计量经济学
- 格式:doc
- 大小:241.00 KB
- 文档页数:7
计量经济学计量经济学,是一门使用统计方法分析经济现象的学科。
计量经济学主要通过收集、处理、分析和解释经济数据,以确认和识别经济核心问题,比如需求和供给、价格变动、市场结构和经济增长等。
这门学科的进步和应用在各种政策制定和经济决策上有着广泛的应用领域,比如经济政策的分析,股票市场的预测和企业的经营决策等。
接下来,本文将解释计量经济学的主要内容和方法,并探讨计量经济学在实践中的应用。
一、计量经济学的主要内容计量经济学分析的主要对象是经济现象和经济数据。
这些现象和数据可以描述为变量和关系,比如价格,工资,利润和经济增长等。
计量经济学主要研究的是这些变量及其之间的相互关系,以便为决策者提供更好的政策建议。
在计量经济学中,通常会涉及到如下的主要内容:1. 变量的含义和测量。
计量经济学要求研究者对变量的含义进行明确界定,以便能够对其进行测量,并进行数据收集和分析。
例如,如果要研究通货膨胀的影响因素,通货膨胀就是一个重要的变量,需要进行合理的测量。
2. 经济关系的建模。
计量经济学则进一步探索变量之间的数量关系,并通过数学模型来描述它们之间的联系。
例如,经济学家可以建立一个供求模型来研究商品价格的形成。
3. 假设检验。
计量经济学通过提出假设并使用统计检验方法来验证假设。
通过检验结果,经济学家可以同样的推理得出各种假设是否成立。
4. 统计分析。
该领域强调通过统计分析方法检验模型的假设,这是检验数据和变量关系的重要手段。
统计分析包括回归分析、时间序列分析以及多元统计分析等方法。
二、计量经济学方法计量经济学的重要方法包括统计分析、回归分析、时间序列分析、概率论和经济实验等。
其中最常使用的方法是回归分析。
1. 回归分析回归分析是计量经济学的核心方法。
回归分析将一个自变量与因变量相关联。
例如,如果我们想知道变量X与变量Y的相关性,我们就会回归一个X对Y的方程。
这个方程告诉我们,当X发生变化时,Y的变化程度。
回归分析需要建立方程,并根据现有数据的信息来确定系数。
计量经济学名词解释1、计量经济学计量经济学是一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科,统计学,经济理论和数学这结合便构成了计量经济学。
2、计量经济学模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
3、解释变量影响被解释变量的因素或因子,是原因变量,记为“X”.4、被解释变量结果变量称为被解释变量,记为“Y”。
5、结构分析结构分析是对经济现象中变量之间相互关系的研究。
所采用的主要方法是弹性分析、乘数分析与比较静力分析。
6、时间序列数据按照时间先后顺序排列的统计数据,又称为纵向数据。
7、截面数据一批发生在同一时间截面上的调查数据,又称横向数据。
8、平行数据(面板数据)时间序列数据与截面数据的合成体,又称面板数据。
9、回归分析回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。
10、随机误差项被解释变量数值与其条件期望之间的离差,是一个不可观测的随机变量,称为随机误差项,或随机干扰项。
11、最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。
12、最佳线性无偏估计量拥有有限样本性质或小样本性质这类性质的估计量,称为最佳线性无偏估计量。
13、拟合优度是SRF对样本观测值的拟合程度,即样本回归直线与观测散点之间的紧密程度。
14、方程显著性检验对所有被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断的检验。
15、变量显著性检验是对模型中某一个具体的解释变量X与被解释变量Y之间的线性关系在总体上是否显著成立做出判断,换言之,是考察所选择的X在总体上是否对Y有显著的线性影响。
16、最小样本容量是指从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。
17、满足基本要求的样本容量当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。
18、需求函数的零阶齐次性当所有商品价格和消费者货币支出总额按照同一比例变动时,需求量保持不变,这就是所谓的消费者无货币幻觉。
