专升本高等数学考试题及答案1
- 格式:doc
- 大小:330.00 KB
- 文档页数:7
专升本高等数学(一)考试真题及参考答案
专升本高等数学(一)考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B 参考答案:A 参考答案:B
参考答案:A
二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题
第22题第23题第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题第28题。
专升本高数试题及答案一、选择题1.已知函数f(x)=log₁₀(2x-1),则f(2)的值为多少?A) 0B) 1C) log₁₀3D) log₁₀2答案:D2.若f(x)在点x=a处可导,且f'(a)=3,则f(x)在点x=a处的切线斜率为多少?A) 3B) aC) f(a)D) 0答案:A3.已知集合A={1,2,3,4},集合B={3,4,5,6},则A∪B的结果为:A) {1,2,3,4,5,6}B) {1,2,3,4}C) {1,2,5,6}D) {3,4,5,6}答案:A二、计算题1.计算limₓ→∞(3x³+2x²-5x+1)的值。
答案:无穷大2.已知函数f(x)=x²+2x+1,求f'(x)的值。
答案:f'(x)=2x+23.已知三个数的平均值为85,其中两个数为60和90,求第三个数的值。
答案:第三个数的值为95三、证明题证明:对于任意实数x,若x²=x,则x=0或x=1。
证明:假设x²=x,则将方程两边移项得到x²-x=0,再因式分解得到x(x-1)=0,根据零乘法,得到x=0或x-1=0,即x=0或x=1。
由此可证明对于任意实数x,若x²=x,则x=0或x=1。
四、应用题某公司员工工资调整规则如下:每个员工的基本工资为3000元,年龄每增加1岁,工资增加50元;工龄每增加1年,工资增加100元。
现有一名员工,年龄为30岁,工龄为5年,请计算该员工的总工资。
答案:年龄增加的工资 = (30-20) * 50 = 500元工龄增加的工资 = 5 * 100 = 500元总工资 = 基本工资 + 年龄增加的工资 + 工龄增加的工资 = 3000 + 500 + 500 = 4000元总结:本文提供了专升本高数的试题及答案,包括选择题、计算题、证明题和应用题。
通过对这些题目的解答,读者可以巩固和提升自己在高等数学方面的知识和技能。
高等数学专升本试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一. 选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1函数1arccos2x y +=的定义域是 ( ) .A 1x < .B ()3,1-.C {}{}131x x x <⋂-≤≤ .D 31x -≤≤.2.极限sin 3limx xx→∞等于 ( ).A 0 .B 13.C 3 .D 1.3.下列函数中,微分等于1ln dx x x的是 ( ) .A ln x x c + .B ()ln ln y x c =+ .C 21ln 2x c + .D ln xc x+.4.()1cos d x -=⎰( ).A 1cos x - .B cos x c -+.C sin x x c -+ .D sin x c +.5.方程2222x y z a b=+表示的二次曲面是(超纲,去掉) ( ).A 椭球面.B 圆锥面.C 椭圆抛物面 .D 柱面.二.填空题(只须在横线上直接写出答案,不必写出计算过程, 本题共有10个小题,每小题4分,共40分)1.2226lim _______________.4x x x x →+-=-2.设函数(),,x e f x a x ⎧=⎨+⎩00x x ≤>在点0x =处连续,则________________a =.3.设函数xy xe =,则()''0__________________y =.4.函数sin y x x =-在区间[]0,π上的最大值是_____________________.5.sin 1_______________________.4dx π⎛⎫+= ⎪⎝⎭⎰6.()() ____________________________.aax f x f x dx -+-=⎡⎤⎣⎦⎰7.设()() xa x F x f t dt x a=-⎰,其中()f t 是连续函数,则()lim _________________.x aF x +→=8.设32, 2a i j k b i j k =--=+-,则____________________.a b ⋅=9.