倾斜角与斜率(附答案)
- 格式:docx
- 大小:182.75 KB
- 文档页数:9
直线的倾斜角与斜率(含答案)一、单选题1.经过点A ( 3,-2)和B (0,1)的直线l 的倾斜角α为( )A .30°B .60°C .120°D .150°2.已知直线l 1: 3+m x +4y =5−3m ,l 2:2x + 5+m y =8平行,则实数m 的值为()A .−7B .−1C .−1或−7D .1333.已知直线l 1:x +my +7=0和l 2:(m −2)x +3y +2m =0互相平行,则实数m =( )A .m =−3B .m =−1C .m =−1或3D .m =1或m =−3 4.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为()A .1BC .2D .5.已知集合A ={(x ,y )|x +a 2y +6=0},集合B ={(x ,y )|(a -2)x +3ay +2a =0},若A ∩B =Ø,则a 的值是( )A .3B .0C .-1D .0或-16.直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A .2,13B .-2,−13C .−12,-3D .-2,-3 7.已知两直线1:230l x y -+=,2:210l mx y ++=平行,则m 的值是()A .4-B .1-C .1D .48.已知坐标平面内三点P(3,-1),M(6,2),N − ,直线l 过点P.若直线l 与线段MN 相交,则直线l 的倾斜角的取值范围()A . 450,1500B . 450,1350C . 600,1200D . 300,6009.直线1y =+的倾斜角为()A .30︒B .60︒C .150︒D .120︒二、填空题10.设直线l 1:(a +1)x +3y +2−a =0,直线l 2:2x +(a +2)y +1=0.若l 1⊥l 2,则实数a 的值为______,若l 1∥l 2,则实数a 的值为_______.11.直线l 1:x +2y −4=0与l 2:mx + 2−m y −1=0平行,则实数m =________.12.线2cos α•x﹣y ﹣1=0,α∈[π6,23π]的倾斜角θ的取值范围是__________13.直线x + 3y +1=0的倾斜角的大小是_________.14.若直线l 1:ax +2y =8与直线l 2:x +(a +1)y +4=0平行,则a =__________.15.已知点P 2,−3 ,Q 3,2 ,直线ax +y +2=0与线段PQ 相交,则实数a 的取值范围是____;16.若x ,y 满足约束条件 x −y +2≥0,2x +y −3≤0,y ≥1,则y +1x +2的最小值为__________.17.直线ax +(a −1)y +1=0与直线4x +ay −2=0互相平行,则实数a =________.18.直线x +2y +2=0与直线ax −y +1=0互相垂直,则实数a 等于________.三、解答题19.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,060,,BAD E F ∠=分别为,PA BD 的中点,2.PA PD AD ===(1)证明://EF 平面PBC ;(2)若PB =A DEF -的体积.20.已知直线1:220l x y ++=;2:40l mx y n ++=.(1)若12l l ⊥,求m 的值.(2)若12//l l ,且他们的距离为,求,m n 的值.21.已知直线l 经过点()P 2,5-,且斜率为 (1)求直线l 的方程.(2)求与直线l平行,且过点()2,3的直线方程.(3)求与直线l垂直,且过点()2,3的直线方程.22.已知椭圆C的方程为x2a2+y2b2=1a>b>0,P1,22在椭圆上,椭圆的左顶点为A,左、右焦点分别为F1、F2,△PAF1的面积是△POF2的面积的2−1倍.(1)求椭圆C的方程;(2)直线y=kx(k>0)与椭圆C交于M,N,连接MF1,NF1并延长交椭圆C于D,E,连接DE,指出k DE与k之间的关系,并说明理由.23.已知直线l:kx−y+1+2k=0(k∈R)(1))若直线l不经过第四象限,求k的取值范围;(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.24.已知直线l1:x+my+6=0,l2:( m−2 ) x+3y+2m=0.求当m为何值时,l1,l2 (1) 平行;(2) 相交;(3) 垂直.25.已知直线l1:x−y+1=0,l2:(a−1)x+ay+12=0.(1)若l1//l2,求实数a的值;(2)在(1)的条件下,设l1,l2与x轴的交点分别为点A与点B,平面内一动点P到点A 和点B的距离之比为P的轨迹方程E.26.已知椭圆x2a2+y2b2=1(a>b>0)的焦距为2,离心率为22,右顶点为A.(I)求该椭圆的方程;(II)过点D(2,−2)作直线PQ交椭圆于两个不同点P、Q,求证:直线AP,AQ的斜率之和为定值.27.已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且椭圆C与圆M:(x−3)2+y2=34的公共弦长为(1)求椭圆C的方程(2)椭圆C的左右两个顶点分别为A1,A2,直线l:y=kx+1与椭圆C交于E,F两点,且满足k A1F =2k A2E,求k的值.参考答案1.C【解析】分析:先由直线的斜率公式求出直线的斜率,再根据倾斜角的范围及倾斜角的正切值等于斜率,求得倾斜角的值.详解:由直线的斜率公式得,经过点A(,-2)和B(0,1)的直线l的斜率为0−3=-,又倾斜角大于或等于0°小于180°,倾斜角的正切值等于-3,故倾斜角等于120°,故选C.点睛:本题考查直线的斜率公式以及倾斜角的范围、倾斜角与斜率的关系.2.A【解析】【分析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出.【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=−3+m4x+5−3m4,y=−25+mx+85+m,∵两条直线平行,∴−3+m4=−25+m,5−3m4≠85+m,解得m=﹣7.综上可得:m=﹣7.故选:A.【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题.3.C【解析】【分析】根据直线平行充要关系得等式,解得结果.【详解】由题意得1m−2=m3≠72m∴m=−1或3,选C.【点睛】本题考查直线平行位置关系,考查基本转化求解能力,属基础题.4.D【解析】设12AF F ∆的内切圆圆心为1,I ,12BF F ∆的内切圆圆心为2,I ,边1212A F A F F F 、、上的切点分别为M N E 、、,易见1I E 、横坐标相等,则1122AM AN F M F E F N F E ===,,,由122AF AF a -=, 即122AM MF AN NF a +-+=(),得122MF NF a -=,即122F E F E a -=,记1I 的横坐标为0x ,则00E x (,),于是002x c c x a +--=(),得0x a =,同理内心2I 的横坐标也为a ,则有12I I x ⊥轴,设直线的倾斜角为θ,则22129022OF I I F O θθ∠=∠=︒-,,则211212221tan ,tan tan 90222tan 2r r I F O r r F E F E θθθ⎛⎫=∠=︒-=== ⎪⎝⎭ ,222tan 12tan ,tan tan 22221tan 2θθθθθ∴==∴==- 故选D.5.D 【解析】A B ?⋂=,即直线()212602320l x a y l a x ay a :++=与:-++=平行, 令()2132a a a ⨯=-,解得01a a =或=-或3a =.0a =时,l 1:x +6=0,l 2:x =0,l 1∥l 2.a =-1时,l 1:x +y +6=0,l 2:-3x -3y -2=0.l 1∥l 2.a =3时,l 1:x +9y +6=0,l 2:x +9y +6=0,l 1与l 2重合,不合题意.∴a =0或a =-1.答案:D.点睛:本题考查两条直线平行的判定;已知两直线的一般式判定两直线平行或垂直时,若化成斜截式再判定往往要讨论该直线的斜率是否存在,容易出错,可记住以下结论进行判定: 已知直线1111:0l A x B y C ++=,2222:0l A x B y C ++=,(1)121221//0l l A B A B ⇔-=且12210AC A C -≠;(2))1212120l l A A B B ⊥⇔+=.6.B【解析】【分析】可分别令x =0,y =0,求出相应的y 和x 的值,即为相应坐标轴上的截距.【详解】令x =0,解得:y =−13,即为y 轴上截距; 令y =0,解得:x =−2,即为x 轴上截距.故选B.【点睛】本题考查截距的求法,即直线分别与x 轴、y 轴交点的横坐标和纵坐标,根据坐标轴上点的特点将0代入即可.7.A【解析】由两直线1:230l x y -+=,2:210l mx y ++=平行可得,斜率相等,截距不相等,即22m =-且132≠-,解得4m =-,故选A. 8.A【解析】【分析】先由P (3,﹣1),N (﹣ 3, 3),M (6,2),求得直线NP 和MP 的斜率,再根据直线l 的倾斜角为锐角或钝角加以讨论,将直线l 绕P 点旋转并观察倾斜角的变化,由直线的斜率公式加以计算,分别得到直线l 斜率的范围,进而得到直线l 的倾斜角的取值范围.【详解】∵P (3,﹣1),N (﹣ 3, 3),∴直线NP 的斜率k 1= 3+1− 3−3=﹣ 33.同理可得直线MP 的斜率k 2=2+16−3=1.设直线l 与线段AB 交于Q 点,当直线的倾斜角为锐角时,随着Q 从M 向N 移动的过程中,l 的倾斜角变大,l 的斜率也变大,直到PQ 平行y 轴时l 的斜率不存在,此时l 的斜率k ≥1;当直线的倾斜角为钝角时,随着l 的倾斜角变大,l 的斜率从负无穷增大到直线NP 的斜率,此时l 的斜率k ≤﹣ 33.可得直线l 的斜率取值范围为:(﹣∞,﹣ 33]∪[1,+∞).∴直线l 的倾斜角的取值范围 450,1500故选:A .【点睛】本题给出经过定点P 的直线l 与线段MN 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.9.B【解析】设倾斜角为θ,直线1y =+tan θ=60θ=︒,故选B .10.−85−4 【解析】分析:由题意得到关于a 的方程或方程组,据此求解方程即可求得最终结果. 详解:若l 1⊥l 2,则:2 a +1 +3 a +2 =0,整理可得:5a +8=0,求解关于实数a 的方程可得:a =−85. 若l 1∥l 2,则a +12=3a +2≠2−a 1,据此可得:a =−4.点睛:本题主要考查直线垂直、平行的充分必要条件,意在考查学生的转化能力和计算求解能力.11.23【解析】【分析】由直线的平行关系可得1× 2−m −2m =0,解之可得答案【详解】∵直线l1:x+2y−4=0与l2:mx+2−m y−1=0平行,∴1×2−m−2m=0,解得m=23故答案为23【点睛】本题主要考查的是直线的与直线的平行关系,继而求得斜率与斜率之间的关系,属于基础题。
