当前位置:文档之家› 科学和工程计算复习题及答案

科学和工程计算复习题及答案

科学和工程计算复习题及答案
科学和工程计算复习题及答案

科学与工程计算基础复习题

一、 填空题:

1. 评价一个数值计算方法的好坏主要有两条标准:

2. 计算机计费的主要依据有两项:一就是使用中央处理器(CPU)的时间,主要由

算数运算的次数决定;二就是占据存储器的空间, 3. 用计算机进行数值计算时,

4. 对于某个算法,若输入数据的误差在计算过程中迅速增长而得不到控制,则称该算法就是

5. 函数求值问题()x f y =的条件数定义为:)

()())(()(x f x f x x f cond x C '=

=

6. 单调减且有 下界 的数列一定存在极限; 单调增且有 上界 的数

列一定存在极限、 7. 方程实根的存在唯一性定理:设],[)(b a C x f ∈且0)()(

()

b a ,∈ξ使()0=ξf 、当()x f '在()b a ,,方程在[]b a ,内有唯一的

实根、

8. 函数()y x f ,在有界闭区域D 上对y 满足Lipschitz 条件,就是指对于D 上的任意一对点

()1,y x 与()2,y x 成立不等式:

2121),(),(y y L y x f y x f -≤-、其中常数L 只依赖于

区域D 、 9. 设n i R

A i n

n ,,2,1,,Λ=∈?λ为其特征值,则称i n

i A λρ≤≤=1max )(为矩阵A 的谱半径、

10. 设1

-A 存在,则称数A A A cond 1)(-=为矩阵A 的条件数,其中?就是矩阵的算子范

数、

11. 方程组f x B x ρρρ+=,对于任意的初始向量()

0x ρ与右端项f ρ,迭代法()()f x B x

k k ρρρ+=+1收敛的充分必要条件就是选代矩阵B 的 谱半径1)(

()x f

n 1+在开区间()b a ,上存在、若

{}

n

i i x 0

=为[]b a ,上的1+n 个互异插值节点,并记()()∏=+-=

n

i i

n x x x 0

1ω,则插值多项式

()()

()()()∑

=++'-=n

k k n

k n k n x x x x x f x L 0

11ωω的余项为)()!1()()()()(1)1(x n f x L x f x R n x n n n +++=-=ωξ,其中),()(b a x x ∈=ξξ、

13. 若函数组

(){}[]b a C x n k k ,0

?=?满足???

=≠≠=l

k l

k l k ,0,0),(?? k,l =0,1,2,…,n ,则称

(){}n

k k x 0=?为正交函数序列、 14. 复化梯形求积公式

?

∑??

?

???+++=≈-=b

a

n k n b f kh a f a f h f T dx x f 1

1)()(2)(2)()(,

其余项为),(),(12

)(2

b a f h a b R n

T

∈''--=ηη

15. 复化Simpson 求积公式

?

∑∑?

?

?

???++++++=≈-=-=b

a

n k n k n b f kh a f h k a f a f h f S dx x f 101

1)()2(2))12((4)(3)()(,其余项为),(),(180

)()

4(4b a f h a b R n

S

∈--=ηη

16. 选互异节点n x x x ,,,10Λ为Gauss 点,则Gauss 型求积公式的代数精度为

2n+1 、

17. 如果给定方法的局部截断误差就是()

1

1++=p n h O T ,其中1≥p 为整数,则称该方法就是

P 阶的或具有P 阶精度 、

18. 微分方程的刚性现象就是指快瞬态解严重影响 数值解的稳定性与精度 ,给数

值计算造成很大的实质性困难的现象、 19. 迭代序列{}[]b a x k k ,0?∞

=终止准则通常采用

1

1k k k

x x x ε--<+,其中的0>ε为 相对误差

20.二、 选择题

1、 下述哪个条件不就是能使高斯消去法顺利实现求解线性代数方程组()

,ij

n n

Ax b A a ?==的充分条件? ( D )

A 、 矩阵A 的各阶顺序主子式均不为零;

B 、 A 对称正定;

C 、 A 严格对角占优;

D 、 A 的行列式不为零、

2、 高斯消去法的计算量就是以下述哪个数量级的渐近速度增长的? ( B ) A 、

313n ; B 、 323n ; C 、 314n ; D 、 33

4

n 、 3、 对于任意的初始向就是()

0x 与右端项f ,求解线性代数方程组的迭代法()