设()2,yz x y =+则()0,1____________________________.zx ∂=∂(超纲,去掉) 10.设(){},01,11,D x y x y =≤≤-≤≤则_____________________.Ddxdy =⎰⎰(超纲,去掉)三.计算题( 本题共有10个小题,每小题6分,共60分)1.计算0lim.x xx e e x-→-2.设函数y =求.dy3.计算1xxe dx e +⎰.4.设 2 02sin cos tx u du y t⎧=⎪⎨⎪=⎩⎰,求.dy dx5.计算 2 .22dxx x +∞-∞++⎰6. 设曲线()y f x =在原点与曲线sin y x =相切,求n7.求微分方程'tan 3y x y +=-满足初值条件02y π⎛⎫= ⎪⎝⎭的特解. .8.设(),z z x y =是由方程2224x y z z ++=所确定的隐函数,求.zx∂∂(超纲,去掉) 9.求D⎰⎰ ,其中区域(){}2222,4D x y x y ππ=≤+≤ .(超纲,去掉)10.求幂级数21113n n n x ∞-=∑的收敛域.四.综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分) 1.求函数21x y x+=的单调区间,极值及其图形的凹凸区间.(本题14分)2.设()f x 在[]0,1上可导,()()00,11f f ==,且()f x 不恒等于x ,求证:存在()0,1ξ∈使得()' 1.f ξ> (本题8分)3.设曲线22y x x =-++与y 轴交于点P ,过P 点作该曲线的切线,求切线与该曲线及x 轴围成的区域绕x 轴旋转生成的旋转体的体积. (本题8分)参考答案及评分标准一. 选择题(每小题4分,共20分)1.D ,2.A ,3.B ,4.B ,5.C . (超纲,去掉) 二. 填空题(每小题4分,共40分) 1.54 , 2.1 , 3.2 , 4.0 , 5.sin 14x c π⎛⎫++ ⎪⎝⎭ ,6.0 ,7.()af a ,8.3 ,9.2 , (超纲,去掉) 10.2 . (超纲,去掉) 三. 计算题(每小题6分,共60分)1. 解.00lim lim 1x x xxx x e e e e x --→→-+=5分2.=6分2.解.()3221',1y x ==+ 5分故()3221+dxdy x =.6分3.解.原式=()11x xde e++⎰3分()ln 1.x e c =++6分4.解法1.dy dy dtdxdx dt=3分222sin 2.sin t t t t -==-6分解法2.因为22sin ,2sin dx t dt dy t t dt ==-, 4分故2.dyt dx=- 6分 5.解.原式()()2111d x x +∞-∞+=++⎰3分=()tan 1arc x +∞-∞+5分 =.π6分6.解.由条件推得()()'00,1 1.f f ==2分于是()1220lim 220n n f f n n →∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分(第1页,共3页)==6分注:若按下述方法:原式()()112200'lim lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分. 7.解法1.分离变量,得到cot ,3dyxdx y=-+2分积分得到ln 3ln sin y x c +=-+或 ()3 .sin cy c x =-∈4分代入初值条件02y π⎛⎫= ⎪⎝⎭,得到3c =.于是特解为33.sin y x=-6分解法2.由()()(),p x dx p x dxy e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 其中()()13,tan tan p x q x x x ==-,得到 ()3 .sin c y c x=-∈4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 3 3.sin y x=-6分8.解.方程两边对x 求偏导数,得到(超纲,去掉)224,z zx z x x∂∂+=∂∂4分故.2z x x z∂=∂-6分9(超纲,去掉)解原式 2 2 0 sin d r rdrπππθ=⎰⎰3分= 222cos cos r r rdr πππππ⎡⎤-+⎢⎥⎣⎦⎰5分=26.π-6分10.解.由121121321131lim lim3n nn n n n n nx ax a x +++-→∞→∞==,可知收敛半径R =4分又当x =,对应数项级数的一般项为级数均发散,故该级数的收敛域为( .6分(第2页,共3页)四. 