高二数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角的余弦值为________.【答案】.【解析】由直线方程可得直线的斜率为,设直线的倾斜角为知,,再由同角三角函数公式,联立这两个方程组得.【考点】直线的倾斜角.2.直线的倾斜角为.【答案】【解析】方程可化为斜截式,所以斜率,所以倾斜角【考点】直线方程、直线的倾斜角与斜率3.直线的斜率是( )A.B.C.D.【答案】A【解析】将直线一般式化为斜截式得斜率.【考点】直线一般式与斜截式的转化.4.若直线y=0的倾斜角为α,则α的值是( )A.0B.C.D.不存在【答案】A【解析】∵直线y=0的斜率为0,倾斜角的正切值是斜率,∴α=0.【考点】直线的倾斜角与斜率.5.直线的倾斜角的大小是.【答案】【解析】由直线方程可知其斜率为,设其倾斜角为,则,因为,所以。
【考点】直线的斜率和倾斜角。
6.若图中直线,,的斜率分别为,,,则()A.<<B.<<C.<<D.<<【答案】B【解析】由于的倾斜角都是锐角,且直线的倾斜角大于直线的倾斜角,可得,而直线的倾斜角为钝角,所以,由此可得结论:,故选答案B.【考点】直线的倾斜角与斜率.7.直线l的倾斜角为,且,则直线l的斜率是( )A.B.C.或D.或【答案】C【解析】由已知中直线的倾斜角为a,且sina=,分倾斜角a为锐角和钝角两种情况分类讨论,根据同角三角函数关系,求出a的余弦值和正切值,即可得到直线的斜率,由已知中直线的倾斜角为a,且sina=,当a为锐角时,cosa=,tana=;当a为钝角时,cosa=-,tana=-;即直线的斜率是±,选C.【考点】直线的斜率.8.已知点A(2,3),B(-3,-2).若直线过点P(1,1)且与线段AB相交,则直线的斜率的取值范围是( )A.B.C.或D.【答案】C【解析】如图,,,又过点且与轴垂直的直线也与线段相交,故直线的斜率满足或.选C.【考点】直线的斜率.9.()直线的倾斜角为A.B.C.D.【答案】C.【解析】因为直线的斜率为,所以此直线的倾斜角..【考点】直线的倾斜角与斜率的关系.点评:除倾斜角为外,倾斜角与斜率是一一对应的关系,因而求直线的倾斜角可通过求直线的斜率再求倾斜角即可.10.直线的斜率为A.2B.1C.D.【答案】B【解析】解:因为直线的斜率为1,因此选B11.如果过点和的直线的斜率等于,那么的值为( )A.4B.C.或D.或【答案】B【解析】解:因为过点和的直线的斜率等于,即,选B。
直线的倾斜角和斜率一:知识点(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°。
(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,直线的斜率常用k 表示。
即tan k α=斜率反映直线与轴的倾斜程度。
当[)90,0∈α时,0≥k ;当()180,90∈α时,0<k ;当90=α时,k 不存在。
②直线的倾斜角与直线的斜率的转换图为:③过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)两直线平行与垂直的判定:(ⅰ)当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
二:例题讲解1.直线013=-+y x 的倾斜角为 A .6π B .3π C .32π D .65π【答案】C2.过点(-3,0)和点(-4的直线的倾斜角是( ) A 、30° B、150° C、60 D 、120°【答案】D 3.直线142=+yx 的倾斜角的余弦值为________. 【答案】55-. 4.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.2 【答案】A5.已知直线013)2(01=+-+=++y x a y ax 与互相垂直,则实数a 等于( )A .-3或1B .1或3C .-1或-3D .-1或3 【答案】A6.已知点()2,2A 和点()5,2B -,点P 在x 轴上,且APB ∠为直角,则直线AP 的斜率为 . 【答案】12-或2试题分析:设()()(),0,2,2,5,2P a AP a BP a ∴=--=-,90,0APB AP BP ∠=︒∴⋅=,即()()2540a a --+=,解得1a =或6a =,P ∴的坐标为()1,0或()6,0,∴直线AP 的斜率为12-或2 . 考点:(1)数量积判断两向量的垂直关系(2)两条直线垂直与倾斜角、斜率的关系7.已知两点(2,3)M -、(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是 A .344k -≤≤ B .34k ≥或4k ≤- C .344k ≤≤ D .344k -≤≤【答案】B试题分析:由于直线PN 到直线PM 的倾斜角从锐角1α增大到钝角2α,而直线PN 的斜率=1k 43t an 1=α,直线PM 的斜率,4tan 22-==αk 所以斜率4-≤k 或43≥k 考点:直线的倾斜角与斜率;8.直线sin 20x α+=的倾斜角的取值范围是( ) A .),0[π B .),43[]4,0[πππ⋃ C .]4,0[π D .),2(]4,0[πππ⋃【答案】B试题分析:设直线的倾斜角为θ,0θπ≤<,根据直线的斜率的计算方法,可得AB 的斜率为3k α=-,易得33k -≤≤,由倾斜角与斜率的关系,易得tan 33θ-≤≤,由正切函数的图象,可得θ的范围是),43[]4,0[πππ⋃. 考点:直线的倾斜角.9.已知两点A (-1,-5),B (3,-2),直线L 的倾斜角是直线AB 的倾斜角的一半,求直线L 的斜率. 【答案】直线的斜率为31【解析】设直线L 的倾斜角为α,则直线AB 的倾斜角为2α。
直线的倾斜角与斜率、直线方程知识点1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角。
当直线l 与x 轴平行或重合时,规定它的倾斜角为0°。
(2)范围:直线l 倾斜角的范围是[0,π)。
2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ。
(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1。
3.直线方程的五种形式基础专练一 、走进教材1.直线l :x sin30°+y cos150°+1=0的斜率是( )A.33B.3 C .- 3 D .-332. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线方程为( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0走进教材答案1.A ; 2. B ;二、查漏补缺1.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或42.直线x +3y +m =0(m ∈R )的倾斜角为( )A .30°B .60°C .150°D .120°3.已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=04.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为__________。
5.过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是________。
查漏补缺答案5.4x -y +16=0或x +3y -9=0直击考点考点一 直线的倾斜角与斜率……母题发散【典例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________。
高一数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角为.【答案】【解析】设直线的倾斜角为,则.【考点】直线的倾斜角.2.已知一条直线过点(3,-2)与点(-1,-2),则这条直线的倾斜角是().A.B.C.D.【答案】A【解析】直线过点与,直线的斜率,则直线的倾斜角为.【考点】直线的斜率、倾斜角.3.已知若直线:与线段PQ的延长线相交,则的取值范围是 .【答案】【解析】直线的方程为,显然经过定点,过点M作直线,显然的斜率,过M、Q作直线的斜率为,依题意,应夹在直线与之间,即于是,即。
【考点】(1)斜率公式的应用;(2)数形结合思想的应用。
4.直线的倾斜角的大小为。
【答案】【解析】,所以倾斜角为.【考点】1.直线方程;2.倾斜角和斜率.5.经过点的直线的斜率等于1,则m的值为()A.1B.4C.1或3D.1或4【答案】A【解析】由题意可知,性的判断与证得m=1,故选A.【考点】直线斜率公式.6.过点(-3,0)和点(-4,)的直线的倾斜角是()A.30°B.150°C.60D.120°【答案】D【解析】因为,,所以,直线的倾斜角是120°,选D。
【考点】直线的斜率、倾斜角点评:简单题,利用斜率的坐标计算公式求得倾斜角的正切。