计量经济学核心概念一、变量与数据1.变量:在计量经济学中,变量是用来描述经济现象或经济行为的一种度量指标。
例如,收入、消费、投资等都可以作为变量。
2.数据:数据是用于研究经济现象或经济行为的一组数值。
在计量经济学中,数据通常包括观察值、样本数据和时间序列数据等。
二、模型与假设1.模型:模型是用于描述变量之间关系的数学方程或统计模型。
在计量经济学中,模型通常用于解释经济现象或预测未来经济行为。
2.假设:假设是模型建立的基础,它规定了模型中变量的性质和关系。
例如,假设变量之间存在线性关系、误差项是随机且独立同分布等。
三、估计与检验1.估计:估计是指根据样本数据对模型参数进行估计的过程。
在计量经济学中,常用的估计方法包括最小二乘法、最大似然法等。
2.检验:检验是指对模型的假设进行检验的过程。
常用的检验方法包括统计检验、图形分析和模型诊断等。
四、预测与决策1.预测:预测是指根据模型对未来经济现象或经济行为进行预测的过程。
在计量经济学中,常用的预测方法包括时间序列分析、回归分析和模拟分析等。
2.决策:决策是指根据预测结果进行决策的过程。
在计量经济学中,决策通常涉及选择最优方案、制定政策或策略等方面。
五、实证与应用1.实证:实证是指对实际经济现象或行为进行调查和研究的过程。
在计量经济学中,实证研究通常涉及收集数据、建立模型和分析结果等方面。
2.应用:应用是指将计量经济学理论和方法应用于实际经济领域的过程。
在计量经济学中,应用通常涉及政策制定、市场分析和企业决策等方面。
名词解释1,计量经济学;计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2,虚拟变量数据;虚拟变量数据是人们构造的,用来表征政策定性事实的数据。
3,计量经济学检验;计量经济学检验主要是检验模型是否符合计量经济学方法的基本假定。
4,回归平方和;回归平方和用ESS表示,是被解释变量的样本估计值与其平均值得离差平方和5,拟合优度检验;拟合优度检验是指检验模型对样本观测值的拟合程度,用R²表示,该值越接近1,模型对样本观测值拟合得越好。
6,总体回归函数;将总体被解释变量的条件期望表现为解释变量的函数,这个函数称为总体回归函数。
7,样本回归函数;是指被解释变量的样本条件均值也是随解释变量的变化而又规律的变化,如果把被解释变量的样本均值比奥斯为解释变量的某种函数,称这个函数为样本回归函数8,回归方程的显著性检验(F检验);是指对模型中北解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。
9,回归参数的显著性检验(t检验);是指对其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。
10, 多重共线性;是指解释变量之间精确的线性关系和解释变量之间近似的线性关系。
11, 完全的多重共线性;是指解释变量的数据矩阵中,至少有一个列向量可以用其余的列向量线性表示。
12,不完全的多重共线性;指对解释变量k X X X ,,,32 ,存在不全为0的数k λλλλ,,,,321 ,使得 033221=+++++i ki k i i v X X X λλλλ ),,2,1(n i =,其中,i v 为解释变量。
13,异方差性;是指随即变量的方差不是确定的常数,即被解释变量观测值的分散程度随解释变量的变化而变化。
14,序列相关性;指总体回归模型的随机误差项之间存在相关关系。
15.滞后效应;是指由于经济活动的惯性,一个经济指标以前的变化态势往往会延续到本期,从而形成被解释变量的当期变化同自身过去取值水平相关的情形。
经济学考研计量经济学核心知识计量经济学是经济学中的一个重要分支,通过运用数理统计方法和经济理论来分析经济现象和经济行为的关系。
在经济学考研中,计量经济学是必修内容之一,对于候选人们来说,掌握计量经济学的核心知识是非常重要的。
一、回归分析回归分析是计量经济学中最基本的方法之一。
其通过建立经济模型,通过样本数据对模型进行估计,并利用估计结果进行经济问题的预测和对经济政策的评估。
回归分析包括单元根检验、OLS估计、假设检验等内容。
1. 单元根检验单元根检验是回归分析中的一个重要步骤,用于检验一个时间序列是否具有平稳性。
常用的单元根检验方法有ADF检验、PP检验等。
2. OLS估计OLS估计是回归分析中最常用的估计方法,通过最小化残差平方和来估计模型中的参数。