综合题(第1小题14分,第2小题8分, 第3小题8分,共30分) 1.解.定义域()(),00,-∞⋃+∞,()34232',",x x y y x x++=-= 令'0,y =得驻点12x =- ,5分令"0,y =得23x =- ,610分函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-及()0,,+∞在2x =-处,有极小值14-. 其图形的凹区间为)0,3(-及()0,+∞,凸区间为(),3.-∞-14分2.证明.由于()f x 不恒等于x ,故存在()00,1,x ∈使得()00.f x x ≠2分如果()00,f x x >根据拉格朗日定理,存在()00,,x ξ∈使得 10)0()()('f 000=>--=x x x f x f ξ ,5分若()00,f x x <根据拉格朗日定理,存在()0,1,x ξ∈使得 ()()()000011'111f f x x f x x ξ--=>=--.8分注:在“2分”后,即写“利用微分中值定理可证得,必存在ξ,使得()'1f ξ>”者共得3分.3.解.P 点处该曲线的切线方程为2y x =+,且与x轴的交于点()2,0A -2分曲线与x 轴的交点()1,0B -和()2,0C ,因此区域由直线PA 和AB 及曲线弧PB所围成.4分该区域绕x 旋转生成的旋转体的体积 () 02218292330V xx dx πππ-=--++=⎰ .8分注:若计算由直线PA 与AC 及曲线弧PC 所围成,从而() 222 081362315V x x dx πππ=+-++=⎰者得6分.。
2024年山东成人高考专升本高等数学(一)真题及答案1. 【选择题】当x→0时,ln(1+x2)为x的( )A. 高阶无穷小量B. 等价无穷小量C. 同阶但不等价无穷小量D. 低阶无穷小量正确答案:A参考解析:2. 【选择题】A.B.C.D.正确答案:C参考解析:3. 【选择题】设y(n-2)=sinx,则y(n)=A. cosxB. -cosxC. sinxD. -sinx正确答案:D参考解析:4. 【选择题】设函数f(x)=3x3+ax+7在x=1处取得极值,则a=A. 9B. 3C. -3D. -9正确答案:D参考解析:函数f(x)在x=1处取得极值,而f'(x)=9x2+a,故f'(1)=9+a=0,解得a=-9.5. 【选择题】A.B.C.D.正确答案:B参考解析:6. 【选择题】A. sin2xB. sin2xC. cos2xD. -sin2x正确答案:B参考解析:7. 【选择题】A.B.C.D.正确答案:D参考解析:8. 【选择题】函数f(x,y)=x2+y2-2x+2y+1的驻点是A. (0,0)B. (-1,1)C. (1,-1)D. (1,1)正确答案:C参考解析:由题干可求得f x(x,y)=2x-2,f y(x,y)=2y+2,令f x(x,y)=0,f y(z,y)=0,解得x=1,y=-1,即函数的驻点为(1,-1).9. 【选择题】下列四个点中,在平面x+y-z+2=0上的是A. (-2,1,1)B. (0,1,1)C. (1,0,1)D. (1,1,0)正确答案:A参考解析:把选项中的几个点带入平面方程,只有选项A满足方程,故选项A是平面上的点.10. 【选择题】A.B.C.D.正确答案:B 参考解析:11. 【填空题】参考解析:12. 【填空题】参考解析:13. 【填空题】参考解析:14. 【填空题】参考解析:15. 【填空题】参考解析:16. 【填空题】参考解析:17. 【填空题】参考解析:18. 【填空题】参考解析:19. 【填空题】参考解析:20. 【填空题】过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为____.参考解析:平面3x-y-z-2=0的法向量为(3,-1,-1),所求平面与其平行,故所求平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x-1)-(y-0)-(z+1)=0,即3x-y-z-4=0.21. 【解答题】参考解析:22. 【解答题】参考解析:23. 【解答题】求函数f(x)=x3-x2-x+2的单调区间.参考解析:24. 【解答题】求曲线y=x2在点(1,1)处的切线方程.参考解析:25. 【解答题】参考解析:26. 【解答题】参考解析:27. 【解答题】参考解析:28. 【解答题】证明:当x>0时,e x>1+x.参考解析:设f(x)=e x-1-x,则f'(x)=e x-1.当x>0时,f'(x)>0,故f(x)在(0,+∞)单调递增.又因为f(x)在x=0处连续,且f(0)=0,所以当x>0时,f(x)>0.因此当x>0时,e x-1-x>0,即e x>1+x.。
