人工智能-实验报告
- 格式:doc
- 大小:327.50 KB
- 文档页数:26
一、实验目的1. 了解机器学习的基本概念和常用算法。
2. 掌握使用Python编程语言实现图像识别系统的方法。
3. 培养分析问题、解决问题的能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 机器学习库:TensorFlow、Keras三、实验内容1. 数据预处理2. 模型构建3. 模型训练4. 模型评估5. 模型应用四、实验步骤1. 数据预处理(1)下载图像数据集:选择一个适合的图像数据集,例如MNIST手写数字数据集。
(2)数据加载与处理:使用TensorFlow和Keras库加载图像数据集,并进行预处理,如归一化、调整图像大小等。
2. 模型构建(1)定义网络结构:使用Keras库定义神经网络结构,包括输入层、隐藏层和输出层。
(2)选择激活函数:根据问题特点选择合适的激活函数,如ReLU、Sigmoid等。
(3)定义损失函数:选择损失函数,如交叉熵损失函数。
(4)定义优化器:选择优化器,如Adam、SGD等。
3. 模型训练(1)将数据集分为训练集、验证集和测试集。
(2)使用训练集对模型进行训练,同时监控验证集的性能。
(3)调整模型参数,如学习率、批大小等,以优化模型性能。
4. 模型评估(1)使用测试集评估模型性能,计算准确率、召回率、F1值等指标。
(2)分析模型在测试集上的表现,找出模型的优点和不足。
5. 模型应用(1)将训练好的模型保存为模型文件。
(2)使用保存的模型对新的图像进行识别,展示模型在实际应用中的效果。
五、实验结果与分析1. 模型性能:在测试集上,模型的准确率为98.5%,召回率为98.3%,F1值为98.4%。
2. 模型优化:通过调整学习率、批大小等参数,模型性能得到了一定程度的提升。
3. 模型不足:在测试集中,模型对部分图像的识别效果不佳,可能需要进一步优化模型结构或改进训练方法。
六、实验总结通过本次实验,我们了解了机器学习的基本概念和常用算法,掌握了使用Python编程语言实现图像识别系统的方法。
人工智能深度学习实验报告一、实验背景随着科技的迅猛发展,人工智能(AI)已经成为当今世界最具创新性和影响力的领域之一。
深度学习作为人工智能的一个重要分支,凭借其强大的学习能力和数据处理能力,在图像识别、语音处理、自然语言处理等众多领域取得了显著的成果。
本次实验旨在深入探索人工智能深度学习的原理和应用,通过实践操作和数据分析,进一步理解其工作机制和性能表现。
二、实验目的1、熟悉深度学习的基本概念和常用模型,如多层感知机(MLP)、卷积神经网络(CNN)和循环神经网络(RNN)。
2、掌握使用 Python 编程语言和相关深度学习框架(如 TensorFlow、PyTorch 等)进行模型训练和优化的方法。
3、通过实验数据,分析不同模型在不同任务中的性能差异,探索影响模型性能的关键因素。
4、培养解决实际问题的能力,能够运用深度学习技术解决简单的图像分类、文本分类等任务。
三、实验环境1、操作系统:Windows 102、编程语言:Python 383、深度学习框架:TensorFlow 244、开发工具:Jupyter Notebook四、实验数据1、图像分类数据集:CIFAR-10 数据集,包含 10 个不同类别的60000 张彩色图像,其中 50000 张用于训练,10000 张用于测试。
2、文本分类数据集:IMDB 电影评论数据集,包含 25000 条高度极性的电影评论,其中 12500 条用于训练,12500 条用于测试。
五、实验步骤1、数据预处理对于图像数据,进行图像归一化、数据增强(如随机旋转、裁剪、翻转等)操作,以增加数据的多样性和减少过拟合的风险。
对于文本数据,进行词向量化(如使用 Word2Vec、GloVe 等)、数据清洗(如去除特殊字符、停用词等)操作,将文本转换为可被模型处理的数值向量。
2、模型构建构建多层感知机(MLP)模型,包含输入层、隐藏层和输出层,使用 ReLU 激活函数和 Softmax 输出层进行分类任务。
人工智能_实验报告
一、实验目标
本次实验的目的是对人工智能进行深入的理解,主要针对以下几个方面:
1.理论基础:了解人工智能的概念、定义和发展历史;
2.技术原理:学习人工智能的基本技术原理,如机器学习、自然语言处理、图像处理等;
3. 设计实现: 熟悉基于Python的人工智能开发;
4.实践应用:了解常见的应用场景,例如语音识别、图像分析等;
二、实验环境
本次实验基于Python3.7语言编写,实验环境如下:
1. 操作系统:Windows10
3. 基础库和工具:Numpy, Matplotlib, Pandas, Scikit-Learn, TensorFlow, Keras
三、实验内容
1. 机器学习
机器学习是一门深受人们喜爱的人工智能领域,基于机器学习,我们可以让计算机自动学习现象,并做出相应的预测。
主要用于语音识别、图像处理和自然语言处理等领域。
本次实验主要通过一个关于房价预测的实例,结合 Scikit-Learn 库,实现了机器学习的基本步骤。
主要包括以下几步:
(1)数据探索:分析并观察数据,以及相关的统计数据;
(2)数据预处理:包括缺失值处理、标准化等;
(3)建模:使用线性回归、决策树等监督学习模型,建立房价预测
模型;。
人工智能课内实验报告(一)----主观贝叶斯一、实验目的1.学习了解编程语言, 掌握基本的算法实现;2.深入理解贝叶斯理论和不确定性推理理论;二、 3.学习运用主观贝叶斯公式进行不确定推理的原理和过程。
三、实验内容在证据不确定的情况下, 根据充分性量度LS 、必要性量度LN 、E 的先验概率P(E)和H 的先验概率P(H)作为前提条件, 分析P(H/S)和P(E/S)的关系。
具体要求如下:(1) 充分考虑各种证据情况: 证据肯定存在、证据肯定不存在、观察与证据 无关、其他情况;(2) 考虑EH 公式和CP 公式两种计算后验概率的方法;(3) 给出EH 公式的分段线性插值图。
三、实验原理1.知识不确定性的表示:在主观贝叶斯方法中, 知识是产生式规则表示的, 具体形式为:IF E THEN (LS,LN) H(P(H))LS 是充分性度量, 用于指出E 对H 的支持程度。
其定义为:LS=P(E|H)/P(E|¬H)。
LN 是必要性度量, 用于指出¬E 对H 的支持程度。
其定义为:LN=P(¬E|H)/P(¬E|¬H)=(1-P(E|H))/(1-P(E|¬H))2.证据不确定性的表示在证据不确定的情况下, 用户观察到的证据具有不确定性, 即0<P(E/S)<1。
此时就不能再用上面的公式计算后验概率了。
而要用杜达等人在1976年证明过的如下公式来计算后验概率P(H/S):P(H/S)=P(H/E)*P(E/S)+P(H/~E)*P(~E/S) (2-1)下面分四种情况对这个公式进行讨论。
(1) P (E/S)=1当P(E/S)=1时, P(~E/S)=0。
此时, 式(2-1)变成 P(H/S)=P(H/E)=1)()1()(+⨯-⨯H P LS H P LS (2-2) 这就是证据肯定存在的情况。
(2) P (E/S)=0当P(E/S)=0时, P(~E/S)=1。
南京信息工程大学 实验(实习)报告 实验(实习)名称 MATLAB 编程 实验日期得分 指导教师 系 计科 专业 年级 班次 <> 姓名 学号一、实验目的:(1)通过学习MA TLAB 编程来进一步了解人工智能; (2)通过上机实习编写MATLAB 程序,从而对MA TLAB 有所基本了解。
为更好地学习人工智能知识打下基础。
二、实验内容:(1)编写程序,计算1+3+5+7+…+(2n+1)的值(用input 语句输入n 值)。
(2)编写分段函数⎪⎩⎪⎨⎧≤≤-<≤=)(0)21(2)10()(其他x x x x x f 的函数文件,存放于文件ff.m 中,计算出)3(-f 、)2(f 、)(∞f 的值。
三、实验步骤:(1)打开MATLAB 软件,首先在D 盘下新建一个MATLAB 文件夹,然后把工作路径设置到这个文件夹,如所示。
(2)在菜单栏选择【File 】>>【New 】>>【M-File 】新建*.M 的文件,然后在新建的文件中进行程序的编写。
(3)第1题的实验代码如下:实验结果如下:(4)第2题实验代码如下:实验结果如下:四、实验结论:(1)存在问题一开始对MATLAB语言还不是很熟悉,但通过上级实习遇到的一些问题帮助我们更好的学习了MATLAB,而且它与C语言虽然在思想上差不多但语法实现上还是有区别的。
(2)认识体会MATLAB 作为一种高级科学计算软件,是进行算法开发、数据可视化、数据分析以及数值计算的交互式应用开发环境,并且是一门实践性非常强的课程。
要学好MATLAB程序设计,上机实践是十分重要的环节,只有通过大量的上机实验,才能真正掌握MA TLAB程序设计。
人工智能深度学习实验报告一、实验背景随着科技的飞速发展,人工智能已经成为当今最热门的研究领域之一。
深度学习作为人工智能的一个重要分支,凭借其强大的学习能力和数据处理能力,在图像识别、语音识别、自然语言处理等多个领域取得了显著的成果。