需要注意的是,OLS估计的有效性需要满足一定的假设条件,如线性性、正态性、无多重共线性等。
3. 假设检验假设检验是回归分析中用于判断经济模型的显著性的方法。
常用的假设检验方法有t检验、F检验等。
二、时间序列分析时间序列分析是计量经济学中的另一个重要内容,通过对时间序列数据的统计方法和经济理论进行结合,来评估经济现象和经济政策的影响。
时间序列分析包括平稳性检验、协整关系检验、Granger因果检验等内容。
1. 平稳性检验平稳性检验是时间序列分析的首要步骤,用于判断一个时间序列是否具有平稳性。
常用的平稳性检验方法包括ADF检验、PP检验等。
2. 协整关系检验协整关系检验是时间序列分析中的一个重要内容,用于研究两个或多个非平稳时间序列之间的长期均衡关系。
常用的协整关系检验方法有Johansen检验、Engle-Granger检验等。
3. Granger因果检验Granger因果检验是时间序列分析中用于检验两个变量之间是否存在因果关系的方法。
通过引入滞后项对自变量进行延迟处理,然后进行假设检验,判断因果关系是否显著。
三、面板数据模型面板数据模型是计量经济学中用于分析横截面和时间序列数据的一种方法。
计量经济学计量经济学是:指通过计量工具来研究具有统计意义的经济问题的经济学科。
计量经济学的工具:数学(如优化理论,微分方程),概率与统计分析,计算机及其应用软件,数据分析等学科的相关知识。
计量经济学的研究对象:经济问题,包括各种经济现象。
经量经济学的研究目的:对所关心的经济问题做适当的经济预测,政策评估,评价或建议1.计量经济学的发展历程:经济学的一个分支学科 1926年挪威经济学家R.Frish 提出Econometrics1930年成立世界计量经济学会 1933年创刊《Econometrica 》20世纪40、50年代的大发展和60年代的扩张20世纪70年代以来非经典(现代)计量经济学的发展2.计量经济学模型的步骤:(1)、理论模型的设计 (2)、样本数据的收集 (3)、模型参数的估计(4)、模型的检验 (5)、计量经济学模型成功的三要素:理论,数据,方法3.随机误差项主要包括下列因素的影响:1)在解释变量中被忽略的因素的影响;2)变量观测值的观测误差的影响;3)模型关系的设定误差的影响; 4)其它随机因素的影响。
4.产生并设计随机误差项的主要原因:(1)理论的含糊性;2)数据的欠缺;3)节省原则。
5.参数的普通最小二乘估计(OLS )给定一组样本观测值(Xi, Yi )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares, OLS )给出的判断标准是:二者之差的平方和最小。
由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量。
6.最小二乘估计量的性质:一个用于考察总体的估计量,可从如下几个方面考察其优劣性:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。
这三个准则也称作估计量的小样本性质。
拥有这类性质的估计量称为最佳线性无偏估计量。
对计量经济学的认识和建议计量经济学是经济学领域的一个重要分支,它运用数理统计方法和经济理论分析经济现象的关系,并通过实证研究的方法来检验经济理论的有效性和原理的适用性。
以下是对计量经济学的认识和建议。
首先,认识计量经济学的重要性。
计量经济学通过建立经济模型和运用统计方法来量化经济变量之间的关系,从而提供了一种理论和实证相结合的方法来解决经济问题。
它可以帮助经济学家和决策者更好地理解和解释经济现象,提供政策制定和决策的科学依据。
其次,理解计量经济学的方法论。
计量经济学的核心是运用统计方法和经济理论来分析和解释具体的经济问题。
在进行计量经济学研究时,应该确保研究模型的严谨性和统计方法的合理性,同时,还需要注意样本数据的选择和处理,以获得可靠的研究结果。
第三,重视因果推断。
计量经济学的目标之一是通过实证研究来推断因果关系。
在进行因果关系研究时,要考虑到数据的内生性问题,使用工具变量、配对和施加倾向得分匹配等技术来控制潜在的内生性问题,并通过稳健性检验来检验结果的可信度。
第四,注重实证解释和政策建议。
计量经济学的研究应该注重对实证结果的解释和政策建议的提出。
通过对具体问题的分析,可以更好地理解并解释经济现象,为政策制定者提供决策建议,同时也为经济学理论的发展提供了新的证据和支持。
第五,持续学习和更新。
计量经济学是一个不断发展和创新的领域,新的方法和理论不断涌现。