《高等数学》(专升本)习题答案一、单选题1、若无穷级数收敛,而发散,则称称无穷级数(C)A发散 B收敛 C条件收敛 D绝对收敛2、点x=0是函数y=x^4的(D)A驻点但非极值点 B拐点 C驻点且是拐点 D驻点且是极值点3、极限(B)A B C1 D04、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、(C)A B C0 D16、曲线y=1/∣x∣的渐近线情况是(C)A只有水平渐近线 B只有垂直渐近线C既有水平渐近线又有垂直渐近线 D既无水平渐近线又无垂直渐近线7、函数的定义域为(D)A B C D8、y=x/(x^2-1)的垂直渐近线有(B)条A1 B2 C3 D49、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件D既非充分又非必要条件10、当x→0时,下列函数不是无穷小量的是(D)Ay=x By=0 Cy=ln(x+1) Dy=e^x11、,则(D)A BC D12、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷13、(A)A0 B C D14、若f(x)在x=x0处可导,则∣f(x)∣在处(C)A可导 B不可导 C连续但未必可导 D不连续15、直线上的一个方向向量,直线上的一个方向向量,若与平行,则(B)A BC D16、设函数y=f(x)在点x0处可导,且f′(x)>0, 曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为{C}A0 B∏/2 C锐角 D钝角17、设,则(A)A B C D18、函数y=x^2*e^(-x)及图象在(1,2)内是(B)A单调减少且是凸的 B单调增加且是凸的C单调减少且是凹的 D单调增加且是凹的19、和在点连续是在点可微分的(A)A充分条件 B必要条件 C充要条件 D无关条件20、以下结论正确的是(C )A 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.21、无穷大量减去无穷小量是(D)A无穷小量 B零 C常量 D未定式22、下列各微分式正确的是(C)Axdx=d(x^2) Bcos2x=d(sin2x) Cdx=-d(5-x) Dd(x^2)=(dx^2)23、已知向量两两相互垂直,且,求(C)A1 B2 C4 D824、函数y=ln(1+x^2)在区间[-1,-2]上的最大值为(D)A4 B0 C1 Dln525、在面上求一个垂直于向量,且与等长的向量(D)A B C D26、曲线y=xlnx的平行于直线x-y+1=0的切线方程是(C)Ay=x By=(lnx-1)(x-1) Cy=x-1 Dy=-(x-1)27、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件28、曲线y=e^x-e^-x的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)29函数在区间上极小值是(D)A-1 B1 C2 D030函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D331、若,则(A)A4 B0 C2 D32、已知y=xsin3x ,则dy=(B)A(-cos3x+3sin3x)dx B(3xcos3x+sin3x)dxC(cos3x+3sin3x)dx D(xcos3x+sin3x)dx33、二重极限(D)A等于0 B等于1 C等于 D不存在34、曲线 y=x^3+x-2 在点(1,0)处的切线方程是(B)Ay=2(x-1) By=4(x-1) Cy=4x-1 Dy=3(x-1)35、设,则(C)A BC D36、曲线y=2+lnx在点x=1处的切线方程是(B)Ay=x-1 By=x+1 Cy=x Dy=-x37、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D38、半径R为的金属圆片,加热后伸长了R,则面积S的微分dS是(B)A∏RdR B2∏RdR C∏dR D2∏dR39、设在处间断,则有(D)A在处一定没有意义;B;(即);C不存在,或;D若在处有定义,则时,不是无穷小40、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=141、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛42、函数y=(x^2-1)^3的驻点个数为(B)A4 