精 ④把待定系数用数字换掉,写出函数表达式. 讲
精 练
用一般式求二次函数解析式(4分钟)
探 【例3】一个二次函数的图象经过(0,1),(2,4),(3,10)三点,
究 求这个二次函数的表达式. 一设、二代、三解、四还原
归 解:设这个二次函数的解析式是y=ax2+bx+c,由于这个函数经
纳 过点(0,1),可得c=1.又由于其图象经过(2,4),(3,10)两点,
向下 向下
x b
(
b
4ac b2
,
)
2a 2a 4a
x x1 x2
2
(1)a决定抛物线的形状及开口方向及大小,若|a|相等则形状相同.
(2)a和b共同决定抛物线对称轴的位置,简称:左同右异
(3)c的大小决定抛物线y=ax2+bx+c与y轴交点的位置.
温故知新(2分钟)
导 1.一次函数y=kx+b(k≠0)有几个待定系数?通常需要已知几
九年级数学(上)教学课件
第二十二章 二次函数
22.1.4(2) 用待定系数法求二次函数的解析式
温故知新
知识讲解
典例解析
当堂训练
课前诵读(3分钟)
解析式
开口方向 对称轴 顶点坐标 a>0 a<0
顶点式 y=a(x-h)2+k
向上 向下 x=h (h,k)
一般式 y=ax2+bx+c
向上
交点式 y=a(x-x1)(x-x2) 向上 一般式:y=ax2+bx+c中a,b,c的作用
纳
可得
精
4a-2b-3=1, a-b-3=0, 解得
a=-1, b=-4,
讲 ∴所求的二次函数的表达式是y=-x2-4x-3.