要保持对最新研究成果的关注,关注学术期刊和会议的最新进展,并不断更新自己的知识和方法。
第六,多样化方法和视角。
计量经济学可以应用于不同领域和问题的研究,因此,应该灵活运用不同的方法和模型来研究不同的经济现象。
此外,也可以尝试与其他学科进行交叉研究,从而拓宽研究视角,提供更全面和深入的分析。
第七,强调实证结果的可复制性。
在进行计量经济学研究时,应该注意结果的可复制性。
可复制性是科学研究的基本要求,也是验证和证伪经济模型的重要依据。
因此,在研究中应该提供充分的数据和方法细节,以便他人可以重新进行实证研究并验证结果的可靠性。
计量经济学名词解释计量经济学是研究经济现象和经济理论运用数学和统计学方法进行定量分析的学科。
下面是一些计量经济学常用的名词及其解释。
1. 回归分析(Regression Analysis):回归分析是计量经济学中最常用的一种定量方法,用于研究因变量与一个或多个自变量之间的关系。
通常通过估计回归方程来进行分析,并使用统计方法评估估计结果的可信度。
2. 多元回归(Multiple Regression):多元回归是回归分析的一种扩展形式,用于研究因变量与多个自变量之间的关系。
多元回归可以更准确地解释和预测因变量,但也需要更多的数据和更复杂的统计分析。
3. 面板数据(Panel Data):面板数据是指在一段时间内对多个个体或单位进行多次观测的数据。
计量经济学通过面板数据可以分析个体间的差异和个体内部的动态变化,提供了更丰富的信息。
4. 差分法(Difference-in-Differences):差分法是一种处理定量数据的方法,用于评估某个政策或干预对于因变量的影响。
该方法通过比较干预组与非干预组的变化差异来分析干预的效果。
5. 处理选择偏误(Selection Bias):处理选择偏误是指由于个体自愿参与某个处理或实验,导致样本不代表总体的情况。
计量经济学使用各种方法来解决处理选择偏误,以确保研究结果的准确性。
6. 仪器变量(Instrumental Variables):仪器变量是一种用于解决内生性问题的方法。
在计量经济学中,内生性指的是自变量与误差项存在相关关系。
仪器变量通过引入与自变量相关但与误差项不相关的变量来解决内生性问题,提高估计结果的准确性。
7. 广义矩估计(Generalized Method of Moments,GMM):广义矩估计是一种估计模型参数的方法,它基于矩条件的经济模型,通过最大化矩条件以估计未知参数。
广义矩估计不需要对误差项分布做出强假设,适用于更广泛的经济模型。
8. 时间序列分析(Time Series Analysis):时间序列分析是研究一系列时间上连续排列的观测值的经济统计方法。
计量经济学知识点1.假设检验:在计量经济学中,研究者通常会提出一些假设,然后使用统计方法来检验这些假设的有效性。
例如,研究者可能提出一个关于变量之间关系的假设,并使用样本数据来检验这个假设是否成立。
2.回归分析:回归分析是计量经济学中一种常用的统计方法,用于分析因变量与自变量之间的关系。
通过回归分析,研究者可以确定自变量对因变量的影响程度,并进一步预测因变量的数值。
回归模型的选择和估计是计量经济学中的核心内容之一3.模型设定:在计量经济学中,研究者通常会基于对经济理论的理解来设定一个经济模型,并使用实证分析来验证模型的有效性。
模型设定是计量经济学研究的第一步,决定了后续研究的方向和方法。
4.面板数据分析:面板数据是一种具有时间序列和截面维度的数据,可以用于研究变量的动态关系。
在面板数据分析中,研究者可以使用固定效应模型或者随机效应模型来估计变量的影响。
5.工具变量法:工具变量法是计量经济学中一种常用的估计方法,用于解决内生性问题。
内生性问题是由于自变量和误差项之间的相关性而导致的估计结果不准确的问题,在工具变量法中,研究者使用一个与自变量相关但与误差项无关的变量作为工具变量来解决内生性问题。
6.时间序列分析:时间序列分析是计量经济学中研究时间序列数据的方法。
研究者可以使用时间序列模型来分析和预测经济变量的发展趋势和波动性。
常用的时间序列模型包括ARMA模型、ARIMA模型等。
7.异方差问题:异方差问题是指误差项的方差不是恒定的,而是与自变量或其他变量相关的情况。
异方差问题会导致估计结果的不准确性,在计量经济学中,研究者可以使用加权最小二乘法或者稳健标准误等方法来解决异方差问题。
8.时间序列平稳性:时间序列平稳性是指时间序列数据的均值和方差在时间上不发生系统性的变化。