7.若直线经过A(-2,9)、B(6,-15)两点,则直线AB的倾斜角是( )A.45°B.60°C.120°D.135°【答案】C【解析】设直线AB的倾斜角是θ,由直线的斜率公式得k="tan" θ=,再根据倾斜角的范围求出倾斜角的大小。
解:设直线AB的倾斜角是θ,由直线的斜率公式得k=tanθ==又0≤θ<π,θ=120°,故选 C.【考点】直线的倾斜角和斜率点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.求出斜率tanθ是解题的关键8.如图,若图中直线1,2,3的斜率分别为k1, k2, k3,则A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2【答案】B【解析】由于直线L2、L1的倾斜角都是锐角,且直线L2的倾斜角大于直线L1的倾斜角,可得 K2>K1>0.由于直线L3、的倾斜角为钝角,K3<0,由此可得结论.k3<k1<k2,,故可知选B.【考点】直线的倾斜角和斜率点评:本题主要考查直线的倾斜角和斜率的关系,属于基础题.9.直线的倾斜角是()A.300B.600C.1200D.1350【答案】C【解析】由于直线的斜率为,那么根据倾斜角和斜率的关系可知,tanθ=,那么可知角为1200,故选C.【考点】直线的倾斜角和斜率的关系点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,求出tanθ=,是解题的关键10.已知点,,则直线的倾斜角是.【答案】【解析】直线垂直于x轴,倾斜角为【考点】直线斜率与倾斜角点评:若则直线的斜率为,倾斜角满足11.(本小题满分6分)求经过两条直线和的交点,并且与直线垂直的直线方程的一般式.【答案】【解析】由解得,则两直线的交点为………2分直线的斜率为,则所求的直线的斜率为……………4分故所求的直线为即………………6分【考点】本题考查了直线的位置关系及直线方程的求法点评:熟练运用直线的位置关系求直线方程是解题的关键12.直线的倾斜角是( )A.150oB.135oC.120oD.30o【答案】A【解析】解:因为直线,故倾斜角是150o,选A13..过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为.【答案】1【解析】由斜率公式可知,所以m=1.14.如果直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是 .【答案】【解析】设直线l的方程为y=kx+b,由题意知平移后直线方程为y=k(x+3)+b+1,即y=kx+3k+b+1,由于直线平移后还回到原来的位置,所以3k+b+1=b,所以15.直线的倾斜角等于__________.【答案】【解析】直线的斜率为,则倾斜角满足即直线的倾斜角为.16.直线的倾斜角是()A.30°B.120°C.60°D.150°【答案】A【解析】17.倾斜角为135°,在轴上的截距为的直线方程是()A.B.C.D.【答案】D【解析】直线斜率为所以直线方程为故选D18.直线的倾斜角是()A B C D【答案】C【解析】略19.已知点. 若直线与线段相交,则的取值范围是_____________.【答案】[-2,2]【解析】略20.以下直线中,倾斜角是的是()..【答案】C【解析】略21.已知点,若直线过点与线段相交,则直线的斜率的取值范围是A.B.C.D.【答案】C【解析】略22.当时,如果直线的倾斜角满足关系式,则此直线方程的斜率为;【答案】【解析】略23.直线的倾斜角为,则的值为( )A.B.C.D.【答案】A【解析】略24.长方形OABC各点的坐标如图所示,D为OA的中点,由D点发出的一束光线,入射到边AB上的点E处,经AB、BC、CO依次反射后恰好经过点A,则入射光线DE所在直线斜率为【答案】【解析】如图:作关于的对称点,关于的对称点,关于的对称点,关于的对称点,则的延长线过完点,因为,所以根据对称性得,所以【考点】点关于线对称的点25.对于直线x sin+y+1=0,其斜率的取值范围是()A.B.C.D.【答案】B【解析】直线的斜率为,因此斜率的取值范围是[-1,1],答案选B.【考点】直线的一般方程与斜率26.如图所示,直线的斜率分别为,则的大小关系为(按从大到小的顺序排列).【答案】【解析】由图形可知,比的倾斜角大,所以【考点】斜率与倾斜角的关系27.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】C【解析】确定的直线方程为,代入点得【考点】直线方程28.若图,直线的斜率分别为,则()A.B.C.D.【答案】C【解析】切斜角为钝角,斜率为负,切斜角为锐角,斜率为正,因为倾斜角大于倾斜角,所以【考点】直线倾斜角与斜率的关系29.直线经过点,且倾斜角范围是,则的范围是()A.B.C.D.【答案】C【解析】【考点】直线倾斜角与斜率的关系30.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】B【解析】确定的直线方程为,代入点得【考点】直线方程。
第二章《直线和圆的方程》2.1直线的倾斜角与斜率2.1.1倾斜角与斜率知识梳理知识点一直线的倾斜角1.倾斜角的定义(1)当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.2.直线的倾斜角α的取值范围为0°≤α<180°.知识点二直线的斜率1.直线的斜率把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α.2.斜率与倾斜角的对应关系图示倾斜角(范围)α=0°0°<α<90°α=90°90°<α<180°斜率(范围)k =0k >0不存在k <03.过两点的直线的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.题型探究题型一、直线的倾斜角1.直线的倾斜角前提条件直线l 与x 轴_________定义以_________作为基准,x 轴_________与直线l _________的方向之间所成的角α叫做直线l 的倾斜角特殊情况当直线l 与x 轴_________或_________时,规定它的倾斜角为_________取值范围__________________【答案】相交x 轴正向向上平行重合00180α≤≤2.(多选)设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45,得到直线1l ,则直线1l 的倾斜角为()A .45α+B .45α-o C .135α-D .135α-【答案】AC【详解】直线倾斜角α的取值范围为0180α≤<,∴当0135α≤<时,旋转45后得到1l 的倾斜角为:45α+;当135180α<<时,旋转45后得到1l 的倾斜角为:45180135αα+-=-.故选:AC.3.分别写出下列直线的倾斜角:(1)垂直于x 轴的直线;(2)垂直于y 轴的直线;(3)第一、三象限的角平分线;(4)第二、四象限的角平分线.【答案】(1)90;(2)0;(3)45;(4)135【详解】(1)当直线垂直于x 轴时,直线的向上方向与x 轴正方向形成的夹角为90,所以所求直线的倾斜角为90.(2)当直线垂直于y 轴时,此时,直线与x 轴平行或重合,所以所求直线的倾斜角为0.(3)当直线为第一、三象限的角平分线时,直线的向上方向与x 轴正方向形成的夹角为45,所以所求直线的倾斜角为45.(4)当直线为第二、四象限的角平分线时,直线的向上方向与x 轴正方向形成的夹角为135所以所求直线的倾斜角为135.4.当直线l 与x 轴垂直时,直线l 的倾斜角为______.【答案】2π【详解】当直线l 与x 轴垂直时,直线l 的倾斜角为2π故答案为:2π题型二、直线的斜率1.若直线l 的倾斜角为120︒,则直线l 的斜率为________.【答案】3-【详解】因为直线l 的倾斜角为120︒,则tan1203k =︒=-.故答案为:3-.2.经过两点()()1,,1,4A m B m +的直线的倾斜角为45,则m =___________.【答案】2【详解】因为过两点()()1,,1,4A m B m +的直线的倾斜角为45,所以4tan 45111AB mk m -===+-,解得2m =,故答案为:2.3.根据下列直线的倾斜角α,判断直线的斜率是否存在,如果存在,求出斜率的值:(1)0α=︒;(2)60α=︒;(3)90α=︒;(4)150α=︒.【答案】(1)存在,且斜率为0(2)存在,且斜率为3(3)不存在(4)存在,且斜率为33-【详解】(1)0α=︒,斜率存在,且斜率为tan00︒=.(2)60α=︒,斜率存在,且斜率为tan 603︒=.(3)90α=︒,斜率不存在.(4)150α=︒,斜率存在,且斜率为3tan1503︒=-.4.求经过下列两点的直线的斜率与倾斜角(1)()2,3A ,()3,4B (2)()2,3C ,()3,3D (3)()2,3E ,()2,4F (4)()2,3G ,(),4H a 【答案】(1)1AB k =,倾斜角为4π(2)0CD k =,倾斜角为0(3)斜率不存在,倾斜角为2π(4)见解析【详解】(1)43132AB k -==-,所以AB 的倾斜角为4π;(2)33032CD k -==-,所以CD 的倾斜角为0;(3)因为点,E F 的横坐标相等,所以直线EF 的斜率不存在,倾斜角为2π;(4)当2a =时,直线GH 的斜率不存在,倾斜角为2π,当2a ≠时,43122GH k a a -==--,若2a >,倾斜角为1arctan2a -;若2a <,倾斜角为1arctan2a π+-.题型三、倾斜角和斜率的应用1.已知直线l 经过(2,1)A 、2(1,)B m (R m ∈)两点,求直线l 的倾斜角的取值范围.【答案】ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭【详解】∵直线l 过(2,1)A ,2(1,)B m (R)m ∈两点,∴直线l 的斜率为2211112m k m -==-≤-,设直线l 的倾斜角为α,则[)0,πα∈,且tan 1α≤,解得π04α≤≤或ππ2α<<∴直线l 的倾斜角α的取值范围是ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭.2.