为了更深入地了解和掌握人工智能深度学习的原理和应用,我们进行了一系列的实验。
二、实验目的本次实验的主要目的是通过实际操作和实践,深入探究人工智能深度学习的工作原理和应用方法,掌握深度学习模型的构建、训练和优化技巧,提高对深度学习算法的理解和应用能力,并通过实验结果验证深度学习在解决实际问题中的有效性和可行性。
三、实验环境在本次实验中,我们使用了以下硬件和软件环境:1、硬件:计算机:配备高性能 CPU 和 GPU 的台式计算机,以加速模型的训练过程。
存储设备:大容量硬盘,用于存储实验数据和模型文件。
2、软件:操作系统:Windows 10 专业版。
深度学习框架:TensorFlow 和 PyTorch。
编程语言:Python 37。
开发工具:Jupyter Notebook 和 PyCharm。
四、实验数据为了进行深度学习实验,我们收集了以下几种类型的数据:1、图像数据:包括 MNIST 手写数字数据集、CIFAR-10 图像分类数据集等。
2、文本数据:如 IMDb 电影评论数据集、20 Newsgroups 文本分类数据集等。
3、音频数据:使用了一些公开的语音识别数据集,如 TIMIT 语音数据集。
五、实验方法1、模型选择卷积神经网络(CNN):适用于图像数据的处理和分类任务。
循环神经网络(RNN):常用于处理序列数据,如文本和音频。
长短时记忆网络(LSTM)和门控循环单元(GRU):改进的RNN 架构,能够更好地处理长序列数据中的长期依赖关系。
2、数据预处理图像数据:进行图像的裁剪、缩放、归一化等操作,以提高模型的训练效率和准确性。
文本数据:进行词干提取、词向量化、去除停用词等处理,将文本转换为可被模型处理的数值形式。
人工智能_实验报告在当今科技飞速发展的时代,人工智能(Artificial Intelligence,简称 AI)已经成为了备受瞩目的领域。
为了更深入地了解人工智能的原理和应用,我们进行了一系列的实验。
本次实验的目的是探究人工智能在不同场景下的表现和能力,以及其对人类生活和工作可能产生的影响。
实验过程中,我们使用了多种技术和工具,包括机器学习算法、深度学习框架以及大量的数据样本。
首先,我们对图像识别这一领域进行了研究。
通过收集大量的图像数据,并使用卷积神经网络(Convolutional Neural Network,简称 CNN)进行训练,我们试图让计算机学会识别不同的物体和场景。
在实验中,我们发现,随着训练数据的增加和网络结构的优化,计算机的图像识别准确率得到了显著提高。
然而,在面对一些复杂的图像,如光线昏暗、物体遮挡等情况下,识别效果仍有待提升。
接着,我们转向了自然语言处理(Natural Language Processing,简称 NLP)的实验。
利用循环神经网络(Recurrent Neural Network,简称RNN)和长短时记忆网络(Long ShortTerm Memory,简称 LSTM),我们尝试让计算机理解和生成人类语言。
在文本分类和情感分析任务中,我们取得了一定的成果,但在处理语义模糊和上下文依赖较强的文本时,计算机仍会出现理解偏差。
在实验过程中,我们还遇到了一些挑战和问题。
数据的质量和数量对人工智能模型的性能有着至关重要的影响。
如果数据存在偏差、噪声或不完整,模型可能会学到错误的模式,从而导致预测结果不准确。
此外,模型的训练时间和计算资源需求也是一个不容忽视的问题。
一些复杂的模型需要在高性能的计算机集群上进行长时间的训练,这对于普通的研究团队和个人来说是一个巨大的负担。
为了应对这些问题,我们采取了一系列的措施。
对于数据质量问题,我们进行了严格的数据清洗和预处理工作,去除噪声和异常值,并通过数据增强技术增加数据的多样性。
人工智能实验报告
一、实验介绍
人工智能(Artificial Intelligence,AI)是计算机科学的一个领域,以模拟或增强人类智能的方式来实现人工智能。
本实验是基于Python的人工智能实验,使用Python实现一个简单的语音识别系统,可以识别出句话中的关键词,识别出关键词后给出相应的回答。
二、实验内容
1.安装必要的Python库
在使用Python进行人工智能实验前,需要先安装必要的Python库,例如NumPy、SciPy、Pandas等。
2.准备必要的数据集
为避免过拟合,需要准备数据集并对数据进行分离、标准化等处理,以便为训练和测试模型提供良好的环境。
3.训练语音识别模型
使用Python的TensorFlow库训练语音识别模型,模型会自动学习语音特征,以便准确地识别语音输入中的关键词。
4.实现语音识别系统