平稳时间序列数据能够提供可靠的统计推断结果,因此在时间序列分析中需要对数据的平稳性进行检验。
9.效应估计方法:在计量经济学中,研究者通常会使用OLS估计法来估计参数的值。
计量经济学第一章1、什么是计量经济学计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、计量经济学的研究步骤选择变量和数学关系式——模型设定确定变量间的数量关系——估计参数检验所得结论的可靠性——模型检验作经济分析和经济预测——模型应用3、为什么要对参数进行估计一般来说参数是未知的,又是不可直接观测的。
由于随机项的存在,参数也不能通过变量值去精确计算。
只能通过变量样本观测值选择适当方法去估计。
4、模型检验的内容经济意义的检验—所估计的模型与经济理论是否相符统计推断的检验—检验参数估计值是否抽样的偶然结果,包括拟合优度检验,总体显著性检验,变量显著性检验计量经济学检验—是否符合计量经济方法的基本假定,包括异方差性检验,序列相关性检验,多重共线性检验模型预测检验—将模型预测的结果与经济运行的实际对比,包括稳定性检验,预测性能检验5、模型应用有哪些方面经济结构分析,经济预测,政策评价6、数据类型有时间数列数据(同一空间、不同时间)截面数据(同一时间、不同空间)混合数据(面板数据 Panel Data)虚拟变量数据第二章1、注意几个概念和公式Y的条件分布:当解释变量X取某固定值时(条件),Y的值不确定,Y的不同取值形成一定的分布,即Y的条件分布。
Y的条件期望:对于X的每一个取值,对Y所形成的分布确定其期望或均值,称为Y的条件期望或条件均值E(Y|Xi)公式:2、回归线:对于每一个X的取值,都有Y的条件期望E(Y|Xi)与之对应,代表这些Y的条件期望的点的轨迹所形成的直线或曲线,称为回归线。
3、回归函数:应变量Y的条件期望E(Y|Xi)随解释变量X的的变化而有规律的变化,如果把Y的条件期望E(Y|Xi)表现为X的某种函数,这个函数称为回归函数。
4、总体回归函数的概念:假如已知所研究的经济现象的总体应变量Y和解释变量X的每个观测值, 可以计算出总体应变量Y的条件均值E(Y|Xi),并将其表现为解释变量X的某种函数,这个函数称为总体回归函数(PRF)。
计量经济学主要内容计量经济学是经济学的一个重要分支,主要研究经济现象的定量分析方法和技术。
它利用数学和统计学的工具,对经济理论进行定量验证和实证分析,从而深入理解经济现象,预测经济变量,制定政策建议等。
1.线性回归模型:线性回归是计量经济学的基础,用来分析因变量与一个或多个自变量之间的关系。
模型包括单变量回归、多变量回归,以及时间序列回归等。
通过最小二乘法估计回归系数,得出各变量之间的关系。
2.假设检验与参数估计:计量经济学关注是否能够拒绝某个假设,比如回归系数是否显著不为零。
常用的假设检验有t检验、F检验等。
参数估计包括点估计和区间估计,用来衡量回归系数的精确程度。
3.多重共线性与异方差性:多重共线性指自变量之间高度相关,会影响回归结果的稳定性。
异方差性指误差项方差不恒定,可能影响参数估计的有效性。
计量经济学提供了识别和处理这些问题的方法。
4.时间序列分析:时间序列分析用于研究随时间变化的经济数据,如GDP、通货膨胀率等。
常用的时间序列模型有ARIMA模型、ARCH模型等,可以预测未来的经济变量。
5.面板数据分析:面板数据包含横截面数据和时间序列数据,可以更全面地分析经济现象。
计量经济学研究如何处理面板数据,识别面板数据模型并进行估计。
6.工具变量与因果推断:工具变量用于解决自变量与误差项相关的问题,帮助进行因果推断。
通过选择适当的工具变量,可以减少内生性问题的影响。
7.计量经济学软件与实证应用:计量经济学使用各种统计软件如Eviews、Stata、R等来进行实证研究,分析经济政策效果、市场预测等实际问题。
8.非线性模型与时间序列经济学:除了线性模型,计量经济学也研究非线性模型,如Logit、Probit模型等。
时间序列经济学关注于经济数据的趋势和周期性变动。
计量经济学知识点汇总1. 计量经济学概念
- 定义和作用
- 理论基础和研究方法
2. 数据处理
- 数据收集和探索性分析
- 异常值处理和缺失值处理
- 数据转换和规范化
3. 回归分析
- 简单线性回归
- 多元线性回归
- 回归假设和诊断
4. 时间序列分析
- 平稳性和单位根检验
- 自相关和偏自相关
- ARIMA模型和Box-Jenkins方法
