光纤传感器论文
- 格式:doc
- 大小:329.00 KB
- 文档页数:11
关键词:光纤传感器;介绍;优点;应用近几年来,物联网发展飞快。
光纤通信与光纤传感技术将在物联网领域发挥重要作用。
光纤具有宽带特性,可将各种传感器复用到一根光纤,进行检测和传输。
由于光纤本身具有电绝缘性好、不受电磁干扰、无火花、能在易燃易爆的环境中,还具有成本低、结构简单、可靠性高等优点,光纤材料用做传感器具有独特的优势。
物联网与光纤传感有相辅相成、相互促进的作用。
各种光纤传感器有望在物联网中得到广泛应用。
ABSTRACTThe Internet of things develop quickly in recent years. Optical fiber communication and optical fiber sensing technology will play an important role in the field of Internet of things. Optical fiber have broadband characteristics, various sensors can be reused to a single fiber to text and transport. Because of the fiber ' s good electrical insulation, not subject to electromagnetic interference, no spark, can in inflammable and explosive environment , also has theadvantages of low cost, simple structure, high reliability , optical fiber materials used for sensor has a unique advantage. The Internetof things with the optical fiber sensing supplement each other and promote each other. All kinds of optical fiber sensor is expected to be widely used in the Internet of things.Keywords:Optical fiber grating sensor; Introduction; Advantages; application引言 (3)一、光纤传感器触摸的背景场合 (4)二、光纤传感器的应用原理 (5)三、光纤传感在机械工程中的应用 (6)四、光纤传感器的综合归纳 (7)总结 (8)参考文献 (8)致谢 (9)引言光纤光栅出现已经有30 年了,它是通过利用光纤的光敏性,由紫外光照射导致纤芯折射率发生变化而制成的一种光纤无源器件。
光纤传感器毛琪132640(仪器科学与工程学院,东南大学,南京210096)摘要:光纤传感器是现在被广泛应用的一类新型传感器,具有抗电磁干扰、灵敏度高、重量轻、成本低等优良的特点。
本文详细介绍了光纤传感器原理、结构和特性等方面的内容。
同时举例说明了光纤传感器在实际工程应用中的广泛应用。
关键词:光纤传感器;原理;工程应用Fiber optic sensorMao Qi 132640(School of Instrument Science and Engineering, Southeast University,Nanjing 210096)Abstract:Fiber optic sensor is a new type of sensor with excellent features ofanti-electromagnetic interference, high sensitivity, light weight and low-cost ,which is now widely used. The paper detailedly introduces the principles, structures and characteristics of fiber optic sensors. At the same time, some examples are provided to illustrate that fiber optic sensors are extensive used in practical engineering applications.Keywords: fiber optic sensor(FOS); principle; engineering application1.引言传感器技术、通信技术、计算机技术是现代信息技术的三大支柱,传感器作为探测与获取外界信息的重要环节之一而被应用于工业、农业及军事等各个领域。
光纤传感器的应用与发展摘要:主要阐述了光纤传感器的结构、原理、分类、特点、现状及发展趋势,并介绍了光纤传感器的几种应用。
关键词:光纤传感器发展趋势应用举例0 引言光纤传感技术的出现与光导纤维和光纤通信技术的发展是分不开的,是一种崭新的传感技术。
光纤传感器是以光纤为材料的传感器。
光纤是光导纤维的简称,其一般结构如图0.1所示。
从里到外分别是纤芯、包层、涂覆保护层和护套。
光纤的主体是纤芯和包层,涂覆保护层和护套起到隔离杂光和提高光纤强度的作用。
本文阐述了光纤传感器的原理、特点、现状及发展趋势,并介绍了光纤传感器的几种应用。
1 光纤传感基本原理及分类光纤传感技术是20世纪70年代中期伴随着光导纤维及光纤通信技术的发展而迅速发展起来的一种以光为载体,光纤为媒质,感知和传输外界待测信号的新型传感技术。
光纤传感器是利用光在光纤中传播特性的变化来检测、量度它所受到的环境变化。
通过被测物理量的变化来调制波导中的光波,使光纤中的光波参量随被测物理量的变化而改变,从而求得被测信号的大小。
根据调制区与光纤的关系,可将调制分为两大类。
一类为功能型调制,调制区位于光纤内,外界信号通过直接改变光纤的某些传输特征参量对光波实施调制。
这类光纤传感器称为功能型或本征型光纤传感器,也称内调制型传感器,光纤同具“传”和“感”两种功能。
同光源耦合的发射光纤与同光探测器耦合的接收光纤为一根连续光纤,称为传感光纤,故功能型光纤传感器亦称为全光纤型或传感型光纤传感器。