()1k k

x

Bx f

+=+

收敛的充分必要条件就是( A )、 A 、

()1B ρ<; B 、 1B <; C 、 ()det 0B ≠; D 、 B 严格对角占优、

4、 下述哪个条件不就是能使求解线性代数方程组()

,ij

n n

Ax b A a ?==的Gauss-Seidel 迭代

法收敛的充分条件? ( C )

A 、 A 为严格对角占优阵;

B 、 A 为不可约弱对角占优阵;

C 、 A 的行列式不为零;

D 、 A 为对称正定阵、

5、 设()[]2,f x C a b =,并记()2max a x b

M f x ≤≤''=,则函数()f x 的过点

()()()(),,,a f a b f b 的线性插值余项()1

R x ,[],x a b ?∈满足( A )、

A 、 ()()2218M R x b a ≤

-; B 、 ()()2

218M R x b a <-; C 、 ()()2216M R x b a ≤-; D 、 ()()2

216

M R x b a <-、

6、 设()n x ?就是在区间[],a b 上带权()x ρ的首项系数非零的n 次正交多项式()1n ≥,则

()n x ?的n 个根( A )、

A 、 都就是单实根;

B 、 都就是正根;

C 、 有非负的根;

D 、 存在重根

7、 Legendre 多项式就是( )的正交多项式、( B )

A 、 区间[]1,1-上带权()

x ρ=

B 、 区间[]1,1-上带权()1x ρ=;

C 、 区间[],-∞∞上带权()2

x x e ρ-=; D 、 区间[]0,1上带权()1x ρ=

8、 离散数据的曲线拟合的线性最小二乘法的Gram 矩阵与( D )无关?

A 、 基函数()

{}

n k k x ?=; B 、 自变量序列{}0m

i i x =;

C 、 权数{}0m

i i w =; D 、 离散点的函数值{}0m

i i y =、 9、 Simpson 求积公式的余项就是( B )、

A 、 ()()()3,,12h R f f a b ηη''=-∈;

B 、 ()()

()()54,,90h R f f a b ηη=-∈; C 、 ()()

()()2,,12

h b a R f f a b ηη-''=-∈; D 、 ()()()()()44,,90h b a R f f a b ηη-=-

∈ 10、 n 个互异节点的Gauss 型求积公式具有( D )次代数精确度、

A 、 n ;

B 、 1n +;

C 、 21n +;

D 、 21n -、 11、 一阶导数的数值计算公式中,中心差商公式的精度为( B )、 A 、 ()O h ; B 、 ()2

O h

; C 、 ()2

o h ; D 、 ()32

O h 、

12、 对于用插值法建立的数值求导公式,通常导数值的精确度比用插值公式求得的函数值的

精度( B )、

A 、 高; B, 低; C 、 相同; D 、 不可比、

13、 在常微分方程初值问题的数值解法中, 梯形公式就是显式Euler 公式与隐式Euler 公式

的( A )、

A 、 算术平均;

B 、 几何平均;

C 、 非等权平均;

D 、 与、 14、 当( B )时,求解(),0y y λλ'=<的显式Euler 方法就是绝对稳定的、 A 、 11h λ-≤≤; B 、 20h λ-≤≤; C 、 01h λ≤≤; D 、 22h λ-≤≤ 15、 求解(),0y y λλ'=<的经典R-K 公式的绝对稳定条件就是( C ): A.20h λ-≤≤; B 、

()2

112

h h λλ++

≤;

C 、

()()()2

3

4

112

3!

4!

h h h h λλλλ++

+

+

≤; D 、

()()2

2

121211212

h h h h λλλλ++≤-+、

16、 在非线性方程的数值解法中,只要()()

***1,()x x x ??'≠=,那么不管原迭代法

()()1,0,1,2,k k x x k ?+==L 就是否收敛,由它构成的Steffensen 迭代法的局部收敛的阶

就是( D )阶的、

A 、 1;

B 、 0;

C 、 2<;

D 、 2≥、

17、 在非线性方程的数值解法中,Newton 迭代法的局部收敛的阶就是( D )阶的、 A 、 1; B 、 0; C 、 2<; D 、 2≥、

18、 在非线性方程的数值解法中,离散Newton 迭代法的局部收敛的阶就是( C )阶的、

A 、 1;

B 、

;

C 、

12

; D 、 2、 19、 在求解非线性方程时,迭代终止准则通常采用( A ),其中的0ε>为给定的相对误差

容限、

A 、 11k k k x x x ε--<+;