5. 面板数据分析
- 固定效应模型和随机效应模型
- hausman检验
- 动态面板数据模型
6. 内生性和工具变量
- 内生性问题及其检验
- 工具变量法
- 两阶段最小二乘法
7. 离散选择模型
- 二项Logit/Probit模型
- 多项Logit/Probit模型
- 计数数据模型
8. 模型评估和选择
- 模型适合度检验
- 信息准则
- 交叉验证和预测评估
9. 计量经济学软件应用
- R/Python/Stata/EViews等软件使用 - 数据导入和清洗
- 模型构建和结果解释
10. 实证研究案例分析
- 经典文献阅读和评析
- 实证研究设计和实施
- 结果分析和政策建议
以上是计量经济学的主要知识点汇总,每个知识点都包含了相关的理论基础、模型方法和实践应用,可根据具体需求进行深入学习和研究。
1-1什么是计量经济学?它与经济学,统计学,数学的关系是怎样的?计量经济学是在经济理论的指导下,根据实际观测的统计数据,运用数学和统计学的方法,借助计算机技术从事经济关系和经济数量规律的研究,并以建立和应用计量经济模型为核心的一门经济学科。
简单地说,计量经济学是经济学、统计学和数学三科结合而成的交叉型学科。
计量经济模型建立的过程,是综合应用经济理论、统计和数学方法的过程,经济学为其提供理论基础,数学为其提供研究方法。
理论模型的设定和样本数据的收集是直接以经济理论为依据,建立在对研究对象的透彻认识的基础上的,而参数模型的估计和有效性的检验则是统计学和数学方法在经济研究中的具体应用。
没有理论模型和样本数据,统计学和数学方法将无法发挥作用的对象和原料,反过来如果没有统计学和数学提供的方法,原料将无法成为产品。
因此计量经济学广泛涉及了经济学、统计学、数学这三科的理论、原则、方法。
缺一不可。
1-4、建立与应用计量经济学模型的主要步骤有哪些?计量经济学模型主要有哪些应用领域?(1)、设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;估计模型参数;检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
(1)、结构分析,即研究一个或者几个经济变量发生变化及结构参数的变动对其他变量以至整个经济系统产生何种影响。
其原理是:弹性分析、乘数分析和比较静力分析;经济预测,即进行中短期经济的因果预测。
其原理是:模拟历史,从已经发生的经济活动中找出变化规律;政策评价,即利用计量经济学模型定量分析政策变量变化对经济系统运行的影响,是对不同政策执行情况的“模拟仿真”;检验与发展经济理论,即利用计量经济学模型和实际统计资料实证分析某个理论假说正确与否。
其原理是:如果按照某种经济理论建立的计量经济学模型可以很好地拟合实际观察数据,则意味着该理论是符合客观事实的,否则,则表明该理论不能解释客观事实。
第八章 虚拟变量一、单选题:1、虚拟变量模型i i i D Y μβα++=中,i Y 为居民的年可支配收入,i D 为虚拟解释变量,i D =1代表城镇居民,i D =0代表非城镇居民。
当i μ满足古典假设时,则α==)0|(i i D Y E 表示( B )A 、城镇居民的年平均收入,B 、非城镇居民的年平均收入,C 、所有居民的年平均收入,D 、其他;2、虚拟变量模型i i i D Y μβα++=中,i Y 为居民的年可支配收入,i D 为虚拟解释变量,i D =1代表城镇居民,i D =0代表非城镇居民。
当i μ满足古典假设时,则βα+==)1|(i i D Y E 表示( A )A 、城镇居民的年平均收入,B 、非城镇居民的年平均收入,C 、所有居民的年平均收入,D 、其它;3、在没有定量解释变量的情形下,以加法形式引入虚拟解释变量,主要用于( C )。
A 、共线性分析, B 、自相关分析, C 、方差分析 , D 、其它4、如果你有连续几年的月度数据,如果只有2、4、6、8、10、12月表现季节类型,则需要引入虚拟变量的个数是( B )。
A 、模型中有截距项时,引入12个,B 、模型中有截距项时,引入5个C 、模型中没有截距项时,引入11个,D 、模型中没有截距项时,引入12个 5、下列不属于常用的虚拟变量模型是( D );A 、解释变量中只包含虚拟变量,B 、解释变量中既含定量变量又含虚拟变量,C 、被解释变量本身为虚拟变量的模型,D 、解释变量和被解释变量中不含虚拟变量。