B3 C1 D243、曲线在点处的切线斜率是(A)A B C2 D44、M1(2,3,1)到点M2(2,7,4)的距离∣M1M2∣=(C)A3 B4 C5 D645、利用变量替换,一定可以把方程化为新的方程表达式(A)A B C D46、两个向量a与b垂直的充要条件是(A)Aab=0 Ba*b=0 Ca-b=0 Da+b=047、已知向量,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,25 48、求抛物线 y=x^2与y=2-x^2 所围成的平面图形的面积(B)A1 B8/3 C3 D249、若,为无穷间断点,为可去间断点,则(C)A B C D50、要用铁板做一个体积为2m^3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?(A)A均为³√2m时,用料最省. B均为³√3m时,用料最省.C均为√3m时,用料最省. D均为√2m时,用料最省.二、判断题1、设,则(错)2、已知曲线y=f(x)在x=2处的切线的倾斜角为5/6∏,则f′(2)=-1(错)3、对于无穷积分,有(对)4、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)5、函数的定义域是(对)6、函数就是映射,映射就是函数(错)7、设,且满足,则(错)8、函数有界,则界是唯一的(错)9、设是曲线与所围成,则,是否正确(错)10、极限存在,则一定唯一(对)11、在处二阶可导,且,若,则为极小值点(对)12、1/x的极限为0(错)13、设,其中,则,是否正确(对)14、1/n-1的极限为0(错)15、,是否正确(对)16、对于函数f(x),若f′(x0)=0,则x0是极值点(错)17、,是否正确(对)18、无界函数与其定义域没有关系(错)19、齐次型微分方程,设,则(对)20、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)21、函数可微可导,且(对)22、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)23、微分方程的通解为,是否正确(对)24、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)25、设是由所确定,函数在上连续,那么(对)26、有限个无穷小的和仍然是无穷小(对)27、是齐次线性方程的线性无关的特解,则是方程的通解(对)28、函数在一点的导数就是在一点的微分(错)29、设表示域:,则(错)30、方程x=cos在(0,∏/2)内至少有一实根(错)31、设,则,是否正确(对)32、f〞(x)=0对应的点不一定是曲线的拐点(对)33、设,其中,则(错)34、y=ln(1-x)/(1+x)是奇函数(对)35、设由所确定,则(对)36、方程x=cos在(0,∏/2)内至少有一实根(错)37、设在区间上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点(对)38、无穷间断点就是函数在该点的极限是无穷(对)39、设是圆周围成的区域,是否正确(对)40、定积分在几何上就是用来计算曲边梯形的面积(对)41、,是否正确(对)42、数列要么收敛,要么发散(对)43、函数在点可导(对)44、函数在一点处极限存在的充要条件是函数在该点的左极限等于右极限(对)45、在的邻域内可导,且,若:当时,;当时,则为极小值点(错)46、定积分在几何上就是用来计算曲边梯形的面积(对)47、二元函数的最小值点是(对)48、任何函数都可以求出定积分(错)49、设为,与为顶点三角形区域,则积分方程(对)50、若被积函数连续,则原函数不一定存在(错)。
2022年成人高等学校招生全国统一考试专升本高等数学(一)第Ⅰ卷(选择题,共40分)一㊁选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 当x ң0时,l n (1+x 2)为x 的(㊀㊀)A .高阶无穷小量B .等价无穷小量C .同阶但不等价无穷小量D .低阶无穷小量2 l i m x ңɕ1+3x æèçöø÷=(㊀㊀)A .e3B .e2C .e32D .e233 设y(n -2)=si n x ,则y (n )=(㊀㊀)A .c o s xB .-c o s xC .s i n xD .-s i n x4 设函数f (x )=3x 3+a x +7在x =1处取得极值,则a =(㊀㊀)A .9B .3C .