过点(0,1)P -的直线l 与以(3,2)A 、(2,3)B -为端点的线段AB 有交点,求直线l 的倾斜角α的取值范围.【答案】30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭【详解】如图所示,因为(0,1)P -,(3,2)A ,(2,3)B -,可得12(1)130l k --==-,13(1)120l k ---==--,要使得直线l 与以(3,2)A 、(2,3)B -为端点的线段AB 有交点,设直线l 的倾斜角为α,其中[0,)π,则满足tan 1α≤或tan 1α≥-,解得04πα≤≤或34παπ≤<,即直线l 的倾斜角α的取值范围30,,44ππαπ⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭.故答案为:30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭.3.已知直线1l 的斜率为12,直线2l 的倾斜角是直线1l 倾斜角的2倍,求直线2l 的斜率.【答案】43【详解】由题意,设直线1l 的倾斜角为α,则直线2l 的倾斜角为2α,由已知得11tan 2k α==,所以直线2l 的斜率为222tan 4tan 21tan 3k ααα===-.4.设点()2,3A -,()3,2B ,若直线ax +y +2=0与线段AB 有交点,则a 的取值范围是()A .54,,23⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .45,32⎛⎫- ⎪⎝⎭C .54,23⎡⎤-⎢⎥⎣⎦D .45,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】D【详解】∵直线20ax y ++=过定点(0,2)C -,且52AC k =-,43BC k =,由图可知直线与线段AB 有交点时,斜率a -满足43a ≤-或52a -≤-,解得45,,32a ⎛⎤⎡⎫-∞-⋃+∞ ⎪⎢⎝⎦⎣∈⎥⎭,故选:D跟踪训练1.确定一条直线的条件确定一条直线的条件是_________和一个_________.规定水平直线的方向_________,其他直线_________的方向为这条直线的方向.【答案】一点方向向右向上2.已知直线1l 的倾斜角115α=︒,直线1l 与2l 的交点为A ,直线1l 和2l 向上的方向之间所成的角为120︒,如图所示,求直线2l 的倾斜角.【答案】135︒【详解】设直线2l 的倾斜角为2α,结合图形及三角形外角与内角的关系可得2112012015135αα=︒+=︒+︒=︒,故直线2l 的倾斜角为135︒.3.直线0y =倾斜角为____________.【答案】0【详解】直线0y =即为x 轴,该直线的倾斜角为0.故答案为:0.4.如图所示,直线l 的倾斜角为()A .60︒B .150︒C .0︒D .不存在【答案】B【详解】由图可知:该直线的倾斜角为150°故选:B5.直线1l 与直线2:2l x =所成的锐角为30°,则直线1l 的倾斜角为______.【答案】60°或120°.【详解】如图,直线1l 的倾斜角为60°或120°﹒故答案为:60°或120°﹒6.函数1y =表示的直线的倾斜角大小为___________.【答案】0【详解】由题设,1y =平行于x 轴,即斜率为0,若倾斜角为[0,)θπ∈,则tan 0θ=,故0θ=.故答案为:07.判断正误(1)倾斜角为135︒的直线的斜率为1.()(2)直线斜率的取值范围是(),-∞+∞.()【答案】×√【详解】(1)倾斜角为135︒的直线的斜率为-1(2)直线斜率的取值范围是(),-∞+∞8.过点(1,2)(1,0)-、A B 的直线的倾斜角为()A .45︒B .135︒C .1D .1-【答案】A【详解】过A 、B 的斜率为2011(1)k -==--,则该直线的倾斜角为45︒,故选:A .9.求经过下列两点的直线的斜率和倾斜角.(1)(2,0)P 、()1,3Q ;(2)(1,2)P 、(,0)Q a ,其中实数a 是常数.【详解】(1)经过(2,0)P 、()1,3Q 两点的直线的斜率30312k -==--,设直线PQ 的倾斜角为θ,则0πθ≤<,又tan 3θ=-,则2π3θ=(2)设直线PQ 的倾斜角为θ,则0πθ≤<,当1a =时,直线PQ 的斜率不存在,倾斜角π2θ=;当1a ≠时,21k a=-,则2tan 1a θ=-①若1a <,则2arctan1aθ=-;②若1a >,则2πarctan1aθ=+-.10.设直线l 的倾斜角为θ,若原点在直线l 上的射影为(2,1)-,则sin 2θ的值为______.【答案】45【详解】由原点在直线l 上的射影为(2,1)-知过原点和(2,1)-的直线和直线l 垂直,过原点和(2,1)-的直线斜率为12-,故直线l 的斜率为2,即tan 2θ=,故2222sin cos 2tan 4sin 2sin cos tan 15θθθθθθθ===++.故答案为:45.11.已知直线斜率为k ,且13k -≤≤,那么倾斜角α的取值范围是().A .ππ3π0,,324⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .π3π0,,π34⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭C .ππ3π0,,624⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .π3π0,,π64⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭【答案】B【详解】由题意,直线l 的倾斜角为α,则[)0,πα∈,因为13k -≤≤,即1tan 3α-≤≤,结合正切函数的性质,可得π3π0,,π34α⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭.故选:B .12.当直线l 的倾斜角2,,4223ππππθ⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦时,则直线l 的斜率的取值范围为______.【答案】[)(1,,3⎤+∞⋃-∞-⎦【详解】当直线l 的倾斜角2,,4223ππππθ⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦时,则直线l 的斜率的取值范围为[)(2tan ,,tan 1,,343ππ⎡⎫⎛⎤⎤+∞⋃-∞=+∞⋃-∞-⎪ ⎢⎥⎦⎣⎭⎝⎦,故答案为:[)(1,,3⎤+∞⋃-∞-⎦﹒13.求经过(,3)A m (其中m 1≥)、(1,2)B 两点的直线的倾斜角α的取值范围.【答案】090α<≤︒【详解】由题意,当1m =时,倾斜角90α=︒,当1m >时,321tan 011m m α-==>--,即倾斜角α为锐角;综上得:090α<≤︒.高分突破1.如图,设直线1l ,2l ,3l 的斜率分别为1k ,2k ,3k ,则1k ,2k ,3k 的大小关系为()A .123k k k <<B .132k k k <<C .213k k k <<D .321k k k <<【答案】A【详解】由斜率的定义可知,123k k k <<.故选:A .2.直线m 过点()()0012O A ,,,,其倾斜角为α,现将直线m 绕原点O 逆时针旋转得到直线'm y kx =:,若直线'm 的倾斜角为2α,则k 的值为()A .22B .22-C .2D .-2【答案】B【详解】由题,tan 2OA k α==,直线'm 的倾斜角为2α,故()222tan 22tan 2221tan 12k ααα====---故选:B3.已知过点()2,m ,()4,6的直线的倾斜角为45︒,则实数m =()A .2B .4C .6D .8【答案】B【详解】由6tan 45142m-︒==-,解得4m =.故选:B .4.设直线l 的斜率为k ,且31k -<≤,则直线l 的倾斜角α的取值范围是()A .π2π0,,π43⎡⎤⎛⎫⋃ ⎪⎢⎥⎣⎦⎝⎭B .π3π0,,π64⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭C .π2π,43⎡⎫⎪⎢⎣⎭D .π3π,34⎛⎤⎥⎝⎦【答案】A【详解】因为直线l 的斜率为k ,且31k -<≤,3tan 1α∴-<≤,因为[0,π)α∈,2ππ,π0,34α⎛⎫⎡⎤∴∈ ⎪⎢⎥⎝⎭⎣⎦.故选:A.5.直线l 的斜率为33,则l 的倾斜角为()A .30°B .60°C .120°D .150°【答案】A【详解】因为直线l 的斜率为33,所以l 的倾斜角为30°.故选:A.6.(多选)如果直线l 过原点(0,0)且不经过第三象限,那么l 的倾斜角α可能是()A .0°B .120°C .90°D .60°【答案】ABC【详解】依题意,直线l 过原点,且不经过第三象限,则0α=︒或90180α︒≤<︒,所以ABC 选项符合,D 选项不符合.故选:ABC7.(多选)下列四个命题中,错误的有()A .若直线的倾斜角为θ,则sin 0θ>B .直线的倾斜角θ的取值范围为0θπ≤<C .若一条直线的倾斜角为θ,则此直线的斜率为tan θD .若一条直线的斜率为tan θ,则此直线的倾斜角为θ【答案】ACD【详解】因为直线的倾斜角的取值范围是[)0,p ,即[)0,θπ∈,所以sin 0θ≥,当2πθ≠时直线的斜率tanθk =,故A 、C 均错误;B 正确;对于D :若直线的斜率4tan33k π==,此时直线的倾斜角为3π,故D 错误;故选:ACD 8.若直线12,l l 的倾斜角分别为12,αα,且12l l ⊥,则有()A .1290αα-=︒B .2190αα-=︒C .2190αα-=︒D .12180αα+=︒【答案】C 【详解】根据两条直线垂直,可知|α2−α1|=90°,故选:C9.已知直线l 过点A (1,2),且不过第四象限,则直线l 的斜率k 的最大值是()A .2B .1 C.12D .0【答案】A【详解】如图,k OA =2,k l ′=0,只有当直线落在图中所示位置时才符合题意,故k ∈[0,2].故直线l 的斜率k 的最大值为2.10.