6、考虑虚拟变量模型:i i i X D D D Y μβαααα+++++=3322110,其中⎩⎨⎧=其他一季度011D ⎩⎨⎧=其他二季度012D ⎩⎨⎧=其他三季度013D ,当其随机扰动项服从古典假定时,则下列回归方程中表示一季度的是:( B ) A 、i i i X D D D X Y E βαα++====)()0,1,|(20312 B 、i i i X D D D X Y E βαα++====)()0,1,|(10321 C 、i i i X D D D X Y E βαα++====)()0,1,|(30213 D 、i i i X D D D X Y E βα+====0321)0,|(7、在含有截距项的分段线性回归分析中,如果只有一个属性变量,且其有三种类型,则引入虚拟变量个数应为( B )A 、 1个,B 、 2个,C 、3个,D 、4个; 8、某商品需求函数为u x b b y ii i ++=10,其中y 为需求量,x 为价格。
为了考虑“地区”(农村、城市)和“季节”(春、夏、秋、冬)两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为( B )。
A.2B.4C.5D.6 9、根据样本资料建立某消费函数如下:tt t X D C 45.035.555.100ˆ++=,其中C 为消费,x 为收入,虚拟变量⎩⎨⎧=农村家庭城镇家庭01D ,所有参数均检验显著,则城镇家庭的消费函数为( A )。
A 、t t X C 45.058.551ˆ+=B 、 t t XC 45.005.001ˆ+= C 、t tX C 35.5550.100ˆ+= D 、 tt X C 35.5595.100ˆ+= 10、对于模型i i i X Y μββ++=10,为了考虑“地区”因素(北方、南方),引入2个虚拟变量形成截距变动模型,则会产生( C )。
A.序列的完全相关B.序列的不完全相关C.完全多重共线性D.不完全多重共线性11、设消费函数为i i i D X D Y μββαα++++=1010,其中虚拟变量⎩⎨⎧=农村家庭城镇家庭01D ,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为( A )。
A 、01=α ,01=βB 、01=α ,01≠βC 、01≠α ,01=βD 、01≠α ,01≠β12、设消费函数i i i X D Y μβαα+++=110,其中虚拟变量⎩⎨⎧=北方南方01D ,如果统计检验表明10=α成立,则北方的消费函数与南方的消费函数是( A )。
A.相互平行的B.相互垂直的C.相互交叉的D.相互重叠的13、假定月收入水平在1000元以内时,居民边际消费倾向维持在某一水平,当月收入水平达到或超过1000元时,边际消费倾向将明显下降,则描述消费(C )依收入(I )变动的线性关系宜采用( D )。
A 、t t t tDI I C μββα+++=210 ⎩⎨⎧≥<=1000110000I I D B 、 t t t I D C μββα+++=210 ⎩⎨⎧≥<=1000110000I I D C 、t t t I I C μβα+-+=*)(10 1000=*ID 、t tt t D I I I C μββα+-++=*)(210 D 、*I 同上二、多选题:1、计量经济模型中,加入虚拟变量的途径有那几种;( ABD )A 、加法类型,B 、加法和乘法的组合,C 、减法型,D 、乘法型;2、如果你有连续几年的月度数据,为检验一年12个月份是否都表现季节类型,需要引入虚拟变量的个数是( BD )。
A 、模型中有截距项时,引入3个,B 、模型中有截距项时,引入11个C 、模型中没有截距项时,引入4个,D 、模型中没有截距项时,引入12个 3、以乘法形式引入虚拟解释变量的主要作用是( ABC )A 、比较两个回归模型,B 、分析因素间的交互影响,C 、提高模型对现实经济现象的描述精度,D 、方差分析4、以乘法形式引入虚拟变量做回归模型的比较和结构变化检验有下列优点( BCD )A 、合并了的回归减少了自由度,B 、用一个回归替代了多个回归,简化了分析过程,C 、可以方便地对模型的差异做各种假设检验,D 、合并了的回归增加了自由度,提高了参数估计的精确性。
5、下列有关分段回归中,其中正确的是( ABD )A 、各段回归函数的截距不同,B 、各段回归函数的斜率不同,C 、如果分为K 段,则可用K 个虚拟变量。