B 、 1k k k x x x ε--<;

C 、 1k k x x ε--<;

D 、 1

1

1k k k x x x ε---<+、

20、 在求解非线性方程组时,加进阻尼项的目的,就是使线性方程组的( C )、 A 、 系数矩阵非奇异; B 、 系数矩阵的行列式不等于零; C 、 系数矩阵非奇异并良态; D 、 系数矩阵可逆、

三、 判断题

1. 在用计算机求数学问题的数值解就就是构造算法的构造问题、( × )

2. 用计算机进行数值计算时,所有的函数都必须转化成算术运算;在作加减法时,应避免接

近的两个数相减;在所乘除法时,计算结果的精度不会比原始数据的高、( √ ) 3. 用计算机作加减法时,交换律与结合律成立、( × ) 4. 单调减且有下界的数列一定存在极限。(√ )

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

计算方法试题

计算方法考试题(一) 满分70分 一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nn a a a diag D =,若对角阵D 非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 1 1)(--++=(1) 若记b D f U L D B 111 1),(--=+= (2) 则方程组(1)的迭代形式可写作 ) 2,1,0(1 )(1)1( =+=+k f x B x k k (3) 则(2)、(3)称 【 】 (A)、雅可比迭代。(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。 2、记*x x e k k -=,若0lim 1≠=+∞→c e e p k k k (其中p 为一正数)称序列}{k x 是 【 】 (A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。 3、牛顿切线法的迭代公式为 【 】 (A)、 ) () (1k x f x f x x k k k '- =+ (B)、 )()())((111--+--- =k k k k k k k x f x f x x x f x x 1 )() ()1()()()(x x f x f x f k i k i k i ??+=+ (D)、 )() ()()1(k k k x f x x -=+ 二、填空题:(共2道小题,每个空格2分,共10分) 1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商 ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿 插值多项式为 2、 用二分法求方程 01x x )x (f 3 =-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间 为 。 三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分) 1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。试分别指出试用抛物插值计算115的近似值,并估计截断误差。 3、确定系数101,,A A A -,使求积公式 ) ()0()()(101h f A f A h f A dx x f h h ++-≈? -- (1) 具有尽可能高的代数精度,并指出所得求积公式的代数精度。

地方时计算方法及试题精选

关于地方时的计算 一.地方时计算的一般步骤: 1.找两地的经度差: (1)如果已知地和要求地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)如果已知地和要求地不同是东经或西经,则: 经度差=两经度和(和小于180°时) 或经度差=(180°—两经度和)。(在两经度和大于180°时) 2.把经度差转化为地方时差,即: 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系,加减地方时差,即:要求点在已知点的东方,加地方时差;如要求点在已知点西方,则减地方时差。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。即:度数大的在东。 (2)是西经,度数越大越靠西。即:度数大的在西。 (3)一个东经一个西经,如果和小180°,东经在东西经在西;如果和大于180°,则经度差=(360°—和),东经在西,西经在东;如果和等于180,则亦东亦西。 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方, 所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方 8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。所以B点的地方时为8:00+12小时=20:00或8:00—12小时,不够减,在日期中借一天24小时来,即24小时 +8:00—12小时=20:00。 2、变化点计算 【例1】一架飞机于10月1日17时从我国上海(东八区)飞往美国旧金山(西八区),需飞行14小时。到达目的地时,当地时间是() A. 10月2日15时 B. 10月2日3时 C. 10月1日15时 D. 10月1日3时