另一类为非功能型调制,调制区在光纤之外,外界信号通过外加调制装置对进入光纤中的光波实施调制,这类光纤传感器称为非功能型或非本征型光纤传感器,发射光纤与接收光纤仅起传输光波的作用,称为传光光纤,不具有连续性,故非功能型光纤传感器也称为传光型光纤传感器或外调制型光纤传感器。
光纤传感器按被调制的光波参数不同又可分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振调制光纤传感器和波长(颜色)调制光纤传感器。
一种新型光纤角度传感器的研究
伴随光纤通讯技术的成熟,光纤传感技术在近十几年得到突飞猛进的发展。
作为光纤传感器的一个重要组成部分,基于干涉技术的测量已经得到很大的关注,以光波波长为单位测量光程差,其测量精度之高是其他测量方法所无法比拟的。
本论文对比了市场上比较普及的角度传感器,进一步阐述了各种角度传感器的优缺点。
利用干涉滤波片对波的敏感性,设计了一种新型光纤角度传感器。
从光源传出的经过光纤传输,在受到某种外界因素的影响下,传播方向发生改变,利用光经过干涉滤波片后,光的中心波长发生变化的特性,根据一系列的实验和数据分析为基础,选择四个入射角度为假定的初始角度,通过分析计算,选定初始角度。
当被测量物体的入射角度在测量量程的范围内发生变化时,通过比较光谱干涉仪中显示中心波长的变化,就可以适时检测出入射光的角度,这是本课题研究的基本思想。
通过在模拟条件下的实验,检测了传感器的精度,同时也分析了外界因素对测量结果的影响。
本论文的主要工作包括:1.简要介绍国内外各种角度传感器的基本原理和使用范围及精度2.简要概述了光纤传感技术的基本原理及其分类3.阐述新型光纤角度传感的原理及其构架,分析干涉滤波片的特性,重点分析入射角和透射率之间的关系。
4.分析影响干涉滤波片中心波长变化的因素及其如何控制这些因素的影响,以将其影响将至最低化。
5.在模拟实验中,选择并设计合理的实验方案。
6.在实验中尽可能获得大量的数据,通过对这些数据的分析处理,选取一个合适的角度为初始角度,使角度传感器测量的精度较高,而且光波的耗损较小。
通过实验证明,这种的光纤角度传感器,同时能实行适时监测。
摘要随着电压和电流等级的提高,传统的电磁式电流互感器不能满足测量的要求,光纤电流传感器以其特有的优势,受到广泛的关注。
本文对国内外的光纤电流传感器的研究状况进行了综合的概述,针对现行光纤电流传感器的不足,改进了相位调制型光纤电流传感器,利用Jones矩阵分析法建立了反射式光纤电流传感器的理论模型。
并针对反射式光纤电流传感器进行了器件的选择。
根据传感器的输出信号的特点,设计了信号处理电路。
对信号进行了光电转换和前置放大,然后使用相关检测技术,将一次谐波的幅值转变成直流信号。
然后设计低通滤波器分离直流信号,最后设计了处理器电路完成信号的AD转换,用于信号的数字处理和输出显示。
关键词:光纤电流传感器,法拉第效应,相关检测,信号仿真ABSTRACTAs the increase of the current and voltage,the traditional electromagnetic current transformer could not satisfy the requirements of the measurement. The fiber-oPtic current sensor was investigated for its unique advantages.The research achievements of the fiber-optic current sensor have been summarized in the paper. The reflective fiber-oPtic current sensor has been designed basing on the Phase modulated type fiber-optic current sensor. The theory current sensor has been established using Jones matrix devices have been chose model of the reflective fiber-optic analyzing method and the proper device have been chose.According to the characteristics of the sensor's output, signal processing circuits including photoelectric translating circuit, preamplifier, correlation detector, low-pass filter and ARIvI processor have been designed. The fundamental wave was changed into direct-current component through correlation detector, and then the direct-current component was separated by low-pass filter. At last, the AD conversion was completed by ARM processor to do signal processing and output display.The simulation mode was established in the Matlab environment. The simulation analysis as well as the noise analysis was carried out. Finally, the analysis of the relationship between sensor's input and output was analyzed by using function-fitting method. The fitting coefficients and error were given and quadratic or quartic curve fitting was proposed.KEYWORDS:fiber-optic sensor, Faraday effect, correlation detection, signal simulation前言作为信息时代的今天,传感技术、通信技术和计算机技术在产业信息中起着非常重要的作用,成为现代信息产业的三大支柱,分别承担着信息的采集、传输、处理和储存等任务。