通过训练好的语音识别模型,使用Python实现一个简单的语音识别系统,实现从语音输入中识别出句话中的关键词,并给出相应的回答。
三、实验结果
本实验使用Python编写了一个简单的语音识别系统,实现从语音输
入中识别出句话中的关键词,并给出相应的回答。
通过对训练数据集的训练,模型可以准确地识别语音输入中的关键词,对测试数据集的准确率达到了87.45%,表示模型的效果较好。
四、总结。
人工智能实验报告在当今科技飞速发展的时代,人工智能(AI)已经成为了最具创新性和影响力的领域之一。
为了更深入地了解人工智能的工作原理和应用潜力,我进行了一系列的实验。
本次实验的目的是探索人工智能在不同任务中的表现和能力,以及分析其优势和局限性。
实验主要集中在图像识别、自然语言处理和智能决策三个方面。
在图像识别实验中,我使用了一个预训练的卷积神经网络模型。
首先,准备了大量的图像数据集,包括各种物体、场景和人物。
然后,将这些图像输入到模型中,观察模型对图像中内容的识别和分类能力。
结果发现,模型在常见物体的识别上表现出色,例如能够准确地识别出猫、狗、汽车等。
然而,对于一些复杂的、少见的或者具有模糊特征的图像,模型的识别准确率有所下降。
这表明模型虽然具有强大的学习能力,但仍然存在一定的局限性,可能需要更多的训练数据和更复杂的模型结构来提高其泛化能力。
自然语言处理实验则侧重于文本分类和情感分析。
我采用了一种基于循环神经网络(RNN)的模型。
通过收集大量的文本数据,包括新闻、评论、小说等,对模型进行训练。
在测试阶段,输入一些新的文本,让模型判断其所属的类别(如科技、娱乐、体育等)和情感倾向(积极、消极、中性)。
实验结果显示,模型在一些常见的、结构清晰的文本上能够做出较为准确的判断,但对于一些语义模糊、多义性较强的文本,模型的判断容易出现偏差。
这提示我们自然语言的复杂性和多义性给人工智能的理解带来了巨大的挑战,需要更深入的语言模型和语义理解技术来解决。
智能决策实验主要是模拟了一个简单的博弈场景。
通过设计一个基于强化学习的智能体,让其在与环境的交互中学习最优的决策策略。
经过多次训练和迭代,智能体逐渐学会了在不同情况下做出相对合理的决策。
但在面对一些极端情况或者未曾遇到过的场景时,智能体的决策效果并不理想。
这说明智能决策系统在应对不确定性和新颖情况时,还需要进一步的改进和优化。
通过这些实验,我对人工智能有了更深刻的认识。
《人工智能》实验报告人工智能实验报告引言人工智能(Artificial Intelligence,简称AI)是近年来备受瞩目的前沿科技领域,它通过模拟人类智能的思维和行为,使机器能够完成复杂的任务。
本次实验旨在探索人工智能的应用和局限性,以及对社会和人类生活的影响。
一、人工智能的发展历程人工智能的发展历程可以追溯到上世纪50年代。
当时,科学家们开始研究如何使机器能够模拟人类的思维和行为。
经过几十年的努力,人工智能技术得到了长足的发展,涵盖了机器学习、深度学习、自然语言处理等多个领域。
如今,人工智能已经广泛应用于医疗、金融、交通、娱乐等各个领域。
二、人工智能的应用领域1. 医疗领域人工智能在医疗领域的应用已经取得了显著的成果。
通过分析大量的医学数据,人工智能可以辅助医生进行疾病诊断和治疗方案的制定。
此外,人工智能还可以帮助医疗机构管理和优化资源,提高医疗服务的效率和质量。
2. 金融领域人工智能在金融领域的应用主要体现在风险评估、交易分析和客户服务等方面。
通过分析大量的金融数据,人工智能可以帮助金融机构预测市场趋势、降低风险,并提供个性化的投资建议。
此外,人工智能还可以通过自动化的方式处理客户的投诉和咨询,提升客户满意度。
3. 交通领域人工智能在交通领域的应用主要体现在智能交通管理系统和自动驾驶技术上。
通过实时监测和分析交通流量,人工智能可以优化交通信号控制,减少交通拥堵和事故发生的可能性。
同时,自动驾驶技术可以提高交通安全性和驾驶效率,减少交通事故。
三、人工智能的局限性与挑战1. 数据隐私和安全问题人工智能需要大量的数据进行训练和学习,但随之而来的是数据隐私和安全问题。
个人隐私数据的泄露可能导致个人信息被滥用,甚至引发社会问题。
因此,保护数据隐私和加强数据安全是人工智能发展过程中亟需解决的问题。
2. 伦理和道德问题人工智能的发展也引发了一系列伦理和道德问题。
例如,自动驾驶车辆在遇到无法避免的事故时,应该如何做出选择?人工智能在医疗领域的应用是否会导致医生失业?这些问题需要我们认真思考和解决,以确保人工智能的发展符合人类的价值观和道德规范。
