基于背景分类的弱小目标检测算法
- 格式:pdf
- 大小:364.16 KB
- 文档页数:6
ft红外弱小目标检测算法说起红外弱小目标检测,咱们可能马上会想起那些科幻电影里的场景:夜晚,黑漆漆的天,突然一束光从远处射来,目标被精准地锁定。
看上去有点不可思议吧?但红外技术就是这样一个有点魔法般的存在,它能通过探测物体释放的热量来识别目标。
而所谓的“弱小目标”呢,就是那些在温度差异不大、比较难被察觉的物体,比方说,小小的无人机、隐身飞行器,甚至是远处的动物。
而“检测算法”呢,就是帮我们发现这些目标的秘密武器,虽然有些复杂,但并不意味着它就一定需要复杂的操作或者高大上的技术,实际上很多时候它就像是你身边的那个聪明的小伙伴,默默地为你提供帮助。
先说说红外图像。
你可以把红外图像想象成一张由热量信息构成的照片。
那种照片可不是一般的照片,它不需要光线,就像我们在漆黑的夜晚也能看到一样。
所以,红外探测器可以在夜晚甚至是雾霾天气中依然能看到物体。
这个就像你在一个漆黑的房间里,突然眼前亮起一盏夜视灯,你能清晰地看到平时看不见的东西。
但是,大家别忘了,红外图像和普通的光学图像不一样,它更像是“热量的地图”。
所以,弱小目标的检测其实就是在这张热量地图上,找到那些不显眼、很难察觉的“小点儿”。
说起来,这种检测并不简单。
你想,目标可能太小,目标与背景的温差也可能微乎其微,检测算法就得特别细心。
这些目标可能和周围环境几乎没有什么区别,感觉就像是找针掉在了大海里。
就拿无人机来说,飞得那么高,离得那么远,只有一小小的热源,在这片广阔的天地里怎么找到它呢?有些算法就像是个“侦探”,它得把整个“案件”摸清楚,仔细分析环境,再用最巧妙的办法把那个弱小的目标从复杂的背景中“抓出来”。
红外弱小目标的检测,不像咱们用肉眼看东西那么直接。
它有时会受到背景干扰,也就是说,周围的环境热量变化、温度波动,甚至是阳光照射下的物体都可能误导你。
有时候甚至就连算法本身都得经受住考验。
你想象一下,整个检测过程就像是在玩一场“寻宝”游戏,稍不注意就可能错失了目标。
复杂背景下红外弱小目标检测算法研究复杂背景下红外弱小目标检测算法研究摘要:红外弱小目标检测在军事、安防、航空航天等领域具有重要应用价值。
然而,由于背景复杂多变、噪声干扰等因素的影响,红外弱小目标的检测成为一个具有挑战性的问题。
本文综述了当前红外弱小目标检测算法的研究进展,并提出了一种基于深度学习的红外弱小目标检测算法。
一、引言红外技术是一种通过检测物体辐射的热能来实现目标探测的非接触性技术。
然而,由于红外图像中目标的能量较小,且通常处于复杂背景中,如林地、建筑物、云层等,红外弱小目标的检测一直是一个具有挑战性的任务。
二、红外弱小目标检测算法的研究进展目前,红外弱小目标检测算法主要包括传统算法和深度学习算法两类。
1. 传统算法传统算法主要通过对红外图像的预处理、特征提取和目标检测三个步骤进行处理。
常用的预处理方法有背景平均法、自适应滤波法等,用于降低图像噪声和背景干扰。
特征提取方法通常包括峰值信噪比、能量、梯度等指标,用于表征目标的形状、纹理等特征。
目标检测方法包括阈值分割、形态学处理、模板匹配等,用于判断目标是否存在于图像中。
2. 深度学习算法近年来,深度学习算法在目标检测领域取得了突破性进展。
深度学习算法通过训练大规模数据集和深层网络模型,能够学习到更加丰富的特征表示。
在红外弱小目标检测中,常用的深度学习算法包括卷积神经网络(CNN)、循环神经网络(RNN)等。
这些算法通过对数据集的训练,能够学习到红外弱小目标的特征,从而提高检测的准确性和稳定性。
三、基于深度学习的红外弱小目标检测算法为了提高红外弱小目标检测的性能,在本文中提出了一种基于深度学习的算法。
该算法主要包括以下几个步骤:1. 数据预处理通过对红外图像进行预处理,如去噪、增强等,以提高图像的质量和目标的可见度。
2. 特征提取引入卷积神经网络(CNN)进行特征提取。
CNN通过多个卷积层和池化层,逐渐提取图像的特征表示,并通过全连接层进行分类和检测。
天空背景下红外弱小目标检测算法研究丁云;张国华;张生伟【摘要】Against the difficult detection of dim small infrared targets in the sky background,in this paper,the improved morphological filtering target enhancement method is adopted for background suppression and noise removing,and then constant false alarm rate(CFAR)method is used to segment the filtered image to obtain