下列命题中,错误的是______.(填序号)①若直线的倾斜角为α,则(0,)απ∈;②若直线的倾斜角越大,则直线的斜率就越大;③若直线的倾斜角为α,则直线的斜率为tan α.【答案】①②③【详解】对于①中,根据直线倾斜角的概念,可得直线的倾斜角为α,则[0,)απ∈,所以①错误;对于②中,当倾斜角[0,)2πα∈,直线的倾斜角越大,则直线的斜率k 越大,且0k >;当倾斜角(,)2παπ∈,直线的倾斜角越大,则直线的斜率k 越大,但0k <,所以②错误;对于③中,根据直线斜率的概念,可得当[0,)απ∈且2πα≠时,直线的斜率为tan k α=,所以③错误.故答案为:①②③.11.直线l 的斜率为3,将直线l 绕其与x 轴交点逆时针旋转60所得直线的斜率是______.【答案】3-【详解】设直线l 的倾斜角为α,)0,180α⎡∈⎣,因为直线l 的斜率为3,所以tan 3α=,所以60α=,所以将直线l 绕其与x 轴交点逆时针旋转60所得直线的倾斜角为6060120+=,所以所得直线的斜率是tan1203=-,故答案为:3-.12.若过两点(0,)A y 、(23,3)B -的直线的倾斜角为60°,则y =______.【答案】-9【详解】过两点(0,)A y 、(23,3)B -的直线的倾斜角为60°则有3tan 603230y --==-,解之得9y =-故答案为:-913.若直线l 的倾斜角α的正弦值为35,则它的斜率为___________.【答案】34±【详解】由题设,3sin 5α=,而α∈[0,)π,则4cos 5α=±,所以3tan 4α=±,即斜率为34±.故答案为:34±14.若三点A (3,1),B (-2,k ),C (8,1)能构成三角形,则实数k 的取值范围为________.【答案】(-∞,1)∪(1,+∞)【详解】k AB =k -1-2-3=1-k 5,k AC =1-18-3=05=0.要使A ,B ,C 三点能构成三角形,需三点不共线,即k AB ≠k AC ,∴1-k 5≠0,∴k ≠1.15.已知直线l 过第一象限的点(,)m n 和(1,5),直线l 的倾斜角为135°,求14m n +的最小值.【答案】32【详解】由题意,可得0m >,0n >,且5tan13511n m-==--︒,即6m n +=,又由()14114141435526662n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=++=++≥+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4n m m n =时,即24n m ==时,等号成立,所以14m n +的最小值为32.16.已知直线l 经过两点()22,A a a 、(0,1)B -,求直线l 的倾斜角的取值范围.【答案】3,44ππ⎡⎤⎢⎥⎣⎦【详解】设直线l 的斜率为k ,倾斜角为θ.当0a =时,k 不存在,2πθ=;当0a ≠时,211222a a k a a+==+:若0a >时,则12122a k a ≥⋅=,,42ππθ⎡⎫∈⎪⎢⎣⎭;若0a <时,则12()()122ak a ≤--⋅-=-,3,24ππθ⎛⎤∈ ⎥⎝⎦;综上,3,44ππθ⎡⎤∈⎢⎥⎣⎦.17.已知直线l 的斜率的绝对值为33,求这条直线的倾斜角.【答案】30°或150°【详解】由题意知直线的斜率k =33或k =-33,且倾斜角的范围为0180α︒≤<︒,所以直线的倾斜角的大小为30°或150°.18.已知直线1l 的斜率为1-,直线2l 的倾斜角比直线1l 的倾斜角小30°,求直线2l 的斜率.【答案】23--【详解】因为直线1l 的斜率为1-,所以直线1l 的倾斜角为135︒,又直线2l 的倾斜角比直线1l 的倾斜角小30°,所以直线2l 的倾斜角为105︒,所以()tan 45tan 6013tan105tan 4560231tan 45tan 60113°+°+°=°+°===---鞍-´,所以直线2l 的斜率为23--.19.(1)若直线l 的倾斜角,63ππα⎡⎤∈⎢⎥⎣⎦,求直线l 斜率k 的范围;(2)若直线l 的斜率[]1,1k ∈-,求直线l 倾斜角α的范围.【答案】(1)3,33k ⎡⎤∈⎢⎥⎣⎦;(2)30,,44ππαπ⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭.【详解】(1)因为tan k α=,,63ππα⎡⎤∈⎢⎥⎣⎦,3tan 63π=,tan 33π=,结合正切函数在[)0,p 的单调性得3,33k ⎡⎤∈⎢⎥⎣⎦,(2)直线l 的斜率[]1,1k ∈-,tan 14π=,3tan 14π=-,结合正切函数在[)0,p 的单调性得30,,44ππαπ⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭.20.经过点()0,1P -作直线l ,且直线l 与连接点()1,2A -,()2,1B 的线段总有公共点,求直线l 的倾斜角α和斜率k 的取值范围.【答案】30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭;11k -≤≤.【详解】因为2(1)110PA k ---==--,1(1)120PB k --==-,由l 与线段AB 相交,所以PA PB k k k ≤⇒≤11k -≤≤,所以0tan 1α≤≤或1tan 0α-≤<,由于tan y x =在0,2π⎡⎫⎪⎢⎣⎭及,2ππ⎛⎤ ⎥⎝⎦均为增函数,所以直线l 的倾斜角α的范围为:30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭.故倾斜角的范围为30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭,斜率k 的范围是11k -≤≤.21.已知坐标平面内两点M(m +3,2m +5),N(m -2,1).(1)当m 为何值时,直线MN 的倾斜角为锐角?(2)当m 为何值时,直线MN 的倾斜角为钝角?(3)直线MN 的倾斜角可能为直角吗?【答案】(1)m>-2.(2)m<-2.(3)不可能为直角.【详解】(1)若倾斜角为锐角,则斜率大于0,即k =()25132m m m +-+--=245m +>0,解得m>-2.(2)若倾斜角为钝角,则斜率小于0,即k =()25132m m m +-+--=245m +<0,解得m<-2.(3)当直线MN 垂直于x 轴时直线的倾斜角为直角,此时m +3=m -2,此方程无解,故直线MN 的倾斜角不可能为直角.22.点M (x ,y )在函数y =-2x +8的图象上,当x ∈[2,5]时,求y +1x +1的取值范围.【详解】y +1x +1=y -(-1)x -(-1)的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5],∴设该线段为AB 且A (2,4),B (5,-2).∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为-16,53.。
高一数学直线的倾斜角与斜率试题答案及解析1.直线x+y﹣1=0的倾斜角为().A.B.C.D.【答案】B【解析】可化为,即直线的斜率,所以倾斜角为.【考点】直线的倾斜角.2.已知点A(-1,2),B(2,-2),C(0,3),若点M(a,b)是线段AB上的一点(a≠0),则直线CM的斜率的取值范围是( )[,1] B.[ ,0)∪(0,1] C.[-1, ] D.(-∞, ]∪[1,+∞)【答案】D【解析】画出图象,看M点的变化范围.可知直线CM应该在AC与BC间变化,且,,故有选D.【考点】直线的斜率的计算.3.经过两点A(-3,5),B(1,1 )的直线倾斜角为________.【答案】.【解析】由题意易得,经过点,的直线方程为,其倾斜角的斜率为,又∵,∴.【考点】直线的倾斜角与斜率.4.如果实数满足等式,那么的最大值为______.【答案】【解析】,可看作圆上的点与坐标原点间连线的斜率,结合图形知最大值为.【考点】斜率的计算公式,数形结合的数学思想.5.过点且倾斜角为的直线方程为()A.B.C.D.【答案】A【解析】依题意可知斜率,根据直线方程的点斜式可写出直线方程:即,故选A.【考点】1.直线的倾斜角与斜率;2.直线的方程.6.点和点关于直线对称,则()A.B.C.D.【答案】C【解析】依题意可知直线与已知直线垂直且线段的中点在直线上,所以,解得,故选C.【考点】1.过两点的直线的斜率问题;2.直线垂直的判定与性质;3.点与直线的对称问题.7.在直角坐标系中,直线的倾斜角.【答案】【解析】直线化成,可知,而,故.【考点】直线的倾斜角与斜率.8.直线的倾斜角为( )A.B.C.D.【答案】B【解析】根据题意,由于直线的方程可知,该直线的斜率为,因此可知该直线的倾斜角为=60°,选B.【考点】直线的倾斜角点评:主要是考查了直线的倾斜角的求解,属于基础题。
9.直线经过点A(2,1),B(1,m2)两点(m∈R),那么直线l的倾斜角取值范围是()A.B.C.D.【答案】B【解析】直线的斜率为,结合可知【考点】直线倾斜角斜率点评:由两点确定的直线斜率为,斜率和倾斜角的关系10.已知菱形的两个顶点坐标:,则对角线所在直线方程为A.B.C.D.【答案】A【解析】线段的中点,所以所在直线为【考点】直线方程点评:本题利用菱形的几何特征可求得对角线的斜率,利用对角线互相平分可求得对角线过的点,从而可写出点斜式方程11.过点且平行于直线的直线方程为()A.B.C.D.【答案】C【解析】直线化为,其斜率为。
高二数学直线的倾斜角与斜率试题答案及解析1.过点、的直线的斜率为______________.【答案】2.【解析】由斜率公式得:.【考点】直线的斜率公式.2.直线xsinα+y+2=0的倾斜角的取值范围是( )A.[0,π)B.∪C.D.∪【答案】B【解析】xsinα+y+2=0的斜率为-sina,-sina取值范围为[-1,1],故斜率范围为[-1,1],即倾斜角的范围就是∪.【考点】倾斜角与斜率.3.若图中直线,,的斜率分别为,,,则()A.<<B.<<C.<<D.<<【答案】B【解析】由于的倾斜角都是锐角,且直线的倾斜角大于直线的倾斜角,可得,而直线的倾斜角为钝角,所以,由此可得结论:,故选答案B.【考点】直线的倾斜角与斜率.4.直线的倾斜角为()A.B.C.D.【答案】C【解析】直线的斜率,倾斜角为,即,因为,所以【考点】直线的斜率公式和倾斜角的取值范围。