-3D . 95 ʏ2c o s 3x d x =(㊀㊀)A .6s i n 3x +CB .23s i n 3x +CC .13s i n 3x +CD .16s i n 3x +C6ʏx0s i n 2t d t ()ᶄ=(㊀㊀)A .s i n 2xB .s i n 2xC .c o s 2xD .-s i n ˙2x7 设z =(y -x )2+1x ,则∂z∂y=(㊀㊀)A .2(y -x )-1x2B .2(y -x )-1xC .2(x -y )D .2(y -x )8 函数f (x ,y )=x 2+y 2-2x +2y +1的驻点是(㊀㊀)A .(0,0)B .(-1,1)C .(1,-1)D .(1,1)9 下列四个点中,在平面x +y -z +2=0上的是(㊀㊀)A .(-2,1,1)B .(0,1,1)42C.(1,0,1)D.(1,1,0)10 级数ðɕn=1x n n+1的收敛半径为(㊀㊀) A.12B.1C.32D.2第Ⅱ卷(非选择题,共110分)二㊁填空题(11~20小题,每小题4分,共40分)11 l i m xң0x+s i n2xs i n x=.12 设函数f(x)满足fᶄ(1)=5,则l i m xң0f(1+2x)-f(1)x=.13 设y˙=11+x,则d y=.14 曲线y=x4-x的水平渐近线方程为.15 ʏx2(+3x12)d x=.16 ʏ1-1(1+x s i n x2)d x=.17 ʏ203x d x=.18 设z=x t a n(y2+1),则∂z∂x=.19 微分方程d y d x+2y=0的通解为:y=.20 过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为.三㊁解答题(21~28题,共70分.解答应写出推理㊁演算步骤)21 (本题满分8分)计算l i m xң0x3x-s i n x22 (本题满分8分)设函数f(x)=e+12x2-s i n x,求fᶄ(1)52求函数f (x )=x 3-x 2-x +2的单调区间.24 (本题满分8分)求曲线y =x 2在点(1,1)处的切线方程.25 (本题满分8分)求ʏ1x (x +2)d x .26 (本题满分10分)求微分方程y ᶄ+11+x y =x1+x满足初值条件y x =1=1427(本题满分10分)计算∬Dx +y 2()d x d y ,其中D 是由直线y =0,y =x ,x =1所围成的闭区域.62证明:当x>0时,e x>1+x.72参考答案及解析一、选择题1 ʌ答案ɔA ʌ考情点拨ɔ本题考查了高阶无穷小量的知识点.ʌ应试指导ɔ由题可知l i m x ң0l n1+x 2()x=l i m x ң0x 2x =l i m x ң0x =0,故l n (1+x 2)是x 的高阶无穷小量.2 ʌ答案ɔC ʌ考情点拨ɔ本题考查了两个重要极限的知识点.ʌ应试指导ɔl i m x ңɕ1+3x æèçöø÷=l i m x ңɕ1+3x æèçöø÷x 3 32=l i m x ңɕ1+3x æèçöø÷x3éëêêùûúú32=e 32.3 ʌ答案ɔD ʌ考情点拨ɔ本题考查了高阶导数的知识点.ʌ应试指导ɔy (n -1)=(y (n -2))ᶄ=(s i n x )ᶄ=c o s x ,因此y (n )=(y(n -1))ᶄ=(c o s x )ᶄ=-s i n x .4 ʌ答案ɔD ʌ考情点拨ɔ本题考查了函数取得极值的条件的知识点.ʌ应试指导ɔ函数f (x )在x =1处取得极值,而f ᶄ(x )=9x 2+a ,故f ᶄ(1)=9+a =0,解得a =-95 ʌ答案ɔBʌ考情点拨ɔ本题考查了不定积分的知识点.ʌ应试指导ɔʏ2c o s 3x d x =23ʏc o s 3xd (3x )=23si n 3x +C .6 ʌ答案ɔB ʌ考情点拨ɔ本题考查了变上限定积分的知识点.ʌ应试指导ɔ由变上限定积分的定理可知ʏx 0s i n 2t d t ()ᶄ=s i n 2x .7 ʌ答案ɔD ʌ考情点拨ɔ本题考查了偏导数的知识点.ʌ应试指导ɔ∂z ∂y=[(y -x )2]ᶄ+0=2(y -x ).8 ʌ答案ɔCʌ考情点拨ɔ本题考查了二元函数的驻点的知识点.ʌ应试指导ɔ由题干可求得f x (x ,y )=2x -2,f y (x ,y )=2y +2 令f x (x ,y )=0,f y (x ,y )=0,解得x =1y =-1,即函数的驻点为(1,-1)9 ʌ答案ɔAʌ考情点拨ɔ本题考查了平面方程的知识点.ʌ应试指导ɔ把选项中的几个点带入平面方程,只有选项A 满足方程,故选项A 是平面上的点.8210 ʌ答案ɔB ʌ考情点拨ɔ本题考查了幂级数的收敛半径的知识点.