candidate point targets,and get the position and area information of candidate point targets by adoptingrun⁃length target labeling method. After the single frame image detection, there are still false alarms in the complicated sky background. In order to improve the detection probability and reduce false alarm rate,the mobile pipeline filtering method is adopted to make further judgment for the candidate targets in sequential imag⁃es in combination with the correlation between image frames of the target motion characteristics(including trajectory,velocity, acceleration,etc),grey change,area change and so on. The experimental results show that the method proposed in this paper can accurately and quickly detect the true targets in the complex background.%针对天空背景下红外弱小目标检测困难的情况,首先通过改进的形态学滤波目标增强方法对图像进行背景抑制与噪声去除,而后采用恒虚警检测方法(CFAR)对滤波后图像进行分割,获得候选点目标,然后采用行程目标标记的方法得到候选目标的位置信息、面积信息等,单帧图像检测之后,复杂的天空背景仍然会存在虚警。
基于改进YOLOv5的复杂背景红外弱小目标检测算法代牮;赵旭;李连鹏;刘文;褚昕悦【期刊名称】《红外技术》【年(卷),期】2022(44)5【摘要】针对传统算法依赖于对红外目标与环境背景的精确分离和信息提取,难以满足复杂背景和噪声等干扰因素下的检测需求。
论文提出一种基于改进YOLOv5(You Only Look Once)的复杂背景红外弱小目标检测算法。
该算法在YOLOv5基础上,添加注意力机制提高算法的特征提取能力和检测效率,同时改进原YOLOv5目标检测网络的损失函数和预测框的筛选方式提高算法对红外弱小目标检测的准确率。
实验选取了来自不同复杂背景的7组红外弱小目标数据集,将这些图像数据集进行标注并训练,得到红外弱小目标检测模型,然后从模型训练结果和目标检测结果的角度评估算法和模型的正确性。
实验结果表明:改进的YOLOv5算法训练出来的模型,检测准确性和检测速度对比实验列出的几种目标检测算法均有明显的提升,平均精度均值(mean Average Precision,m AP)可达99.6%以上,在不同复杂背景下均可有效检测出红外弱小目标,且漏警率、虚警率低。
【总页数】9页(P504-512)【作者】代牮;赵旭;李连鹏;刘文;褚昕悦【作者单位】北京信息科技大学高动态导航技术北京市重点实验室【正文语种】中文【中图分类】TP391【相关文献】1.复杂背景下红外弱小目标检测的算法研究综述2.一种改进的自适应背景预测红外弱小目标检测算法3.基于结构低秩编码的复杂环境红外弱小目标检测算法4.基于复杂融合特征与灰度-纹理直方图描述子的红外弱小目标检测追踪算法5.复杂背景下红外弱小目标检测算法研究因版权原因,仅展示原文概要,查看原文内容请购买。
基于区域背景预测的红外小目标检测摘要:提出了一种基于变化区域的背景预测算法,用于红外弱小目标检测,来减小背景起伏对背景预测的影响,达到提高弱小目标检测性能的目的。
实验结果表明该算法抗噪能力强,能检测出强对比度云层的空中背景中的红外小目标,是背景预测算法的一个重要扩展。
通过实际红外图像的实验表明,算法是有效的,具有很好的提取能力。
关键词:背景预测弱小目标目标检测引言实际应用中,红外成像都对应某种背景,可将成像背景分为地面背景、天空背景、海天背景以及太空背景,各种背景在通常情况下均可能存在各种干扰。
在天空背景下,干扰主要是天空中的云层杂波等,即所谓的“背景起伏”。
当目标距离红外探测器较远时,目标往往呈现为点或斑点状,面积小、形态特征弱,细节特征大部分丧失,只有灰度信息,因此对红外弱小目标的检测是比较困难的。
为了检测红外图像中的弱小目标,人们从背景出发提出基于背景预测的红外弱小目标的检测方法,这一方法具有较好的检测性能和易实现性等优点,但是当背景起伏较大时,这一算法的检测性能就会受到影响。