光纤传感器的应用研究摘要本文介绍了光纤传感器研究的目的、意义及其发展趋势,通过分析研究各类光纤传感器的基本原理,设计出了几种功能较完善的光纤传感器。
首先从研究光纤传感器的工作原理出发,分析各种光纤传感器的结构和原理,通过对原有光纤传感器的结构和控制机理的分析,结合学过的电子知识,设计光纤传感温度计、光纤传感压强计等。
在整个研究过程中采取实验和理论相结合的方式。
关键词: 传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。
1绪论光纤传感器是70年代末发展起来的一种新型传感器,它具有不受电磁场影响,本质上安全防爆,体积小,耐腐蚀,灵敏度高等优点。
可用在传统传感器难以涉足的极端恶劣环境,所以在军事、航空航天、生物医学、建筑施工等领域被受青睐。
因此对光纤传感器的研究具有很重要的现实意义。
传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。
在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。
光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。
光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。
在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的魅力。
因此,光纤传感技术应用的研究具有很好的前景。
光纤传感优点:灵敏度较高;几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件;可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境;而且具有与光纤遥测技术的内在相容性。
新型光纤传感器的设计与应用研究在当今科技飞速发展的时代,传感器技术在各个领域都发挥着至关重要的作用。
光纤传感器作为一种新型的传感器,凭借其独特的优势,逐渐成为研究的热点。
本文将深入探讨新型光纤传感器的设计以及其在不同领域的广泛应用。
一、新型光纤传感器的设计原理光纤传感器的工作原理主要基于光的传输特性。
当光在光纤中传播时,外界因素的变化会引起光的某些参数发生改变,如强度、波长、相位等。
通过检测这些参数的变化,就可以获取外界环境的信息。
在新型光纤传感器的设计中,关键在于选择合适的光纤材料和结构。
常见的光纤材料有石英光纤、塑料光纤等,它们具有不同的光学性能和机械性能。
而光纤的结构设计则包括单模光纤、多模光纤、光纤光栅等。
光纤光栅是一种新型光纤传感器中常用的结构,其通过在光纤内部写入周期性的折射率变化,实现对特定波长光的反射或透射。
这种特性使得光纤光栅能够对温度、应变等物理量进行高精度的测量。
此外,为了提高传感器的灵敏度和分辨率,还常常采用分布式传感技术。
这种技术可以实现对光纤沿线多个点的同时测量,大大拓展了传感器的监测范围和应用场景。
二、新型光纤传感器的设计要点1、高灵敏度灵敏度是衡量光纤传感器性能的重要指标之一。
为了提高灵敏度,需要在设计中精心优化光纤的结构和材料,以及光的传输和检测方式。
例如,采用特殊的光纤涂层可以增强对被测物理量的响应。
2、抗干扰能力在实际应用中,光纤传感器往往会受到外界环境的干扰,如电磁场、噪声等。
因此,在设计中需要采取有效的措施来提高传感器的抗干扰能力,保证测量结果的准确性和可靠性。
3、稳定性稳定性是确保传感器长期可靠工作的关键。
这需要在设计中考虑光纤的老化、温度漂移等因素,选择合适的封装材料和工艺,以保证传感器在不同环境条件下性能的稳定性。
4、小型化和集成化随着应用需求的不断发展,对光纤传感器的尺寸和集成度提出了更高的要求。
小型化和集成化的设计可以使传感器更便于安装和使用,同时降低成本。
光纤传感器论文光纤温度传感器论文光纤传感器在稠油热采技术中的应用摘要:光学仪器在油气田开采上的应用备受关注,其具有高可靠性和低耗高效等方面的技术优势。
各种光纤传感器已被应用在油气勘探和开发上。
本文将重点讨论井下光谱仪、分布式温度传感器、光纤压力传感器在稠油热采技术的应用。
加强这方面的研究,对于合理优化稠油开采方案,提高稠油采收率,降低开采成本具有深远的意义。
关键词:光纤传感器稠油热采光纤传感器可在高压和高温等极端条件下被使用,在不影响原始温度、压力及油田正常生产的情况下,可以实现实时多点温度、压力或连续温度分布的瞬时测量。
光纤传感技术是以光为载体、光纤为媒介,感知和传输被测外界信号的新型传感技术。
通过光纤传感器可实现与温度和应变相关的许多物理量和化学量的直接与间接测量。
本文将主要讨论光纤传感器在稠油热采技术的应用。
尤其是光纤传感器以其独特的安装方式,可以对水平井、直井、大斜度井进行实时监测,解决以往水平井难测量的问题,并结合其他常规测试数据,计算吸气剖面和产液剖面。
对于了解水平井的温度场分布,确定水平段注气情况,延长水平井的生产周期等具有不可低估的效果。
分布式光纤测温系统主要用于油井温度状况监测。
这些传感器能在高达20000psi(1大气压=14.7psi)的高压和高达175摄氏度的高温的极端条件下被使用。
由于采油深度日益加深,这就要求传感器能适应更高的温度和其他极端条件的要求。
光纤传感器可以为稠油热采提供动态实时的地层信息,从而为油气资源的管理和提高油气采收率提供一种高效技术手段。
1 井下光谱仪了解稠油开发过程中原油组成成分将有助于优化资源开采。
这方面的信息可通过流体分析仪获得,其应用数据来源于安装在开口处的、用来测定信息性质的动态信息测试工具。
基于测量所得的混合物原始成分,流体分析仪提供实时信息来优化流体取样过程。
流体分析仪由两个传感器合成。
其一是吸收光谱分析仪,另一个是荧光和气体探测器。
井下流体通过并行的探针被引入流体管,光学传感器用于分析流体管内的液体。
光纤温度传感器读书报告导师:刘丽华学院:机电工程学院学号:1100800609姓名:王震宇光纤温度传感器的研究进展和应用关键词:光纤传感;温度;研究进展;应用摘要:分析了光纤温度传感器的优点,综述了光纤温度传感器的发展现状和应用。