ʌ应试指导ɔ由题可知ρ=l i m n ңɕ1n +1+11n +1=l i m n ңɕn +1n +2=1,因此级数的收敛半径为R =1ρ=1二、填空题11 ʌ答案ɔ3ʌ考情点拨ɔ本题考查了函数极限的运算的知识点.ʌ应试指导ɔl i m x ң0x +s i n 2x s i n x =l i m x ң0x s i n x +l i m x ң0s i n 2x s i n x =1l i m x ң0s i n x x+l i m x ң02x x=1+2=3 12 ʌ答案ɔ10ʌ考情点拨ɔ本题考查了导数的定义的知识点.ʌ应试指导ɔl i m x ң0f (1+2x )-f (1)x =2l i m x ң0f (1+2x )-f (1)2x=2f ᶄ(1)=2ˑ5=10 13 ʌ答案ɔ-1(1+x )2d x ʌ考情点拨ɔ本题考查了函数微分的知识点.ʌ应试指导ɔy ᶄ=11+x æèçöø÷ᶄ=-1(1+x )2,故有d y =y ᶄd x =-1(1+x )2d x .14 ʌ答案ɔy =-1ʌ考情点拨ɔ本题考查了曲线的渐近线的知识点.ʌ应试指导ɔ由于l i m x ңɕx 4-x =l i m x ңɕ14x -1=10-1=-1,因此曲线的水平渐近线为y =-115 ʌ答案ɔx 33+2x +C ʌ考情点拨ɔ本题考查了不定积分求解的知识点.ʌ应试指导ɔʏx 2(+3x )d x =ʏx 2d x +3ʏx 12d x =x 33+3ˑ11+12x 12+1+C =x 33+2x +C .16 ʌ答案ɔ2ʌ考情点拨ɔ本题考查了奇偶函数在对称区间上的定积分的知识点.ʌ应试指导ɔ令f (x )=x s i n x 2,有f (-x )=-x s i n x 2=-f (x ),即函数f (x )是奇函数,因此ʏ1-11(+xs i n x 2)d x =ʏ1-1dx +0=217 ʌ答案ɔ8l n 392ʌ考情点拨ɔ本题考查了定积分的计算的知识点.ʌ应试指导ɔʏ203xd x =3x l n 320=32-30l n 3=9-1l n 3=8l n 318 ʌ答案ɔt a n (y 2+1)ʌ考情点拨ɔ本题考查了二元函数的偏导数的知识点.ʌ应试指导ɔ对x 求偏导,可将t a n (y 2+1)看作是常数,故∂z ∂x=t a n (y 2+1)19 ʌ答案ɔC e -2x ʌ考情点拨ɔ本题考查了可分离变量的微分方程的知识点.ʌ应试指导ɔ将微分方程变量分离,可得d y d x =-2y ⇒d y y =-2d x ,两边同时积分ʏdy y=ʏ-2d x ,可得l n |y |=-2x +C 1⇒y =ʃe-2x +C =ʃe C e -2x =C e -2x (其中C =ʃe c )20 ʌ答案ɔ3x -y -z -4=0ʌ考情点拨ɔ本题考查了平面的点法式方程的知识点.ʌ应试指导ɔ平面3x -y -z -2=0的法向量为(3,-1,-1),所求平面与其平行,故所求平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x -1)-(y -0)-(z +1)=0,即3x -y -z -4=0 三、解答题21 l i m x ң0x 3x -s i n x =l i m x ң03x 21-c o s x =l i m x ң06x s i n x =622 f ᶄ(x )=x -c o s x .fᶄ(1)=1-c o s 1 23 fᶄ(x )=3x 2-2x -1 令f ᶄ(x )=0,解得x 1=-13,x 2=1 当x <-13或x >1时,f ᶄ(x )>0,故f (x )的单调递增区间为-ɕ,-13æèçöø÷,(1,+ɕ).当-13<x <1时,fᶄ(x )<0,故f (x )的单调递减区间为-13,1æèçöø÷ 24 y ᶄ=2x ,y ᶄx =1=2故所求的切线方程为y -1=2(x -1),即y =2x -125ʏd x x (x +2)=12ʏ1x -1x +2æèçöø÷d x =12(l n |x |-l n |x +2|)+C =12l n |xx +2|+C .0326 y =e-ʏ(ʏx1+xe ʏd x +C )=11+xʏx d x +C ()=11+x x 22+C æèçöø÷由y x =1=14得C =0,所以特解为y =x 22(1+x )27 ∬Dx +y 2()d x d y =ʏ10dx ʏx0x +y 2()d y=ʏ10x y +y 33æèçöø÷x 0d x=ʏ10x 2+x 33æèçöø÷d x =x 33+x 412æèçöø÷10=51228 设f (x )=e x -1-x ,则f ᶄ(x )=e x-1 当x >0时,f ᶄ(x )>0,故f (x )在(0,+ɕ)单调递增.又因为f (x )在x =0处连续,且f (0)=0,所以当x >0时,f (x )>0 因此当x >0时,e x -1-x >0,即e x >1+x .13。