2016华工计算机计算方法(数值分析)考试试卷_共4页

考完试了,顺便把记得的题目背下来,应该都齐全了。我印象中也就只有这些题,题 目中的数字应该是对的,我也验证过,不过也不一定保证是对的,也有可能我也算错了。 还有就是试卷上面的题目可能没有我说的这么短,但是我也不能全把文字背下来,大概意 思就是这样吧。每个部分的题目的顺序可能不是这样,但总体就是这四大块。至于每道题 目的分值,我记得的就写出来了,有些题目没注意。我题目后面写的结果都是我考试时算 出来的,考完了也懒得验证了,可能不一定对,自己把握吧,仅供参考。 华南理工大学2016计算机计算方法(数值分析)考试试卷 一填空题(16分) 1.(6分)X* = 3.14,准确值x = 3.141592,求绝对误差e(x*) = ,相对误差e r(x*) = ,有效数位是。 2.(4分)当插值函数的n越大时,会出现龙格现象,为解决这个问题,分段函数不一个 不错的办法,请写出分段线性插值、分段三次Hermite插值和三次样条插值各自的特点。 3.(3分)已知x和y相近,将lgx – lgy变换成可以使其计算结果更准确。 4.(3分)已知2x3 – 3x2 +2 = 0,求牛顿迭代法的迭代式子。 解题思路:1. 这里的绝对误差和相对误差是没有加绝对值的,而且要注意是用哪个数减去哪个数得到的值,正负号会不一样;2. 可以从它们函数的连续性方面来说明;3. 只要满足课本所说的那几个要求就可以;这个记得迭代公式就可以直接写,记不住可以自己推导, 就是用泰勒展开式来近似求值得到的迭代公式。 我最终的结果是: 1.-0.001592 -0.000507 3 2.分段线性插值保证了插值函数的连续性,但是插值函数的一次导数不一定连续; 分段三次Hermite既保证了插值函数的连续性,也保证了其一次导数的连续性; 三次样条插值保证了插值函数及其一次导数和二次导数的连续性 3.lg(x/y) 4.x k+1 = x k – (2x3 – 3x2 +2)/(6x2 -6x) 二计算题(64分) 1.已知f(x) = x3 –x -1,用对分法求其在[0 , 2]区间内的根,误差要满小于0.2,需要对分多 少次?请写出最后的根结果。 解题思路:每次求区间的中值并计算其对应的函数值,然后再计算下一个区间中值及函数值,一直到两次区间中值的绝对值小于0.2为止。 我最终算得的对分次数是4,根的结果为11/8. 2.根据以下数据回答相应问题: x-2045 y51-31 (1)请根据以上数据构造Lagrange三次插值函数; (2)请列出差商表并写出Newton三次插值函数。 解题思路:(1) 直接按照书本的定义把公式列出来就可以了,这个要把公式记住了才行,不然也写不了;(2)差商表就是计算Newton三次插值函数过程中计算到的中间值及结

计算方法习题

《计算方法》练习题一 练习题第1套参考答案 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( 2 10- )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( ))((!2) (b x a x f --''ξ ) 。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P (5 2 )。 4.乘幂法是求实方阵(按模最大 )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( ]0,2[-)。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε(C )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( A )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( C ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有(B )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( C ). A .)(h o B.)(2 h o C.)(3 h o D.)(4 h o 三、计算题 1.求矛盾方程组:??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2 212 212 2121)2()42()3(),(--+-++-+=x x x x x x x x ?, 由 0,021=??=??x x ? ?得:???=+=+9 629232121x x x x , 解得14 9 ,71821== x x 。

计算方法试题

计算方法试题 1.有效数字位数越多,相对误差越小。() 2.若A是n×n阶非奇异阵,则必存在单位下三角阵L和上三角阵U,使A=LU唯一成立。() 3.当时,型求积公式会产生数值不稳定性。() 4.不适合用牛顿-莱布尼兹公式求定积分的情况有的原函数不能用有限形式表示。() 5.中矩形公式和左矩形公式具有1次代数精度。() 1.数的六位有效数字的近似数的绝对误差限是() 2.用二分法求方程在区间[0,1]内的根,进行一步后根的所在区间为()。 3.求解线性代数方程组的高斯-赛德尔迭代格式为( ) 4.已知函数在点=2和=5处的函数值分别是12和18,已知,则()。 5.5个节点的牛顿-柯特斯求积公式的代数精度为()。 1.不是判断算法优劣的标准是()。 A、算法结构简单,易于实现 B、运算量小,占用内存少 C、稳定性好 D、计算误差大 2.计算(),取,采用下列算式计算,哪一个得到的结果最好? ()。 A、 ()B、99-70C、D、 () 3.计算的Newton迭代格式为()。 A、B、C、D、4.雅可比迭代法解方程组的必要条件是()。 A、A的各阶顺序主子式不为零 B、 C、,,,, D、

5.设求方程的根的切线法收敛,则它具有()敛速度。 A、线性 B、超越性 C、平方 D、三次 6.解线性方程组的主元素消元法中选择主元的目的是()。 A、控制舍入误差 B、减小方法误差 C、防止计算时溢出 D、简化计算 7.设和分别是满足同一插值条件的n次拉格朗日和牛顿插值多项式,它们的插值余项分别为和,则()。 A、, B、, C、, D、, 8.求积公式至少具有0次代数精度的充要条件是:() A、B、 C、D、 9.数值求积公式中Simpson公式的代数精度为()。 A、0B、1 C、2D、3 10.在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 A、B、C、D、 1.简述误差的四个来源。(10分) 2.简述分析法对的根进行隔离的一般步骤。 1.已知方程有一个正根及一个负根。 a)估计出有根区间; b)分别讨论用迭代公式求这两个根时的收敛性; c)如果上述格式不迭代,请写出一个收敛的迭代格式。(不需要证明)