分别介绍了分布式光纤温度传感器,光纤光栅温度传感器,干涉型光纤温度传感器,光纤荧光温度传感器和基于弯曲损耗的光线暗温度传感器的工作原理和研究现状,详细介绍了各种传感器的特点及各自的研究方向。
0 引言温度是很常见也是很重要的物理量,它与人类生活和科学研究有着密切关系,所以温度的检测至关重要。
但是其中的一些应用领域将面临特殊的工作环境,这对于温度的测量可能会造成一些特殊的困难。
例如油井中的温度会随着开采深度的增加而不断提高,电力系统的测温环境具有高电压,大电流,强电磁干扰和空间狭小等特点,这就要寻求可靠性高,抗电磁干扰性强,响应快,体积小的新型传感器。
尽管目前已有许多高温研究成果,但对于像火药燃烧时的温度等变化的高温数据很难通过传统的热响应率较慢的热电偶得到,并且所测结果是否能准确反映客观对象的真实情况也是一个棘手的问题。
此时传统的温度传感器难以进行有效的实时监测。
近年来充分发挥光纤特性的光纤传感器为解决这些测试技术难题提供了途径。
光纤测温是二十世纪七十年代发展起来的一门新兴测温技术,与传统的温度传感器相比具有很多优点,光波不产生电磁干扰,也不怕电磁干扰,易被各种光探测器接收,可方便地进行光电或电光转换,易与高度发展的现代电子装置和计算机相匹配,光纤共走频率宽,动态范围大,是一种低损耗传输线,光纤本身不带电,体积小质量轻,易弯曲,抗辐射性能好,特别适合于易燃,易爆,空间受严格限制及强电磁干扰等恶劣环境下使用。
国外一些发达国家对光纤温度传感技术的应用研究已取得丰富成果,不少光纤温度传感器系统已实用化,成为替代传统温度传感器的商品。
所有与温度相关的光学现象或特性,本质上都可以用于温度测量。
认不同的光纤型号。
图3 图4光纤传感器的基本组成:光纤传感器主要包括光导纤维、光源、光探测器三个重要部件。
①光源分为相干光源(各种激光器)和非相干光源(白炽光、发光二极管)。
实际中,一般要求光源的尺寸小、发光面积大、波长合适、足够亮、稳定性好、噪声小、寿命长、安装方便等。
②光探测器包括光敏二极管、光敏三极管、光电倍增管、光电池等。
光探测器在光纤传感器中有着十分重要的地位,它的灵敏度、带宽等参数将直接影响传感器的总体性能。
三、光纤传感器的类型与原理1.光纤传感器的类型一类是利用光纤本身的某种敏感特性或功能制成的传感器,称为功能型传感器(或传感型光纤传感器);如图4其原理是外界因素使得光纤中传输光波的相位发生变化进而改变出射光、干涉光的强度,以此达到测量目的。
Φ=2π/λ0•nl式中,为光在真空中的波长λ0,n为光纤纤芯的折射率,l为光在光纤中传播的距离。
一般通过外界因素可改变n和l进而可改变相位Φ,而相位Φ和出射光光强 I密切相关,从而改变出射光光强。
光纤在这类传感器中主要是用单模光纤,它不仅仅是传光元件,而且利用光纤本身的某些特性来感知外界因素的变化,所以它又是敏感元件,因此改变几何尺寸和材料性质可以改善灵敏度。
传感型光纤传感器在结构上比传光型光纤传感器要简单,因为光纤是连续的,可以少用一些光耦合器件。
但为了光纤能够接受外界物理量的变化,往往需要采用特殊光纤来做探头,这样就增加了传感器的制造难度。
另一类是光纤仅仅起传输光波的作用,必须在光纤端部或中间加装其它敏感元件才能构成的传感器,称为传光型传感器(非功能型传感器)(如图5、6)。
传光型光纤传感器主要是强度调制型光纤传感器,其基本原理是待测物理量引起光纤中传输光的光强I变化,通过检测光强 I的变化来实现对待测物理量的测量。
强度调制的特点是简单、可靠、经济、强度调制方式很多,主要有反射式强度调制和透射式强度调制。
图5 图6为了获得较大的受光量和传输光的功率,在传光型光纤传感器中使用的光纤主要是数值孔径和芯径较大的阶跃型多模光纤。
光纤传感技术( 学院物理与电气工程学院安徽 2 33)指导教师:摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。
该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。
本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。
关键词:光纤传感技术,光纤传导,光纤传感器,传感器类型,传感器应用。
0 引言光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。
作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。
现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。
伴随光纤技术的不断成熟,实用化光纤传感器的开发成为整个领域发展的基础和关键。
当前,中国光纤传感器研究大多数基于于科研机构与大专院校等,但依旧未完成由理论实验向产品实践化的转变过程。
其中相对成熟的技术有:清华大学光纤传感中心和总后共同研究开发的温度测量系统和光纤油罐液位,已装配运行数年;北京航空航天大学和总装合作研制的光纤陀螺系统,现在的技术指标是0.20/hr 。
因为光纤传感器未能超越产品化的限制,并且还未像光纤通信产业具有指数型增长的趋势,许许多多和日常生活紧密联系的传感器应用产品(如交通监管、安全警报装置等)和精密的测试仪器仍然依靠于进口,亟需拓展的领域非常广阔。
1 光纤导光的基本原理1.1 光纤的结构和分类光纤是传光的纤维波导或光导纤维的简称[1]。
多层同轴圆柱体是其典型代表性结构,如图1所示,自外向内为涂覆层、纤芯与纤芯。
重要部分是包层与纤芯,其中纤芯是由高度透明材料制成,构成光波传输通道;包层与纤芯的折射率相比略小,可以使光波相对稳定的进行传导。
光纤传感技术论文(2)推荐文章物联网传感知识技术论文范文热度:检测与传感技术论文热度:电影类论文3000字左右热度:好莱坞电影方面的论文热度:初一政治小论文格式范文热度:光纤传感技术论文篇二光纤光栅传感技术应用研究[提要] 光纤光栅传感技术是近年来发展起来的一门新技术。
本文在分析光纤光栅传感技术优势的基础上,综述光纤光栅传感技术的应用,讨论光纤光栅传感器在应用研究过程中需要解决的关键问题,并对其应用前景做了展望。
关键词:光纤光栅;传感技术;应用研究中图分类号:F49 文献标识码:A收录日期:2012年6月8日光纤光栅是近年来发展极为迅速的一种新型光纤无源器件。
