)ˆX θ=满足此条件,故1(1)ˆX θ=是θ的极大似然估计;(2)由于()(1)1n X X -≤,故2()(1)()2ˆˆ11n n X X X θθ=-≤≤=+,所以2()ˆ1n Xθ=-为θ的极大似然估计;(3)由于()(1)1n X X -≤,故(1)()(1)12n X X X +-≤,(1)()()12n n X X X ++≥,从而有3(1)()(1)()(1)()31111ˆˆ()()12222n n n XXXXXXθθ=+-≤≤≤++=+,故3ˆθ也为θ的极大似然估计。