人教中考数学易错题精选-平行四边形练习题附答案
- 格式:doc
- 大小:1.26 MB
- 文档页数:20
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.
【答案】(1)P点坐标为(x,3﹣x).
(2)S的最大值为,此时x=2.
(3)x=,或x=,或x=.
【解析】
试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;
②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.
(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.
(3)本题要分类讨论:
①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;
②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.
③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.
试题解析:(1)过点P作PQ⊥BC于点Q,
有题意可得:PQ∥AB,
∴△CQP∽△CBA,
∴
∴
解得:QP=x,
∴PM=3﹣x,
由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).
(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.
∴S=(4﹣x)×x=(﹣x2+4x)
=﹣(x﹣2)2+.
∴S的最大值为,此时x=2.
(3)延长MP交CB于Q,则有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=.
②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;
③若CN=NP,则CN=4﹣x.
∵PQ=x,NQ=4﹣2x,
∵在Rt△PNQ中,PN2=NQ2+PQ2,
∴(4﹣x)2=(4﹣2x)2+(x)2,
∴x=.
综上所述,x=,或x=,或x=.
考点:二次函数综合题.
2.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;
(2)当∠B =70°时,求∠AEC 的度数;
(3)当△ACE 为直角三角形时,求边BC 的长.
【答案】(1)()22303y x x x =
-++<<;(2)∠AEC =105°;(3)边BC 的长为2或1172
. 【解析】
试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.
(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,
∠AET =∠B =70°.
又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.
(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.
②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-, 则()22303y x x x =-++<<
(2)取CD中点T,联结TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,
∴∠AET=∠B=70°.
又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,
∴∠AEC=70°+35°=105°.
(3)分两种情况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.
②当∠CAE=90°时,易知△CDA∽△BCA,又2224
AC BC AB x
=-=-,
则
2
2
4117
4
AD CA x
x
AC CB x
-±
=⇒=⇒=
-
(舍负)
易知∠ACE<90°,所以边BC的长为117
+
.
综上所述:边BC的长为2或117
2
+
.
点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.
3.已知Rt△ABD中,边AB=OB=1,∠ABO=90°
问题探究:
(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.
(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.
问题解决:
(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.