由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其他光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用。
光纤光栅是利用光纤材料的光敏特性,在光纤的纤芯上产生空间周期性或非周期性折射率变化而制成的。
光纤光栅传感器是近几年发展最快、最先进的光纤无源器件之一,光纤光栅传感器产业已被国内外公认为是最具有发展前途的高新技术产业之一,它以技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人所瞩目。
一、光纤光栅传感的优势作为光纤传感器的一种,近年来发展十分迅速,它之所以有这样迅猛的发展,是因为它与传统的电传感器等相比有其独特的优点。
1、具有非传导性,对被测介质影响小,又具有抗腐蚀、抗电磁干扰的特点,适合在煤气附近、电站、核设施、矿井下、油田以及油罐周围等恶劣、高危险环境中工作。
抗干扰能力强,这一方面是因为普通光纤不会影响光波的频率特性(忽略光纤的非线性效应);另一方面光纤光栅传感系统从本质上排除了各种光强起伏引起的干扰。
2、光纤轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用技术相结合,实现多点、分布式传感。
便于构成各种形式的光纤传感网络,尤其是采用波分复用技术构成分立式或分布式光纤光栅传感器阵列,进行大面积的、同时的多点测量。
光纤传感器的原理及应用摘要:本文主要介绍由光纤传感器发展过程与基本的原理,由此分析出光纤传感器在测量技术中的应用以及光纤液位传感器特点与应用,光纤传感器发展方向。
关键字:光纤传感器;原理;应用;发展方向目录1光纤传感器发展过程 (3)2光纤传感器的基本工作原理 (3)3光纤传感器的应用 (3)4光纤液位传感器特点与应用 (3)4.1工作原理 (3)4.2光纤液位传感器应用 (3)5光纤传感器发展方向 (3)1光纤传感器发展过程光导纤维传感器(简称光纤传感器)是20世纪七十年代迅速发展起来的一种新型传感器。
光纤最早用于通讯,随着光纤技术的发展,光纤传感器得到进一步发展。
一直以来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。
在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。
近年来,光纤传感器监测技术伴随着光导纤维及光纤通信技术的发展而迅速发展起来。
与传统的监测技术相比,光纤监测技术有一系列独特的优点:1)光纤传感器以光信号作为载体,光纤为媒质,光纤的纤芯材料为二氧化硅,因此,该传感器具有耐腐蚀、抗电磁干扰、防雷击等特点,属本质安全。
2)光纤本身轻细纤柔,光纤传感器的体积小、重量轻,不仅限于布设安装,而且对埋调部位的材料性能和力学参数影响甚小,能实现无损埋设。
3)灵敏度高,可靠性好,使用寿命长。
分布式光纤监测技术除了具有以上的特点外,还具有以下两个显著的优点:可以准确地测出光纤沿线任一点的监测量,信息量大,成果直观;光纤既作为传感器,又作为传输介质,结构简单,不仅方便施工,潜在故障大大低于传统技术,可维护性强,而且性能价格比好。
分布式光纤经久耐用,安全可靠,由它构成的网络可以遍布坝体,这些光纤网络犹如神经系统,可以感知坝体各部位相关信息,大坝因此而有望成为一种机敏结构。
分布式光纤监测技术是当代高科技的结晶,是一种理想的大坝安全监测系统,广大安全监测工作者应予以积极推广。
2光纤传感器的基本工作原理光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。
大学毕业设计题目专业班级学生学号指导教师二〇一四年五月五日Abstract1 引言:光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。
与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。
它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。
在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。
2 论文要求:(1)详细分析国内外主要光纤温度测温方法的原理及特点,比较不同方法的温度测量范围和性能指标。
(2)掌握空调器的工作电气原理和基本的热力学过程。
3 毕业论文综述:70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。
1977年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。
从这以后,光纤传感器在全世界的许多实验室里出现。
从70年代中期到80年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。
从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。
光纤传感器与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。
毕业设计课题名称:光纤传感器设计姓名:王新鹏学号:********** 所在系:电子电气工程系专业年级:D05电气二班指导教师:刘伟职称:教授2007 年6 月13 日原创性声明本人郑重声明:所呈交的毕业论文,是本人在导师的指导下,独立进行研究所取得的成果。
除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的科研成果。
对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。
本声明的法律责任由本人承担。
论文作者签名:日期:关于学位论文使用授权的声明本人完全了解淄博职业学院有关保留、使用论文的规定,同意学校保留或向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅;本人授权淄博职业学院可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复制手段保存论文和汇编本毕业论文。