5.直线的倾斜角是.【答案】【解析】直线的倾斜角满足=,所以,=。
【考点】直线方程,直线的倾斜角、直线的斜率。
点评:简单题,当直线的倾斜角不为直角时,。
6.如果直线x+2y-1=0和y=kx互相平行,则实数k的值为( ).A.2B.C.-2D.-【答案】D【解析】直线x+2y-1=0的斜率为,直线x+2y-1=0和y=kx互相平行,所以两直线斜率相等,【考点】两直线平行的判定点评:若两直线平行则两直线斜率相等截距不等或斜率都不存在7.在平面直角坐标系中,直线的倾斜角的大小是____ _______【答案】0【解析】∵直线平行x轴,∴直线的倾斜角的大小是0【考点】本题考查了倾斜角的概念点评:掌握倾斜角的概念及范围是解决此类问题的关键,应用时还可根据图象判断。
8.()直线的倾斜角为A.B.C.D.【答案】C.【解析】因为直线的斜率为,所以此直线的倾斜角..【考点】直线的倾斜角与斜率的关系.点评:除倾斜角为外,倾斜角与斜率是一一对应的关系,因而求直线的倾斜角可通过求直线的斜率再求倾斜角即可.9.若直线过点,则此直线的倾斜角是【答案】【解析】由两点间的斜率公式知该直线的斜率为,所以该直线的倾斜角为【考点】本小题主要考查两点间斜率公式的应用和特殊角的三角函数值的应用.点评:直线倾斜角的正切值是该直线的斜率,还要注意到直线的倾斜角的取值范围为. 10.(本小题12分)已知直线l与两坐标轴围成的三角形的面积为3, 且过定点A(-3,4). 求直线l的方程.【答案】2x+3y-6=0或8x+3y+12=0.【解析】先分析已知中给出一个点,然后设斜率为k,那么点斜式得到直线的方程,结合面积公式得到结论。
直线的倾斜角与斜率经典例题(有答案精品)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直线的倾斜角与斜率()讲义类型一:倾斜角与斜率的关系1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;【变式】直线的倾斜角的范围是( )A. B. C.D.类型二:斜率定义2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.【变式1】如图,直线的斜率分别为,则( )A.B.C.D.类型三:斜率公式的应用3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.【变式1】过两点,的直线的倾斜角为,求的值.【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.【变式1】已知,,三点,这三点是否在同一条直线上,为什么?【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.类型四:两直线平行与垂直5.四边形的顶点为,,,,试判断四边形的形状.【变式1】已知四边形的顶点为,,,,求证:四边形为矩形.【变式2】已知,,三点,求点,使直线,且.【变式3】若直线与直线互相垂直,则实数=__________.直线的倾斜角与斜率()作业姓名成绩题组一直线的倾斜角1.已知直线l过点(m,1),(m+1,tanα+1),则 ()A.α一定是直线l的倾斜角 B.α一定不是直线l的倾斜角C.α不一定是直线l的倾斜角 D.180°-α一定是直线l的倾斜角2.如图,直线l经过二、三、四象限,l的倾斜角为α,斜率为k,则 ()A.k sinα>0B.k cosα>0 C.k sinα≤0D.k cosα≤0题组二直线的斜率及应用3.1231<k2<k3,则下列说法中一定正确的是()A.k1k2=-1 B.k2k3=-1 C.k1<0 D.k2≥04.已知a>0,若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=________.5.已知两点A(-1,-5),B(3,-2),若直线l的倾斜角是直线AB倾斜角的一半,则l的斜率是________.题组三两条直线的平行与垂直6已知两条直线l1:ax+by2bm是直线l1∥l2的() A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为 ( )A .5B .4C .2D .18.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b 为( )B .-23 D .-139.设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.10.若关于x 的方程|x ________.11.已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.直线的倾斜角与斜率()讲义答案类型一:倾斜角与斜率的关系1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析:∵,∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.举一反三:【变式】(2010山东潍坊,模拟)直线的倾斜角的范围是A.B.C.D.【答案】B解析:由直线,所以直线的斜率为.设直线的倾斜角为,则.又因为,即,所以.类型二:斜率定义2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x 轴上,求边AB与AC所在直线的斜率.思路点拨:本题关键点是求出边AB与AC所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°,∴k AB=tan150°= k AC=tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.举一反三:【变式1】如图,直线的斜率分别为,则( )A.B.C.D.【答案】由题意,,则本题选题意图:对倾斜角变化时,如何变化的定性分析理解.∴选B.类型三:斜率公式的应用3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨:已知两点坐标求斜率,直接利用斜率公式即可.解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.总结升华:本题求出,但的符号不能确定,我们通过确定的符号来确定的符号.当时,,为锐角;当时,,为钝角.举一反三:【变式1】过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率故由斜率公式,解得或.经检验不适合,舍去.故.【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.【答案】,.即当时,,两点的直线的斜率是12.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.思路点拨:如果过点AB,BC的斜率相等,那么A,B,C三点共线.解析:∵A、B、C三点在一条直线上,∴k AB=k AC.总结升华:斜率公式可以证明三点共线,前提是他们有一个公共点且斜率相等.举一反三:【变式1】已知,,三点,这三点是否在同一条直线上,为什么?【答案】经过,两点直线的斜率.经过,两点的直线的斜率.所以,,三点在同一条直线上.【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.【答案】由已知,得;.因为,,三点都在斜率为2的直线上,所以,.解得,.类型四:两直线平行与垂直5.四边形的顶点为,,,,试判断四边形的形状.思路点拨:证明一个四边形为矩形,我们往往先证明这个四边形为平行四边形,然后再证明平行四边形的一个角为直角.解析:边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,边所在直线的斜率.,,,,即四边形为平行四边形.又,,即四边形为矩形.总结升华:证明不重和的的两直线平行,只需要他们的斜率相等,证明垂直,只需要他们斜率的乘积为-1.举一反三:【变式1】已知四边形的顶点为,,,,求证:四边形为矩形.【答案】由题意得边所在直线的斜率.边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,则;.所以四边形为平行四边形,又因为,,即平行四边形为矩形.【变式2】已知,,三点,求点,使直线,且.【答案】设点的坐标为,由已知得直线的斜率;直线的斜率;直线的斜率;直线的斜率.由,且得解得,.所以,点的坐标是.【变式3】(2011浙江12)若直线与直线互相垂直,则实数=__________.【答案】因为直线与直线互相垂直,所以,所以.直线的倾斜角与斜率()作业答案姓名 成绩题组一 直线的倾斜角1.已知直线l 过点(m,1),(m +1, )A .α一定是直线l 的倾斜角B .α一定不是直线l 的倾斜角C .α不一定是直线l 的倾斜角D .180°-α一定是直线l 的倾斜角解析:设θ为直线l 的倾斜角,则tan θ=tan α+1-1m +1-m =tan α,∴α=kπ+θ,k ∈Z ,当k ≠0时,θ≠α.答案:C2.如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则 ( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0解析:显然k <0,π2<α<π,∴cos α<0,∴k cos α>0.答案:B3.1231<k 2<k 3,则下列说法中一定正确的是( )A .k 1k 2=-1B .k 2k 3=-1C .k 1<0D .k 2≥0解析:结合图形知,k 1<0.答案:C4.(2008·浙江高考)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,又a >0,∴a =1+ 2. 答案:1+25.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是________.