单相桥式全控整流电路

  • 格式:doc
  • 大小:354.50 KB
  • 文档页数:7

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 单相桥式全控整流电路(阻-感性负载)

单相桥式全控整流电路电路结构(阻-感性负载)

单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。单相桥式全控整流电路(阻-感性负载)电路图如图1所示

图1. 单相桥式全控整流电路(阻-感性负载)

单相桥式全控整流电路工作原理(阻-感性负载)

1)在u2正半波的(0~α)区间:

晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。2)在u2正半波的ωt=α时刻及以后:

在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b →Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3)在u2负半波的(π~π+α)区间:

当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。在

电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

4)在u2负半波的ωt=π+α时刻及以后:

在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

单相桥式全控整流电路仿真模型(阻-感性负载)

单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:

图2 单相双半波可控整流电路仿真模型(阻-感性负载)

电源参数,频率50hz,电压100v,如图3

图3.单相桥式全控整流电路电源参数设置

VT1,VT4脉冲参数,振幅3V,周期,占空比10%,时相延迟α/360*,如图4

图4. 单相桥式全控整流电路脉冲参数设置

VT2,VT3脉冲参数,振幅3V,周期,占空比10%,时相延迟(α+180)/360*,

如图5

图5. 单相桥式全控整流电路脉冲参数设置单相桥式全控整流电路仿真参数设置(阻-感性负载)

设置触发脉冲α分别为30°、60°、90°、120°。与其产生的相应波形分别如图6、图7、图8、图9。在波形图中第一列波为流过VT1的电流波形,第二列波为流过VT1的电压波形,第三列波流过 VT3的电流波形,第四列波为流过VT3的电压波形,第五列波为流过过负载电流波形波形,第六列波为流过过负载电压波形波形。

(1)当延迟角α=30°时,波形图如图6所示:

图6 α=30°单相桥式全控整流电路(电阻性负载)波形图

(2)当延迟角α=60°时,波形图如图7所示:

图7 α=60°单相桥式全控整流电路(电阻性负载)波形图

(3)当延迟角α=90°时,波形图如图8所示:

图8 α=90°单相桥式全控整流电路(电阻性负载)波形图(4)当延迟角α=120°时,波形图如图9所示:

图9 α=120°单相桥式全控整流电路(电阻性负载)波形图

单相桥式全控整流电路小结(阻-感性负载)

单相桥式全控整流电路(电阻性负载)一共采用了四个晶闸管,VT1,VT2两只晶闸管接成共阳极,VT3,VT4两只晶闸管接成共阴极,当u2在(0~α)晶闸管VT1和VT4承受正向电压,但是没有触发脉冲晶闸管没有导通。在(α~π)VT1和VT4承受正向电压,有触发脉冲晶闸管VT1,VT4导通。当u2在(π~π+α)闸管VT2和VT3承受正向电压,但是没有触发脉冲晶闸管没有导通。在(π+α~2π)VT2和VT3承受正向电压,有触发脉冲晶闸管VT2, VT3导通。与单相半波整流电路仿真波形相比较,输出的电压和电流波形频率都提高了约一倍,流过每个晶闸管的平均电流Idt只有负载平均电流的一半。变压器二次侧电流I2的波形是对称的正负矩形波,而晶闸管承受的最大正反向电压则和单相半波可控整流电流一样。