(保密论文在解密后应遵守此规定)论文作者签名:导师签名:日期:目录摘要 (4)1引言 (4)2光纤传感器的原理与特点 (4)3光纤传感器的研究现状 (7)4新型光纤材料与器件 (8)4. 1传感光纤 (8)4. 2光源 (9)5结束语 (10)6参考文献 (11)7致谢 (12)光纤传感器研究与发展摘要:光纤传感器较传统传感器有诸多优点,它越来越引起人们的广泛关注,并得到了深入的研究和广泛的实用化。
文中论述了光纤传感器的原理与特点。
介绍了光纤传感器的应用状况、国内外发展现状、新型光纤材料与器件。
最后对光纤传感器的前景予以了展望。
关键词:光纤传感技术光纤传感器光纤布拉格光栅光源。
1引言随着密集波分复用DWDM技术、掺饵光纤放大器EDFA技术和光时分复用OTDM技术的发展与成熟,光纤通信技术正向着超高速、大容量通信系统的方向发展,并且逐步向全光网络演进。
在光通信迅猛发展的带动下,光纤传感器作为传感器家族中年轻的一员,在抗电磁干扰、轻巧、灵敏度等方面有着独一无二的优势。
有资料表明,美国1996年一2002年光纤传感器年均增长率为 27%一30%,而我国对光纤传感器的市场需求也很大[1].2光纤传感器的原理与特点光纤最早在光学行业中用于传光和传象,在70年代初生产出低损耗光纤后,光纤在通信技术中用于长距离传递信息。
光纤温度传感器毕业论文第一篇:光纤温度传感器毕业论文摘要本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。
通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。
可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。
本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。
本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。
关键词:光纤,光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理Abstract 引言:光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。
与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。
它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。
在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。
论文要求:(1)详细分析国内外主要光纤温度测温方法的原理及特点,比较不同方法的温度测量范围和性能指标。
(2)掌握空调器的工作电气原理和基本的热力学过程。
毕业论文综述:70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。
光纤传感器的论文这个学期选修了《传感器与检测技术》这门课,我对里面讲述到达光纤传感器较为感兴趣,所以就以光纤传感器做我论文的主题。
通过介绍光纤传感器的构造及工作原理,光纤传感器的许多优越的特点,灵敏度高、可以任意改变形状、可用于恶劣的环境中等等。
来说明光纤传感器是使用是非常广泛的,其应用领域是在我们的周围环境中,其重要性日益增强。
最后,光纤技术会越来越得到应用,它会给我们人类带来极大的方便与利益。
关键词光纤传感器、灵敏度、改变形状、可用于恶劣环境引言——光纤传感器可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。
在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。
它与我们息息相关,我们需要它,它需要我们来对它进行改造,创新。
一、光导纤维的原理光纤传感器就是利用光导纤维的传光特性,把被测量转换为光特性(强度、相位、偏振态、频率、波长)改变的传感器。
它的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。
随着现代科学技术的发展, 信息的获得显得越来越重要。
光纤传感器具有许多优点:灵敏度较高;几何形状具有多方面的适应性,可以制成任意形状的的光纤传感器;可以制作传感各种不同的物理信息(声、磁、温度、旋转等)的器件;光纤传感器可以用于高压、电气噪声、高温、腐蚀和其他的恶劣环境;具有与光纤遥测技术的内在相容性。
1、灵敏度高由于光是一种波长极短的电磁波, 通过光的相位便得到其光学长度。
以光纤干涉仪为例, 由于所使用的光纤直径很小, 受到微小的机械外力的作用或温度变化时其光学长度要发生变化, 从而引起较大的相位变化。
图(1) 光纤的结构2、测量速度快光的传播速度最快且能传送二维信息, 因此可用于高速测量。
光纤传感技术在智能电网安全综合监测中的应用山东微感光电子有限公司目录1.研究背景 (1)2.研究目的与意义 (2)3.研究内容 (3)4.研究目标及技术路线 (5)5.研究方案 (6)5.1.光纤传感技术 (6)5.1.1光纤光栅传感技术 (6)5.1.2光纤分布式温度检测技术 (11)5.1.3光纤气体检测技术 (12)5.2 光纤传感技术在电力安全监测中的应用 (14)5.2.1 光纤电缆沟综合监测 (14)5.2.2 光纤高压开关柜温度监测 (19)1.研究背景随着电力系统互联的不断发展,现代电网规模日益扩大,逐渐形成了全国统一、甚至跨国的大型联合系统。
随着电力网络互联程度的不断提高,系统越来越庞大,运行方式越来越复杂,保证系统安全可靠运行的难度也越来越大,使整个电网的安全稳定问题越来越突出。
在现代大电网中,各区域、各部分互相联系、密切相关,在运行过程中互相影响。
如果电网结构不完善,缺少必要的安全监测措施,一个局部的小扰动或异常运行也可能引起全系统的连锁反应,甚至造成大面积的系统瓦解。
大规模的电力系统对现有的电网安全状态综合监测提出了新的挑战。
电力系统是现代社会中最重要、最庞大的工程系统之一。
电能供应的中断,不仅直接影响到国防与工农业生产、交通,造成人民生活紊乱,在某些情况下甚至酿成及其严重的社会性灾难。
随着我国电力系统向高效环保可持续发展的目标发展,电力系统的安全高效运行更加重要。
电力设备和电力线路的运行状态监测是保证电力系统安全高效运行的重要手段。