解析:设直线AB 的倾斜角为2α,则直线l 的倾斜角为α,由于0°≤2α<180°,∴0° ≤α<90°,由tan2α=-2-(-5)3-(-1)=34,得tan α=13,即直线l 的斜率为13. 答案:136.(2009·陕西八校模拟)12+ny +p =0,则an =bm 是直线l 1∥l 2的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵l 1∥l 2⇒an -bm =0,且an -bm =0⇒/ l 1∥l 2,故an =bm 是直线l 1∥l 2的必要不充分条件.答案:B7.(2009·福建质检)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( ) A .5 B .4 C .2 D .1解析:由题意知,a 2b -(a 2+1)=0且a ≠0,∴a2b=a2+1,∴ab=a2+1a=a+1 a,∴|ab|=|a+1a|=|a|+1|a|≥2.(当且仅当a=±1时取“=”).答案:C8.(2010·合肥模拟)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b 为( ) B .-23 D .-13解析:曲线y =x 3在点P (1,1)处的切线斜率为3,所以a b =-13.答案:D9.(2009·泰兴模拟)设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.解析:∵l 1⊥l 2,k 1=-12,∴k 2=2,又点(0,1)在直线l 1上,故点(-1,0)在直线l 2上,∴直线l 2的方程为y =2(x +1),即2x -y +2=0.答案:2x -y +2=0题组四 直线的倾斜角和斜率的综合问题10.若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.解析:数形结合.在同一坐标系内画出函数y =kx ,y =|x -1|的图象如图所示,显然k ≥1或k =0时满足题意.答案:k ≥1或k =011.(2009·青岛模拟)已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.解析:如图所示,k PA =6-3-1-2=-1, ∴直线PA 的倾斜角为3π4,k PB =6-2-1-(-5)=1,∴直线PB 的倾斜角为π4,从而直线l 的倾斜角的范围是[π4,3π4].答案:[π4,3π4]12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.解:设P (x,0),(1)∵∠MOP =∠OPN ,∴OM ∥NP .∴k OM =k NP .又k OM =2-02-0=1,k NP =0-(-2)x -5=2x -5(x ≠5), ∴1=2x -5,∴x =7, 即P 点坐标为(7,0).(2)∵∠MPN =90°,∴MP ⊥NP ,∴k MP ·k NP =-1.又k MP =22-x (x ≠2),k NP =2x -5(x ≠5), ∴22-x ×2x -5=-1,解得x =1或x =6, 即P 点坐标为(1,0)或(6,0).。
高考数学《直线的倾斜角与斜率、直线的方程》真题含答案一、选择题1.直线经过点(0,2)和点(3,0),则它的斜率k 为( )A .23B .32C .-23D .-32答案:C解析:k =0-23-0 =-23 .2.直线x + 3 y +1=0的倾斜角是( )A .π6B .π3C .23 πD .56 π答案:D解析:由x + 3 y +1=0,得y =-33 x -33 ,∴直线的斜率k =-33 ,其倾斜角为56 π.3.已知直线l 过点P(-2,5),且斜率为-34 ,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案:A解析:由点斜式得y -5=-34 (x +2),即:3x +4y -14=0.4.已知直线l 的倾斜角为α、斜率为k ,那么“α>π3 ”是“k> 3 ”的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B解析:∵当π2 <α<π时,k<0,∴α>π3 D ⇒/k> 3 ; 当k> 3 时,π3 <α<π2 ,∴k> 3 ⇒π3 <α<π2 ,∴α>π3是k> 3 的必要不充分条件. 5.倾斜角为120°,在x 轴上的截距为-1的直线方程是( )A . 3 x -y +1=0B . 3 x -y - 3 =0C . 3 x +y - 3 =0D . 3 x +y + 3 =0答案:D解析:由于倾斜角为120°,故斜率k =- 3 .又直线过点(-1,0),由点斜式可知y =- 3 (x +1),即: 3 x +y + 3 =0.6.经过点P(1,2)且在x 轴、y 轴上的截距相等的直线方程为( )A .2x -y =0B .x +y -3=0C .x -y -3=0或2x -y =0D .x +y -3=0或2x -y =0答案:D解析:若直线过原点,则直线方程为y =2x ,若直线不过原点,设所求的直线方程为x +y =m ,又P(1,2)在直线上,∴1+2=m ,∴m =3,即:x +y =3.7.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab>0,bc<0B .ab>0,bc>0C .ab<0,bc>0D .ab<0,bc<0答案:A解析:ax +by +c =0可化为y =-a b x -c b ,又直线过一、二、四象限,∴-a b<0且-c b>0,即ab>0,bc<0. 8.直线x sin α+y +2=0的倾斜角的取值范围是( )A .[0,π)B .⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π C .⎣⎡⎦⎤0,π4 D .⎣⎡⎦⎤0,π4 ∪⎝⎛⎭⎫π2,π 答案:B解析:设直线的倾斜角为θ,0≤θ<π,由题意得tan θ=-sin α∈[-1,1],∴θ∈⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π .9.已知点A(2,3),B(-3,-2),若直线kx -y +1-k =0与线段AB 相交,则k 的取值范围是( )A .⎣⎡⎦⎤34,2B .⎝⎛⎦⎤-∞,34 ∪[2,+∞) C .(-∞,1]∪[2,+∞)D .[1,2]答案:B解析:直线kx -y +1-k =0恒过P(1,1),k PA =2,k PB =34,∴k 的取值范围是⎝⎛⎦⎤-∞,34 ∪[2,+∞).二、填空题10.若A(4,3),B(5,a),C(6,5)三点共线,则a 的值为________.答案:4解析:由题意得k AC =k BC ,∴5-36-4 =5-a 6-5,得a =4. 11.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为________.答案:45°解析:y′=3x 2-2,当x =1时,该曲线的导函数值为1,∴k =1,其倾斜角为45°.12.过点M(-2,m),N(m ,4)的直线的斜率为1,则m =________.答案:1解析:由题意得,4-m m +2=1,得m =1.。
倾斜角与斜率[学习目标] 1.理解直线的倾斜角和斜率的概念.2.掌握求直线斜率的两种方法.3.了解在平面直角坐标系中确定一条直线的几何要素.知识点一 直线的倾斜角 1.直线倾斜角的定义当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角. 2.直线倾斜角的取值范围直线的倾斜角α的取值范围是0°≤α<180°,并规定与x 轴平行或重合的直线的倾斜角为0°. 思考 当一条直线的倾斜角为0°时,此时这条直线一定与x 轴平行吗? 答 不一定.也可能与x 轴重合. 知识点二 直线的斜率 1.直线斜率的定义一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan α. 思考 所有直线都有斜率吗?若直线没有斜率,那么这条直线的倾斜角为多少? 答 不是.若直线没有斜率,那么这条直线的倾斜角应为90°. 2.倾斜角α与斜率k 的关系知识点三 直线斜率的坐标公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式是k =y 2-y 1x 2-x 1.思考 在同一直线(与x 轴不重合)上任意取不同的两点的坐标计算的斜率都相等吗? 答 相等.对于一条直线来说其斜率是一个定值,与所选择点的位置无关,所以取任意不同的两点的坐标计算同一条直线的斜率一定相等.题型一 直线的倾斜角例1设直线l过坐标原点,它的倾斜角为α,如果将l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为()A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135°答案 D解析根据题意,画出图形,如图所示:因为0°≤α<180°,显然A,B,C未分类讨论,均不全面,不合题意.通过画图(如图所示)可知:当0°≤α<135°时,l1的倾斜角为α+45°;当135°≤α<180°时,l1的倾斜角为45°+α-180°=α-135°.故选D.跟踪训练1给出下列命题:①任何一条直线都有惟一的倾斜角;②一条直线的倾斜角可以为-30°;③倾斜角为0°的直线只有一条,即x轴;④按照倾斜角的概念,直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一映射. 其中正确命题的个数是()A.1B.2C.3D.4答案 A解析题型二直线的斜率例2已知直线l过P(-2,-1),且与以A(-4,2),B(1,3)为端点的线段相交,求直线l的斜率的取值范围.解 根据题中的条件可画出图形,如图所示, 又可得直线P A 的斜率k P A =-32,直线PB 的斜率k PB =43,结合图形可知当直线l 由PB 变化到与y 轴平行的位置时,它的倾斜角逐渐增大到90°,故斜率的取值范围为⎣⎡⎭⎫43,+∞,当直线l 由与y 轴平行的位置变化到P A 位置时,它的倾斜角由90°增大到P A 的倾斜角,故斜率的变化范围是⎝⎛⎦⎤-∞,-32. 