D 、如果分为K 段,则可用K-1个虚拟变量三、简答题1、虚拟变量数量的设置规则是什么?若定性因素有m 个相互排斥的类型(或属性、水平),在有截距项的模型中只能引入m-1个虚拟变量,否则会产生完全的多重共线性。
在无截距项的模型中,定性因素有m 个相互排斥的类型时,引入m 个虚拟变量不会导致完全多重共线性。
2、虚拟变量的作用是什么?1)、可以作为属性因素的代表。
2)、作为某些非精确计量的数量因素的代表。
3)、作为某些偶然因素或政策因素的代表。
4)、作为时间序列分析中季节(月份)的代表。
5)、实现分段回归,研究斜率、截距的变动,或比较两个回归某些的结构差异。
3、虚拟变量0和1的选择原则是什么?应从分析问题的目的出发予以确定。
从理论上讲,虚拟变量取“0”,通常代表基础类型;虚拟变量取“1”,通常代表与基础类型相比较的类型。
四、判断题1、对定性变量的量化可采用虚拟变量的方式实现; ( √ )2、虚拟变量除了取0或1外,还可研究问题的需要取其它值,例如3或4等。
( √ )3、回归模型中,虚拟变量的引入数量,要根据定性变量的个数、每个定性变量的类型及有无截距项来确定。
( √ ) 4、如果两个回归模型的截距对应相等,则称之为同截距回归。
( × ) 5、如果两虚拟变量乘积的参数为正,则它们的交互效应是显著的。
( × )五、论述分析题1、一个由容量为209的样本估计的解释CEO 薪水的回归方程32121283.0181.0158.0011.0257.059.4ˆD D D X LnX Y Ln -++++= t= (15.3) (8.03) (2.75) (1.775) (2.130) (-2.895)其中,Y 表示年薪水平(单位:万元),1X 表示年收入(单位:万元),2X 表示公司股票收益(单位:万元);1D 、2D 和3D 均为虚拟变量,分别表示金融业、消费品工业和公用事业。
假设对比产业为交通运输业。
(1)、解释三个虚拟变量参数的经济含义;(1)年薪水平的参数的经济含义为:当销售收入与公司股票收益保持不变时,金融业的CEO 要比交通运输业的CEO 多获薪水15.8个百分点。
其他两个可类似解释。
(2)保持1X 和2X 不变,计算公用事业和交通运输业之间估计薪水的近似百分比差异。
这个差异在1%的显著水平上是统计显著的吗?公用事业和交通运输业之间估计薪水的近似百分比差异就是以百分数解释的公用事业的参数,即为28.3%。
由于参数的t 统计值为-2.895,它大于1%显著性水平下自由度为203的t 分布的临界值1.96,因此这种差异是统计上显著的。
2、 Sen 和Srivastava (1971)在研究贫富国之间期望寿命的差异时,利用101个国家的数据,建立了如下的回归模型:2.409.39ln3.36((ln 7))i i i i Y X D X =-+--(4.37) (0.857) (2.42) R 2=0.752其中:X 是以美元计的人均收入;Y 是以年计的期望寿命;Sen 和Srivastava 认为人均收入的临界值为1097美元(ln10977=),若人均收入超过1097美元,则被认定为富国;若人均收入低于1097美元,被认定为贫穷国。
括号内的数值为对应参数估计值的t-值。
(1)解释这些计算结果。
(1)由ln 1 2.7183X X =⇒=,也就是说,人均收入每增加2.7183倍,平均意义上各国的期望寿命会增加9.39岁。
若当为富国时,1i D =,则平均意义上,富国的人均收入每增加2.7183倍,其期望寿命就会减少3.36岁,但其截距项的水平会增加23.52,达到21.12的水平。
但从统计检验结果看,对数人均收入lnX 对期望寿命Y 的影响并不显著。
方程的拟合情况良好,可进一步进行多重共线性等其他计量经济学的检验。
(2)回归方程中引入()ln 7i i D X -的原因是什么?如何解释这个回归解释变量?若1i D =代表富国,则引入()ln 7i i D X -的原因是想从截距和斜率两个方面考证富国的影响,其中,富国的截距为()2.40 3.36721.12-+⨯=,斜率为()9.39 3.36 6.03-=,因此,当富国的人均收入每增加2.7183倍,其期望寿命会增加6.03岁。
(3)如何对贫穷国进行回归?又如何对富国进行回归?(3)设定10i D ⎧=⎨⎩若为贫穷国若为富国,对于贫穷国,)7(ln 36.3ln 39.940.2ˆ--+-=i i i X X Y ; 对于富国,回归模型形式:ii X Y ln 39.940.2ˆ+-=。