但是,在具有强电磁干扰、高压的恶劣环境下,电子传感器具有很大局限性。
因此,急需对电网运行状态进行实时在线综合检测的有效手段。
光纤传感技术是20世纪70年代末兴起的一种先进的多学科交叉技术。
光纤传感器所具有的诸多独特优点,使得光纤传感器在电力系统安全监测中发挥了巨大作用。
(1)光纤传感器本质为介电材料,传输光信号,本质安全,因此可应用于高电压、强电磁干扰的恶劣环境;(2)体积小、物理性质稳定,适合于在线监测材料结构的健康状况,甚至可以将光纤传感器直接置于材料内部,和材料融为一体形成智能材料和结构;(3)复用能力强,可实现对一线多点、两维点阵或空间分布的连续监测,在同一条检测通道中可以将多个/多种传感器探头串连和并联使用,从而实现对多参数的快速准确测量;(4)光纤传输损耗小,信号传输距离远,可用于远距离监测。
光纤传感技术论⽂ 光纤传感技术是近年来发展起来的⼀门新技术。
下⾯是店铺整理了光纤传感技术论⽂,有兴趣的亲可以来阅读⼀下! 光纤传感技术论⽂篇⼀ 新⼀代光纤智能传感⽹技术进展 摘要:新⼀代光纤智能传感⽹是⼀项涵盖领域较为⼴泛的综合性技术,主要包括微结构光纤传感、基于⾮线性光学散射的光纤传感、基于光纤扰动的光纤传感、传感⽹的优化及应⽤技术四个⽅⾯。
燕⼭⼤学、天津⼤学研制了不同类型的光⼦晶体光纤传感器,可⽤于⽣物化学⽅⾯检测。
中国计量学院、南京⼤学开展了基于⾮线性光学散射的光纤系统研究,并在实际⼯程中得到应⽤。
复旦⼤学、天津⼤学、上海理⼯⼤学针对光纤扰动的理论、算法等⽅⾯进⾏了研究。
天津⼤学开展了光纤传感⽹优化及应⽤的研究,并在实际中得到应⽤。
该⽂简要介绍了上述科研机构在光纤智能传感⽹技术⽅⾯取得的进展,为⼴⼤科研⼯作者进⾏相关研究提供参考。
关键词:光纤传感光纤传感⽹微结构⾮线性光学光纤扰动 中图分类号:TN523 ⽂献标识码:A ⽂章编号:1674-098X(2014)10(b)-0047-02 光纤传感技术因其具有抗电磁⼲扰、电绝缘、体积⼩、易成阵列等优点,⾃从问世就受到极⼤重视[1]。
光纤传感技术在实际应⽤中,往往是将各种传感器组成光纤传感⽹,对多种信号进⾏测量。
但是⽬前传感器受结构、⼯艺束缚,系统稳定性较差,光纤传感⽹技术的应⽤范围受到限制。
随着我国国民经济的飞速发展,各个领域对更⾼精度、多指标检测⽅⾯需求越来越迫切,这就对光纤传感检测系统提出了更⾼要求。
因此,国家将新⼀代光纤智能传感⽹与关键器件基础研究列为国家重点基础研究发展计划(973计划),对关键性原理、器件的研究进⾏重点⽀持。
新⼀代光纤智能传感⽹是⼀种具有3S(Smart structure 灵巧结构,Smart components 灵巧器件,Smart skill 灵巧技术)功能的系统,具有超长距离传感能⼒,并且能够智能的实现⾃寻径、⾃诊断、⾃愈等功能。
光纤传感器的原理、应用及发展前景摘要这个学期选修了《传感器与检测技术》这门课,我对里面讲述到达光纤传感器较为感兴趣,所以就以光纤传感器做我论文的主题。
通过介绍光纤传感器的构造及工作原理,光纤传感器的许多优越的特点,灵敏度高、可以任意改变形状、可用于恶劣的环境中等等。
来说明光纤传感器是使用是非常广泛的,其应用领域是在我们的周围环境中,其重要性日益增强。
最后,光纤技术会越来越得到应用,它会给我们人类带来极大的方便与利益。
关键词光纤传感器、灵敏度、改变形状、可用于恶劣环境引言——光纤传感器可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。
在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。
它与我们息息相关,我们需要它,它需要我们来对它进行改造,创新。
一、光导纤维的原理光纤传感器就是利用光导纤维的传光特性,把被测量转换为光特性(强度、相位、偏振态、频率、波长)改变的传感器。
它的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。
随着现代科学技术的发展, 信息的获得显得越来越重要。
光纤传感器具有许多优点:灵敏度较高;几何形状具有多方面的适应性,可以制成任意形状的的光纤传感器;可以制作传感各种不同的物理信息(声、磁、温度、旋转等)的器件;光纤传感器可以用于高压、电气噪声、高温、腐蚀和其他的恶劣环境;具有与光纤遥测技术的内在相容性。
1、灵敏度高由于光是一种波长极短的电磁波, 通过光的相位便得到其光学长度。
以光纤干涉仪为例, 由于所使用的光纤直径很小, 受到微小的机械外力的作用或温度变化时其光学长度要发生变化, 从而引起较大的相位变化。
图(1)光纤的结构2、测量速度快光的传播速度最快且能传送二维信息, 因此可用于高速测量。
对雷达等信号的分析要求具有极高的检测速率, 应用电子学的方法难以实现, 利用光的衍射现象的高速频谱分析便可解决。
信息容量大被测信号以光波为载体, 而光的频率极高, 所容纳的频带很宽, 同一根光纤可以传输多路信号。
3、适用于恶劣环境光纤是一种电介质, 耐高压、耐腐蚀、抗电磁干扰, 可用于其它传感器所不适应的恶劣环境中。
另外, 利用光纤的柔韧性可将光纤传感器做成各种形状的传感器及传感器阵列, 用于多参数测量。
二、光导纤维的主要参数1、数值孔径(NA)如上图所示,将θi的正弦函数定义为光导纤维的数值孔径(NA),即NA = sinθi =)(2221nn-数值孔径反映纤芯接受光量的多少,是标志光导纤维的接受性能的一个重要参数。
其意义是无论光源发射率有多大,只有2θi张角之内的光功率能被光纤接收传播。
2、 光纤模式光纤模式简单地说,就是光波沿光导纤维传播的途径和方式。
在给定的光导纤维中,光线只是以某些角度入射时,所传播的光会以不同的角度入射的光线,在界面上反射的次数是不同的,传递的光波之间的干涉所产生的横向强度分布叫模式。
阶跃型的圆筒波导内传播的模式数量可以简单表示为V=02221n n d λπ)(-21式中:d 为光纤芯直径;0λ为光波波长3、传播损耗由于光纤纤芯材料的吸收、散射,光纤弯曲处的辐射损耗等的影响,光信号在光纤中的传播不可避免的要有损耗。
以A 来表示传播损耗(单位dB ),则:A = a I = 20lg II 0 式中:I 为光纤长度;a 为单位长度的衰减;0I 为光导纤维输入端光强;I 为光导纤维输出端光强。
三、根据光纤在传感器中的作用,光纤传感器可以分为三大类一类是功能型传感器; 二类是非功能型传感器;还有最后一类是拾光型光纤传感器。