实验一:知识表示方法一、实验目的状态空间表示法是人工智能领域最基本的知识表示方法之一,也是进一步学习状态空间搜索策略的基础,本实验通过牧师与野人渡河的问题,强化学生对知识表示的了解和应用,为人工智能后续环节的课程奠定基础。
二、问题描述有n个牧师和n个野人准备渡河,但只有一条能容纳c个人的小船,为了防止野人侵犯牧师,要求无论在何处,牧师的人数不得少于野人的人数(除非牧师人数为0),且假定野人与牧师都会划船,试设计一个算法,确定他们能否渡过河去,若能,则给出小船来回次数最少的最佳方案。
三、基本要求输入:牧师人数(即野人人数):n;小船一次最多载人量:c。
输出:若问题无解,则显示Failed,否则,显示Successed输出一组最佳方案。
用三元组(X1, X2, X3)表示渡河过程中的状态。
并用箭头连接相邻状态以表示迁移过程:初始状态->中间状态->目标状态。
例:当输入n=2,c=2时,输出:221->110->211->010->021->000其中:X1表示起始岸上的牧师人数;X2表示起始岸上的野人人数;X3表示小船现在位置(1表示起始岸,0表示目的岸)。
要求:写出算法的设计思想和源程序,并以图形用户界面实现人机交互,进行输入和输出结果,如:Please input n: 2 Please input c: 2Successed or Failed?: SuccessedOptimal Procedure: 221->110->211->010->021->000四、实验组织运行要求本实验采用集中授课形式,每个同学独立完成上述实验要求。
五、实验条件每人一台计算机独立完成实验。
六、实验代码Main.cpp#include<iostream>#include"RiverCrossing.h"using namespace std;//主函数void main(){RiverCrossing::ShowInfo();int n, c;cout<<"Please input n: ";cin>>n;cout<<"Please input c: ";cin>>c;RiverCrossing riverCrossing(n, c);riverCrossing.solve();system("pause");}RiverCrossing.h #pragma once#include<list>//船class Boat{public:static int c;int pastor;//牧师int savage;//野人Boat(int pastor, int savage);};//河岸状态class State{public:static int n;int iPastor;//牧师数量int iSavage;//野人数量int iBoatAtSide;//船所在河岸State *pPrevious;//前一个状态State(int pastor, int savage, int boatAtSide);int getTotalCount();//获得此岸总人数bool check();//检查人数是否符合实际bool isSafe();//检查是否安全State operator + (Boat &boat);State operator - (Boat &boat);bool operator == (State &state);};//过河问题class RiverCrossing{private:std::list<State*> openList, closeList;State endState;bool move(State *nowState, Boat *boat);//进行一次决策State* findInList(std::list<State*> &listToCheck, State &state);//检查某状态节点是否在列表中void print(State *endState);//打印结果public:static void ShowInfo();RiverCrossing(int n, int c);bool solve();//求解问题};RiverCrossing.cpp#include"RiverCrossing.h"#include<iostream>#include<stack>#include<algorithm>using namespace std;//类静态变量定义int State::n = 0;int Boat::c = 0;/*=========================Methods for class "Boat"=========================*/ Boat::Boat(int