综上可知,直线l 的斜率的取值范围是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫43,+∞.跟踪训练2 已知A (3,3),B (-4,2),C (0,-2). (1)求直线AB 和AC 的斜率;(2)当点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围. 解 (1)由斜率公式,得直线AB 的斜率k AB =2-3-4-3=17; 直线AC 的斜率k AC =-2-30-3=53.故直线AB 的斜率为17,直线AC 的斜率为53.(2)如图,当点D 由点B 运动到点C 时,直线AD 的斜率由k AB 增大到k AC , 所以直线AD 的斜率的变化范围是⎣⎡⎦⎤17,53.题型三 斜率公式的应用例3 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.解 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为(2,4),(3,2).由于yx 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得y x 的最大值为2,最小值为23.跟踪训练3 已知实数x ,y 满足y =x 2-x +2(-1≤x ≤1),试求y +3x +2的最大值和最小值.解 由y +3x +2的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB上任一点(x ,y )的直线的斜率k ,由图可知k P A ≤k ≤k PB ,由已知可得A (1,2),B (-1,4). 则k P A =2-(-3)1-(-2)=53,k PB =4-(-3)-1-(-2)=7.∴53≤k ≤7,∴y +3x +2的最大值为7,最小值为53.分类讨论思想例4 设直线l 过点A (6,12),B (m,13),求直线l 的斜率k 及倾斜角α的取值范围.分析 直线的斜率存在时,首先由斜率公式求斜率k ,然后由k 确定倾斜角α的取值范围;直线的斜率不存在时,可直接下结论.解 (1)当m =6时,直线l 与x 轴垂直,斜率不存在,倾斜角α=90°. (2)当m ≠6时,k =13-12m -6=1m -6.①当m >6时,1m -6>0,即k >0,所以直线l 的倾斜角的取值范围是0°<α<90°; ②当m <6时,1m -6<0,即k <0,所以直线l 的倾斜角的取值范围是90°<α<180°.1.下列命题正确的是( )A.两条不重合的直线,如果它们的倾斜角相等,那么这两条直线平行B.若一条直线的倾斜角为α,则sin α∈(0,1)C.若α,2α,3α分别为三条直线的倾斜角,则α的度数可以大于60°D.若α是直线l 的倾斜角,且tan α=22,则α=45° 2.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 3.若-π2<α<0,则经过P 1(0,cos α),P 2(sin α,0)两点的直线的倾斜角为( )A.αB.-αC.π2+α D.π+α4.直线l 经过第二、四象限,则直线l 的倾斜角范围是( ) A.0°≤α<90° B.90°≤α<180° C.90°<α<180°D.0°<α<180°5.已知点A (1,2),若在坐标轴上有一点P ,使直线P A 的倾斜角为135°,则点P 的坐标为 .一、选择题1.下列说法正确的是( )A.直线和x 轴的正方向所成的正角,叫做这条直线的倾斜角B.直线的倾斜角α的取值范围是0°≤α≤180°C.和x 轴平行的直线,它的倾斜角为180°D.每一条直线都存在倾斜角,但并非每一条直线都存在斜率 2.斜率为33的直线的倾斜角为( ) A.30° B.45° C.60° D.150°3.若过点A (a ,-1)和B (2,a )的直线的斜率为12,则a 的值为( )A.4B.0C.-4D.14.直线l 过原点(0,0),且不过第三象限,那么l 的倾斜角α的取值范围是( ) A.0°≤α≤90°B.90°≤α<180°C.90°≤α<180°或α=0°D.90°≤α≤135°5.斜率为2的直线经过点A (3,5),B (a,7),C (-1,b )三点,则a ,b 的值分别为( ) A.4,0 B.-4,-3 C.4,-3 D.-4,36.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 的值为( ) A.-32 B.32C.-1D.1 7.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ) A.[0,π) B.⎣⎡⎭⎫π4,π2 C.⎣⎡⎦⎤π4,3π4 D.⎝⎛⎭⎫π4,π2∪⎝⎛⎦⎤π4,3π4 二、填空题8.若直线AB 与y 轴的夹角为60°,则直线AB 的倾斜角为 ,斜率为 . 9.已知点P (3,2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,则点Q 的坐标为 . 10.若经过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围为 . 11.直线l 过点A (1,2),且不过第四象限,则直线l 的斜率的取值范围是 . 三、解答题12.已知A (-1,1),B (1,1),C (2,3+1), (1)求直线AB 和AC 的斜率;(2)若点D 在线段AB (包括端点)上移动时,求直线CD 的斜率的变化范围.13.光线从点A (2,1)射到y 轴上的点Q ,经y 轴反射后过点B (4,3),试求点Q 的坐标及入射光线的斜率.当堂检测答案1.答案 A解析 ∵α∈[0,180°),∴sin α∈[0,1],B 错;当α=60°时,3α=180°,∴C 错;tan 45°=1,∴D 错. 2.答案 D解析 由图可知,直线l 2,l 3的倾斜角为锐角,直线l 1的倾斜角为钝角,故k 1最小.直线l 2的倾斜角大于直线l 3的倾斜角,由正切函数在⎣⎡⎭⎫0,π2内单调递增,得k 2>k 3.故k 1<k 3<k 2. 3.答案 C解析 由斜率的计算公式,得k =0-cos αsin α-0=-cot α=tan ⎝⎛⎭⎫π2+α,而π2+α∈⎝⎛⎭⎫0,π2. 4.答案 C解析 直线倾斜角的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角范围是90°<α<180°. 5.答案 (3,0)或(0,3)解析 由题意知k P A =-1,若P 点在x 轴上,则设P (m,0),则0-2m -1=-1,解得m =3;若P在y 轴上,则设P (0,n ),则n -20-1=-1,解得n =3;故P 点的坐标为(3,0)或(0,3).课时精练答案一、选择题 1.答案 D解析 直线的倾斜角为直线向上的方向与x 轴的正方向所成的角,故A 不正确;直线的倾斜角α的取值范围是0°≤α<180°,故B 不正确;和x 轴平行的直线,它的倾斜角为0°,故C 不正确;只有D 正确. 2.答案 A解析 设直线的倾斜角为α,由题意,得tan α=33,所以α=30°,故选A. 3.答案 B解析 k AB =a +12-a =12,解得a =0.4.答案 C解析 倾斜角的取值范围为0°≤α<180°,直线过原点且不过第三象限,切勿忽略x 轴和y 轴.5.答案 C解析 由题意,得⎩⎪⎨⎪⎧k AC =2,k AB =2,即⎩⎪⎨⎪⎧b -5-1-3=2,7-5a -3=2.解得a =4,b =-3. 6.答案 C解析 由已知,得y +34-2=tan 45°=1.故y =-1.7.答案 C解析 当cos θ=0时,方程为x +3=0,其倾斜角为π2.当cos θ≠0时,由直线方程可得,斜率k =-1cos θ.∵cos θ∈[-1,1],且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞),即tan α∈(-∞,-1]∪[1,+∞).又∵α∈[0,π),∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎭⎫π2,3π4.综上可知,倾斜角的范围是[π4,3π4].二、填空题 8.答案 30°或150°33或-33解析 因为直线AB 与y 轴的夹角为60°,所以直线AB 的倾斜角为30°或150°. 当倾斜角为30°时,斜率为tan 30°=33; 当倾斜角为150°时,斜率为tan 150°=-33. 9.答案 (23+3,0)解析 设点Q 的坐标为(x,0),则k =2-03-x =tan 150°=-33,解得x =23+3.10.答案 (-2,1)解析 ∵k =a -1a +2且直线的倾斜角为钝角,∴a -1a +2<0,即⎩⎪⎨⎪⎧ a -b >0,a +2<0或⎩⎪⎨⎪⎧a -1<0,a +2>0.解得-2<a <1.11.答案 [0,2]解析 如图,当直线l 在l 1位置时,k =tan 0°=0;当直线l 在l 2位置时,k =2-01-0=2.故直线l 的斜率的取值范围是[0,2].三、解答题12.解 (1)由斜率公式得 k AB =1-11-(-1)=0,k AC =3+1-12-(-1)=33. (2)如图所示. k BC =3+1-12-1= 3.设直线CD 的斜率为k ,当斜率k 变化时,直线CD 绕C 点旋转,当直线CD 由CA 逆时针方向旋转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,所以k 的取值范围为⎣⎡⎦⎤33, 3.13.解 方法一 设Q (0,y ),则由题意得k QA =-k QB . ∵k QA =1-y 2,k QB =3-y 4,∴1-y 2=-3-y4. 解得y =53,即点Q 的坐标为⎝⎛⎭⎫0,53, ∴k 入=k QA =1-y 2=-13.方法二 如图,点B (4,3)关于y 轴的对称点为B ′(-4,3),k AB ′=1-32+4=-13,由题意得,A 、Q 、B ′三点共线. 从而入射光线的斜率为k AQ =k AB ′=-13.设Q (0,y ),则k 入=k QA =1-y 2=-13.解得y =53,即点Q 的坐标为⎝⎛⎭⎫0,53.。