1、功能型传感器功能型传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。
光纤在其中不仅是导光媒质,而且也是敏感元件,光在光纤内受被测量调制,多采用多模光纤。
优点:结构紧凑、灵敏度高。
缺点:须用特殊光纤,成本高,典型例子:光纤陀螺、光纤水听器等图(2)功能型传感器的工作方式2、非功能型传感器非功能型传感器是利用其它敏感元件感受被测量的变化, 光纤仅作为信息的传输介质,常采用单模光纤。
光纤在其中仅起导光作用,光照在光纤型敏感元件上受被测量调制。
优点:无需特殊光纤及其他特殊技术;比较容易实现,成本低。
缺点:灵敏度较低。
实用化的大都是非功能型的光纤传感器。
光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。
在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。
三、拾光型光纤传感器。
用光纤作为探头,接受由被测对象辐射的光或被其反射、散射的光。
典型的例子:光纤激光多普勒速度计、辐射式光纤温度传感器等。
3、拾光型光纤传感器用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。
其典型例子如:光纤激光多普勒速度计、辐射式光纤温度传感器等。
四、光纤传感器应用的领域温度的检测,压力的检测,液位、流量、流速的检测。
1、光纤高温测量系统图(3)光纤高温测量系统测量时,测量光纤插入钢水内部约40 cm 深。
光纤可采用金属套层光纤,光纤插入钢水瞬间,光纤被烧蚀,端面形成半圆形凹面,这时,在金属套层被烧蚀前,光纤最前端可近似视为黑体。
在测量段光纤被烧蚀前,钢水测量点处的温度可传出。
钢水内部温度通过对光纤端面的辐射由光纤传输到光电转换及单片机处理系统。
2、基于微弯效应测压力微弯效应:光纤在微弯时引起纤芯中传输的光部分投入包层(全反射条件受到一定破坏),造成传输损耗,微弯程度不同,泄漏光波的强度也不同,从而达到光强度调制的目的。
光纤压力传感器主要有强度调制型、相位调制型和偏振调制型三种。
强度调制型光纤传感器是一种可用于测量位移、温度、压力、气体浓度等多种物理量的高精度传感器。
大多基于弹性元件受压发生机械形变,将压力信号转换为位移信号来进行检测。
为改善传感器的性能,微弱光强信号的检测需要载波调制和双光路补偿。
传统的这类传感器通常采用模拟电路实现,存在着元件漂移误差、调校困难、不易组网、尺寸较大等固有的弊端。
相位调制型光纤传感器是利用光纤本2221211222111111(,)ln 5ln ln 5ln (,)C C T L T B L T λλλλλλλλλλ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭==⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭利用辐射式测温原理,测温公式为:身作为敏感元件,通过被测能量场的作用,使光纤内传播的光波相位发生变化,再用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。
光纤中光的相位由光纤波导的物理长度、折射率及其分布、波导横向几何尺寸所决定,应力、应变、温度等外界物理量能直接改变上述三个波导参数,产生相位变化,实现光纤的相位调制。
简单地说,将被测量转为光的波长或光程差的变化,从而使相位发生变化的方法称为相位调制。
3、光纤位移传感器反射式光强调制测量位移由光纤输出的光照射到反射面上发生反射,其中一部分反射光返回光纤,测出反射光的光强,就能确定反射面位移情况。
这种传感器可使用两根光纤,分别作传输发射光及接收光用;也可以用一根光纤同时承担两种功能。
为增加光通量可采用光纤束,此方法测量范围在9 mm以内,其光强调制的示意如下图所示。
图(4)光纤位移传感器测量位移图(5)光纤位移传感器测量曲线4、光纤液位传感器原理:基于全内反射理论当测头没有接触液面(处于空气中)时,光线在探头内发生全内反射,而返回到光电二极管;当测头接触液面,由于液体与空气折射率不相同,所以全内反射被破坏,将有部分光线投入液体,使返回光电二极管的光强变弱。
返回光强是液体折射率的函数。
返回光强发生突变时,测头已接触到液位。
光电接收器的要求不高。
由于同种溶液在不同浓度时的折射率不同,经标定,这种液位传感器也可作浓度计。
光纤液位计可用于易燃、易爆场合,但不能探测污浊液体及会粘附在测头表面的粘稠物质。
5、光纤的其它应用(1)光纤电流传感器图(6)光纤结构电流传感器图(6)为一种全光纤结构的光纤电流传感器。
其中单偏光纤代替了上述结构中的起偏器,并用了一个多圈传感线圈。
电流测量范围可达0.l~5000A。
(2)光纤式光电开关应用采用遮断型光纤光电开关对IC 芯片引脚进行检测(3)军用光纤陀螺其原理:将激光射入绕成线圈的光纤,当线圈的底座随运动物体旋转时,可以测得出射光的相位发生变化,它的灵敏度比机械陀螺高,无机械磨擦力。
(4)光纤内窥镜制造光纤内窥镜关键的部件是光纤传像束它决定产品清晰度、分辨率和使用寿命。
光纤内窥镜是利用光导纤维传光、传像原理及其柔软的弯曲性能,可以对设备中肉眼不易直接观察的隐蔽部位方便快速的检查。
既不需要设备解体,也不需要另外说明,只要将窥头插入孔内就行了。
五、光纤传感器发展前景光纤传感技术是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的新型传感技术,当今世界对光纤传感技术的应用研究已取得丰硕成果.光纤传感器与传统的机电类传感器相比具有很多优势,如本质防爆、抗电磁干扰、抗腐蚀、耐高温、体积小、重量轻、灵活方便等.因此其应用范围非常广泛,并且特别适于恶劣环境中的应用.光纤光栅传感器被认为是实现“光纤灵巧结构”的理想器件。
光纤传感技术使用的范围很广泛,无论是民用济或国防事业,都能用得上,尤其是能在恶劣的环境中使用。
现今,光纤传感器呈产品化发展,形成了五大应用领域:1.医学与生物;2.电力工业;3.化学与环境;4.军事领域;5.智能结构。
六、参考文献1、徐科军主编,《传感器与检测技术》(第二版)2、赵勇主编,《光纤传感原理与应用技术》3、陈裕泉主编,《现代传感器原理及应用》4、徐宇生主编,《光纤传感器技术手册》5、江毅主编,《高级光纤传感技术》- 11 -。