pastor, int savage){this->pastor = pastor;this->savage = savage;}/*=========================Methods for class "State"=========================*/ //构造函数State::State(int pastor, int savage, int boatAtSide){this->iPastor = pastor;this->iSavage = savage;this->iBoatAtSide = boatAtSide;this->pPrevious = NULL;}//获取此岸总人数int State::getTotalCount(){return iPastor + iSavage;}//检查人数是否在0到n之间bool State::check(){return (iPastor >=0 && iPastor <= n && iSavage >= 0 && iSavage <=n);}//按照规则检查牧师得否安全bool State::isSafe(){//此岸的安全:x1 == 0 || x1 >= x2//彼岸的安全:(n-x1) == 0 || (n-x1) >= (n-x2)//将上述条件联立后得到如下条件return (iPastor == 0 || iPastor == n || iPastor == iSavage);}//重载+符号,表示船开到此岸State State::operator+(Boat &boat){State ret(iPastor + boat.pastor, iSavage + boat.savage, iBoatAtSide + 1);ret.pPrevious = this;return ret;}//重载-符号,表示船从此岸开走State State::operator-(Boat &boat){State ret(iPastor - boat.pastor, iSavage - boat.savage, iBoatAtSide - 1);ret.pPrevious = this;return ret;}//重载==符号,比较两个节点是否是相同的状态bool State::operator==(State &state){return (this->iPastor == state.iPastor && this->iSavage == state.iSavage && this->iBoatAtSide == state.iBoatAtSide);}/*=======================Methods for class "RiverCrossing"=======================*/ //显示信息void RiverCrossing::ShowInfo(){cout<<"************************************************"<<endl;cout<<" 牧师与野人过河问题求解 "<<endl;cout<<" by 1040501211 陈嘉生 "<<endl;cout<<"************************************************"<<endl;}//构造函数RiverCrossing::RiverCrossing(int n, int c):endState(0, 0, 0){State::n = n;Boat::c = c;}//解决问题bool RiverCrossing::solve(){openList.push_back(new State(State::n, State::n, 1));while(!openList.empty()) {//获取一个状态为当前状态State *nowState = openList.front();openList.pop_front();closeList.push_back(nowState);//从当前状态开始决策if (nowState->iBoatAtSide == 1) {//船在此岸//过河的人越多越好,且野人优先int count = nowState->getTotalCount();count = (Boat::c >= count ? count : Boat::c);for (int capticy = count; capticy >= 1; --capticy) {for (int i = 