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

计算方法试题库讲解

计算方法 一、填空题 1.假定x ≤1,用泰勒多项式?+??+++=! !212n x x x e n x ,计算e x 的值,若要求截断误差不超过0.005,则n=_5___ 2. 解 方 程 03432 3=-+x -  x x 的牛顿迭代公式 )463/()343(121121311+--+--=------k k k k k k k x x x x x x x 3.一阶常微分方程初值问题 ?????= ='y x y y x f y 0 0)() ,(,其改进的欧拉方法格式为)],(),([21 1 1 y x y x y y i i i i i i f f h +++++= 4.解三对角线方程组的计算方法称为追赶法或回代法 5. 数值求解初值问题的四阶龙格——库塔公式的局部截断误差为o(h 5 ) 6.在ALGOL 中,简单算术表达式y x 3 + 的写法为x+y ↑3 7.循环语句分为离散型循环,步长型循环,当型循环. 8.函数)(x f 在[a,b]上的一次(线性)插值函数= )(x l )()(b f a b a x a f b a b x --+-- 9.在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值————如线性插值和抛物插值,这就是所谓分段插值法 10、数值计算中,误差主要来源于模型误差、观测误差、截断误差和舍入误差。 11、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。 12、算式2 cos sin 2x x x +在ALGOL 中写为))2cos()(sin(2↑+↑x x x 。 13、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()2334912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

《计算方法》期末考试试题

一 选 择(每题3分,合计42分) 1. x* = ,取x =,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(0 C 、f (a )f (b )<0 D 、f (a )f (b )>0 14. 由4个互异的数据点所构造的插值多项式的次数至多是____。

《计算方法》模拟试题3

模拟试卷三 一、 单项选择题(每小题3分,共15分) 1. 以下误差公式不正确的是( ) A .()1212x x x x ?-≈?-? B .()1212x x x x ?+≈?+? 2. 已知等距节点的插值型求积公式 ()()3 5 2 k k k f x dx A f x =≈∑?,那么3 k k A ==∑( ) A .1 B. 2 C. 3 D. 4 3. 辛卜生公式的余项为( ) A .()()3 2880 b a f η-''- B .()()3 12 b a f η-''- C .()()()5 4 2880 b a f η-- D .()( ) ()4 52880 b a f η-- 4.对矩阵4222222312A -?? ??=-????--?? 进行的三角分解,则u 22 =( ) 5. 用一般迭代法求方程()0f x =的根,将方程表示为同解方程()x x ?=的,则()0f x = 的根是( ) A . y x =与()y x ?=的交点 B . y x =与与x 轴的交点的横坐标的交点的横坐标 C . y x =与()y x ?=的交点的横坐标 D . ()y x ?=与x 轴的交点的横坐标 二、 填空题(每小题3分,共15分) 1. 2. 3. 龙贝格积分法是将区间[],a b 并进行适当组合而得出的积分近似值的求法。

4.乘幂法可求出实方阵A 的 特征值及其相应的特征向量. 5. 欧拉法的绝对稳定实区间为 。 三、 计算题(每小题12分,共60分) 1. 已知函数2 1 1y x = +的一组数据: 求分段线性插值函数,并计算()1.5f 的近似值. 2. 求矩阵101010202A -????=????-?? 的谱半径. 3. 已知方程组 123210113110121x x x ????????????=-?????????????????? (1) 证明高斯-塞德尔法收敛; (2) 写出高斯-塞德尔法迭代公式; (3) 取初始值() ()00,0,0T X =,求出()1X 。 4. 4n =时,用复化梯形与复化辛卜生公式分别计算积分 1 20 4 x dx x +? . 5. 用改进平方根法求解方程组1233351035916591730x x x ????????????=?????????????????? 四.证明题(每小题5分,共10分) 证明向量X 的范数满足不等式 (1)2 X X ∞ ∞≤≤ (2)111 X X X n ∞ ≤≤

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

文本预览
相关文档 最新文档