DES密钥机制分析-薛仁杰-5011212510详解

  • 格式:doc
  • 大小:257.37 KB
  • 文档页数:18

下载文档原格式

  / 18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
15
4
2
7
12
9
5
6
1
13
14
0
11
3
8
9
14
15
5
2
8
12
3
7
0
4
10
1
13
11
6
4
3
2
12
9
5
15
10
11
14
1
7
6
0
8
13
S7
4
11
2
14
15
0
8
13
3
12
9
7
5
10
6
1
13
0
11
7
4
9
1
10
14
3
5
12
2
15
12
0
5
14
9
S3
10
0
9
14
6
3
15
5
1
13
12
7
11
4
2
8
13
7
0
9
3
4
6
10
2
8
5
14
12
11
15
1
13
6
4
9
8
15
3
0
11
1
2
12
5
10
14
7
1
10
13
0
6
9
8
7
4
15
14
3
11
5
2
12
S4
7
13
14
3
0
6
9
10
1
2
8
5
11
12
4
15
13
8
11
5
6
15
0
3
4
7
2
12
1
10
14
9
10
6
9
0
12
11
7
13
15
1
3
14
5
2
8
4
3
15
0
6
10
1
13
8
9
4
5
11
12
7
2
14
S5
2
12
4
1
7
10
11
6
8
5
3
15
13
0
14
9
14
11
2
12
4
7
13
1
5
0
15
10
3
9
8
6
4
2
1
11
10
13
7
8
15
9
12
5
6
3
0
14
11
8
12
7
1
14
2
13
6
15
0
9
10
4
5
3
S6
12
1
10
15
9
2
6
8
0
13
3
4
14
7
5
11
关键词:信息安全 DES加密 解密 明文 密文
1
1.1 DES
随着计算机和通信网络的广泛应用,信息的安全性已经受到人们的普遍重视。信息安全已不仅仅局限于政治,军事以及外交领域,而且现在也与人们的日常生活息息相关。现在,密码学理论和技术已得到了迅速的发展,它是信息科学和技术中的一个重要研究领域。DES算法是由IBM公司在20世纪70年代发展起来的,于1976年11月被美国政府采用,随后被美国国家标准局和美国国家标准协会承认,同时也成为全球范围内事实上的工业标准。
29
36
4
44
12
52
20
60
28
35
3
43
11
51
19
59
27
34
2
42
10
50
18
58
26
33
1
41
9
49
17
57
25
其置换规则和表1.1所述相似。
DES算法的16次迭代具有相同的结构,每一次迭代的运算过程如图1.2所示。
图1.2 DES算法的一次迭代过程图
在每一次迭代过程中,其核心部分是f函数,即图1.2中的扩展置换、异或运算、S-盒替换和P-盒置换。
33
25
17
9
1
59
51
43
35
27
19
11
3
61
53
45
37
29
21
13
5
63
55
47
39
31
23
15
7
即将输入的64位数据的第58位换到第1位,第50位换到第2位……依此类推。设置换前的输入值为D1D2…D64,则经过初始换位后的结果为:L0=D58D50…D8,R0=D57D49…D7。
经过初始换位后,将R0与密钥发生器产生的密钥K1进行计算,其结果记为f(R0,K1)再与L0进行异或运算得到L0⊕f(R0,K1),把R0记为L1放在左边,把L0⊕f(R0,K1)记为R1放在右边,从而完成了第一次迭代运算。连续迭代16次,第16次迭代结果左右不交换,即L15⊕f(R15,K16)记为R16放在左边,R15记为L16放在右边。
16
7
20
21
29
12
28
17
1
15
23
26
5
18
31
10
2
8
24
14
32
27
3
9
19
13
30
6
22
11
4
25
S-盒是DES算法的核心,它的功能是将6位数据变为4位数据,它是一个选择函数,共有8个S函数,其功能表如表1.5所示。
表1.5 S-盒查询功能表
S1
14
4
13
1
2
15
11
8
3
10
6
12
5
9
0
IP即初始换位的功能是把输入的64位明文数据块按位重新组合,并把输出分为L0,R0两部分,每部分各长32位。其置换规则如表1.1所示。
表1.1 DES算法初始换位规则表
58
52
42
34
26
18
10
2
60
52
44
36
28
20
12
4
62
54
46
38
30
22
14
6
64
56
48
40
32
24
16
8
57
49
41
DES算法把64位的明文输入快变成64位的密文输出块,整个算法的变换过程如图1.1所示。
图1.1 DES算法框图
图中描述的是DES的加密过程。而解密和加密过程大致相同,不同之处仅在于右边的16个子密钥的使用顺序不同,加密的子密钥的顺序为K1,K2,…,K16,而解密的子密钥的使用顺序则为K16,K15,…,K1。
7
0
15
7
4
14
2
13
1
10
6
12
11
9
5
3
8
4
1
14
8
13
6
2
11
15
12
9
7
3
10
5
0Байду номын сангаас
15
12
8
2
4
9
1
7
5
11
3
14
10
0
6
13
S2
15
1
8
14
6
11
3
4
9
7
2
13
12
0
5
10
3
13
4
7
15
2
8
14
12
0
1
10
6
9
11
5
0
14
7
11
10
4
13
1
5
8
12
6
9
3
2
15
13
8
10
1
3
15
4
2
11
6
7
扩展置换是将32位数据扩展为48位,使其长度与密钥一样。其置换规则如表1.3所示。
表1.3扩展置换规则表
32
1
2
3
4
5
4
5
6
7
8
9
8
9
10
11
12
13
12
13
14
15
16
17
16
17
18
19
20
21
20
21
22
23
24
25
24
25
26
27
28
29
28
29
30
31
32
1
P-盒置换规则如表1.4所示。
表1.4 P-盒置换规则表
《计算机信息安全》
2017届课程结课论文
《DES 密钥机制分析》
学生姓名薛仁杰
学号5011212510
所属学院信息工程学院
专业计算机科学与技术
班级计算机17-6
指导教师李鹏
摘要:现代密码学的发展经过了一个漫长而复杂的过程,在这过程中出现了一系列经典而高效的加密体制。DES作为分组密码的典型代表,对密码学的发展做出了重要的贡献。本文主要介绍了DES的概况,并对它的算法进行描述,找出它的设计思想和特点,分析它的安全性。在此基础上,进一步介绍了DES的工作模式。
DES算法作为分组密码的代表,已成为金融界及其他各种行业广泛应用的对称密钥密码
系统。它以feistel网络结构理论为基础,采用迭代分组形式,在提高算法的运行速度,改善了密码的实用性的同时,也大大的提高了密码的安全性,对于我们研究密码学以及展望密码学的发展方向有重要意义。
1.2
DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。在每轮编码中,一个48位的密钥值由56位的“种子”密钥得出来。
16次迭代后,得到L16,R16。将此作为输入进行逆初始换位IP-1,就可以得到密文输出。逆初始换位正好是初始换位的逆运算。其置换规则如表1.2所示。
表1.2 DES算法逆初始换位规则表
40
8
48
16
56
24
64
32
39
7
47
15
55
23
63
31
38
6
46
14
54
22
62
30
37
5
45
13
53
21
61