因此本文针对这个问题,提出了“变化区域的局部背景预测的检测方法”,来减小背景起伏对背景预测的影响,使基于背景预测的红外弱小目标的检测方法的检测性能大大提高。
1 空中红外目标、背景的特性分析本文研究对象为远距离的空中目标,它主要包括飞机和飞行器。
此时目标在红外图像上呈现为一个小弱亮点或亮团,边缘模糊,只在其邻域内存在较高的对比度和信噪比。
天空与大部分云层构成了天空背景下的红外图像的主体,一般情况下它们的温度较低、亮度弱,有时也有较亮的云团,但其内部分布较为均匀,通常也将云层杂波的大部分归为背景,占据了红外图像的低频部分,但有时云层边缘起伏比较剧烈往往属于高频区域,容易给检测带来干扰,产生虚假目标,提高了虚警概率。
噪声主要与成像系统内部有关,其中主要是探测器产生的噪声,在图像中噪声之间在同一帧内和帧间没有相关性,表现为孤立点,其与背景也往往不相关,但是在单帧内可能与小目标有相似的特征,如高频,较小等。
视频监控系统的识别和跟踪算法的研究随着技术的不断发展,视频监控系统的应用越来越广泛,从公共场所到家庭安防,已经成为我们生活中不可或缺的一部分。
在许多情况下,监控系统不仅需要实时监控,更需要能够识别和跟踪目标,才能发挥最大的作用。
本文将介绍一些视频监控系统中常用的目标识别和跟踪算法,并探讨它们的优缺点和适用场景。
一、目标识别算法1. 基于背景差分的目标检测算法这种算法是最常见的一种,主要是通过人工设定一个背景模型,当检测到视频中的图像与该模型存在差异时,便认为是有目标出现。
该算法简单易懂,而且在背景稳定的场景中效果很好。
但是当背景不稳定,比如有很多动态的物体时,这种算法的效果就会降低。
2. 基于特征提取的目标检测算法这种算法是通过在图像中提取一些具有代表性的特征,再通过分类器将目标与其他物体区分开来。
常用的特征包括色彩、形状、纹理等等。
该算法的优点是对场景的要求不高,可以应对一些比较复杂的场景。
但是由于对特征的提取和分类有一定的要求,需要较大的计算量,因此效率较低。
3. 基于深度学习的目标检测算法近年来,深度学习技术得到了广泛的应用,其中最具代表性的就是卷积神经网络(CNN)。
CNN可以自动提取图像特征,再通过分类器对目标进行识别。
这种算法的优点是准确率很高,可以应对非常复杂的场景。
但是由于需要大量训练数据和计算资源,因此对硬件的要求比较高。
二、目标跟踪算法1. 单目标跟踪算法这种算法主要是通过目标的运动信息来进行跟踪,常用的方法有基于颜色直方图的跟踪算法、基于卡尔曼滤波的跟踪算法等等。
其中基于颜色直方图的算法适用于场景比较简单的情况,而基于卡尔曼滤波的算法可以对目标的运动进行预测,效果比较好。
2. 多目标跟踪算法多目标跟踪相比于单目标跟踪更加复杂。
常用的算法有基于轨迹的跟踪算法、基于区域的跟踪算法等等。
其中基于轨迹的算法可以通过对目标运动轨迹的分析,来预测目标的下一步移动方向,进而进行跟踪。
而基于区域的算法则是通过将图像分割成多个区域,再对每个区域进行跟踪,从而提高跟踪的准确率。
复杂背景下红外弱小目标检测的算法研究综述汪国有;陈振学;李乔亮【期刊名称】《红外技术》【年(卷),期】2006(28)5【摘要】复杂背景下低信噪比弱小目标的自动检测是当今目标自动探测研究尚未解决的一个难题.目前,国内外许多学者已经作过大量的检测算法研究,但还没有建立成熟的理论体系和切实可行的实用算法,尤其是在复杂背景干扰的抑制方面,大部分研究工作所处理的还不是真正的复杂背景.本文在分析和总结国内外现有算法研究的基础上,指出了复杂背景下红外弱小目标检测的发展趋势,并提出了检测跟踪的一些有效技术措施.【总页数】6页(P287-292)【作者】汪国有;陈振学;李乔亮【作者单位】华中科技大学,图像识别与人工智能研究所,图像信息处理与智能控制教育部重点实验室,湖北,武汉,430074;华中科技大学,图像识别与人工智能研究所,图像信息处理与智能控制教育部重点实验室,湖北,武汉,430074;华中科技大学,图像识别与人工智能研究所,图像信息处理与智能控制教育部重点实验室,湖北,武汉,430074【正文语种】中文【中图分类】TN911.73【相关文献】1.红外图像中弱小目标检测前跟踪算法研究综述 [J], 张长城;杨德贵;王宏强2.复杂背景下红外弱小目标检测算法研究 [J], 罗蓓蓓;伊兴国;申越;孔鹏;董期林;张卫;李晨光;傅强3.低信噪比下的红外弱小目标检测算法研究综述 [J], YANG Yi;XU Chang-bin;MA Yu-ying;HUANG Cheng-zhang4.一种天地复杂背景下的红外弱小目标检测方法 [J], 宋敏敏;王爽;吕弢;袁瑜键5.基于多特征融合的复杂背景下弱小多目标检测和跟踪算法 [J], 陈皓;马彩文;陈岳承;岳鹏因版权原因,仅展示原文概要,查看原文内容请购买。