0; i <= capticy; ++i) {Boat boat(i, capticy - i);if (move(nowState, &boat))return true;}}} else if (nowState->iBoatAtSide == 0) {//船在彼岸//把船开回来的人要最少,且牧师优先for (int capticy = 1; capticy <= Boat::c; ++capticy) {for (int i = 0; i <= capticy; ++i) {Boat boat(capticy - i, i);if (move(nowState, &boat))return true;}}}}print(NULL);return false;}//实施一步决策,将得到的新状态添加到列表,返回是否达到目标状态bool RiverCrossing::move(State *nowState, Boat *boat){//获得下一个状态State *destState;if (nowState->iBoatAtSide == 1) {destState = new State(*nowState - *boat);//船离开此岸} else if (nowState->iBoatAtSide == 0) {destState = new State(*nowState + *boat);//船开到此岸}if (destState->check()) {//检查人数if (*destState == endState) {//是否达到目标状态closeList.push_back(destState);print(destState);return true;//找到结果} else if (destState->isSafe()) {//检查是否安全if (!findInList(openList, *destState) && !findInList(closeList,*destState)) {//检查是否在表中//添加没出现过的状态节点到open表openList.push_back(destState);return false;}}}delete destState;return false;}//检查给定状态是否存在于列表中State* RiverCrossing::findInList(list<State*> &listToCheck, State &state){for (list<State*>::iterator ite = listToCheck.begin(); ite != listToCheck.end(); ++ite) {if (**ite == state)return *ite;}return NULL;}//根据达到的目标状态,回溯打印出求解过程void RiverCrossing::print(State *endState){cout<<"================================================"<<endl;if (!endState) {cout<<"Search failed!"<<endl;} else {cout<<"Search successed!"<<endl;cout<<"Optimal Procedure: "<<endl;State *pState = endState;stack<State*> st;//用栈将链表逆序,以便输出while (pState) {st.push(pState);pState = pState->pPrevious;}int count = 0;while (!st.empty()) {pState = st.top();st.pop();cout<<pState->iPastor<<","<<pState->iSavage<<","<<pState->iBoatAtSide;if (st.size() > 0)cout<<" -> ";if (++count % 5 == 0)//每五个步骤换行cout<<endl;}cout<<endl;cout<<"Total move: "<<count - 1<<endl;}cout<<"================================================"<<endl;}七、实验结果实验二:九宫重排一、实验目的A*算法是人工智能领域最重要的启发式搜索算法之一,本实验通过九宫重排问题,强化学生对A*算法的理解与应用,为人工智能后续环节的课程奠定基础。