山东省2023年普通高等教育专升本统一考试高等数学(Ⅰ)一、单项选择题(本大题共5小题,每小题3分,共15分)1.函数)13ln(-=x y 的定义域为A.),31(+∞B.31,(-∞C.),31[+∞D.]31,(-∞2.下面属于三阶微分方程的是A.0'''2=+-y xy y x B.02)('3'=+-x yy y x C.03'''''=-y y D.032=+dx y dy x 3.0→x 时以下不是无穷小量的是A.x tan B.x 2sin C.)1ln(x +D.1+xe 4.已知)(xf 在3=x 处可导,且4)3()23(lim 0=∆-∆-→∆xf x f x ,则=)3('f A.2B.2- C.4D.4-5.级数∑∞=1n nu收敛,则下列收敛的是A.B.∑∞=+1)1(n n n u C.∑∞=1n nu D.∑∞=+121(n n nu 二、填空题(本大题共5小题,每小题3分,共15分)6.极限=+→xx x 50)1(lim 7.已知)1,5,4(),,1,2(=-=→→b k a ,且→→⊥b a ,则=k 8.已知参数方程⎩⎨⎧=+=ty t t x arcsin 23,则==0|t dx dy9.已知2320)(x x dt t f x+=⎰,则=)4(f 10.二重积分⎰⎰⎰⎰++-++---+4251420122),(),(x x xx x xdy y x f dx dy y x f dx 交换积分次序后为三、解答题(本大题共8个小题,每小题6分,共48分)11.求极限)3(lim 2x x x x -++∞→12.求极限2cos 10cos limx xe x x --→13.求不定积分⎰++dx x x 26101214.求过点)2,1,3(),4,0,1(--B A 且与直线21231zy x =-+=-平行的平面方程15.求二元函数)ln(12y x y z -++=的全微分16.求微分方程x x xy y x ln 2'2+=+满足初始条件21|1==x y 的特解17.计算二重积分⎰⎰+Ddxdy yx xy 22,其中{}41,30|),(22≤+≤≤≤=y x x y y x D 18.求幂级数∑∞=++02!)2(n n n n x 的收敛域与和函数四、应用题(本大题共2小题,每小题7分,共14分)19.求由直线2=+y x ,曲线x y =与y 轴围成图形绕x 轴旋转一周而围成旋转体的体积20.求函数x x e x x f x +--=2)32()(的极值五、证明题(本大题共1道小题,每小题8分,共8分)21.设函数)(x f 在]1,0[连续,且1)(10=⎰dx x f 证明:(1)对于任意整数2≥n ,存在)1,0(0∈x ,使得ndx x f x 1)(0=⎰(2)在)1,0(内存在两个不同的点ηξ,,使得)()(4)(3)(ηξξηf f f f =+。
2023 年宁夏专升本考试《高等数学》真题试卷参考答案一、选择题1.B2.A3.C4.D5.B6.C7.A8.D9.B10.C二、解答题1. 求函数f(f)=f3−3f2+f+2的极值点和最值。
首先,求函数的导数f′(f):f′(f)=3f2−6f+1令导数f′(f)等于 0,解得:$$x = \\frac{6 \\pm \\sqrt{36 - 12}}{6} = \\frac{6 \\pm2\\sqrt{2}}{6} = 1 \\pm \\frac{\\sqrt{2}}{3}$$所以,函数的极值点为 $x = 1 + \\frac{\\sqrt{2}}{3}$ 和 $x = 1 - \\frac{\\sqrt{2}}{3}$。
代入原函数f(f),得极值为:$$f\\left(1 + \\frac{\\sqrt{2}}{3}\\right) = \\left(1 +\\frac{\\sqrt{2}}{3}\\right)^3 - 3\\left(1 +\\frac{\\sqrt{2}}{3}\\right)^2 + \\left(1 +\\frac{\\sqrt{2}}{3}\\right) + 2$$$$f\\left(1 - \\frac{\\sqrt{2}}{3}\\right) = \\left(1 -\\frac{\\sqrt{2}}{3}\\right)^3 - 3\\left(1 -\\frac{\\sqrt{2}}{3}\\right)^2 + \\left(1 -\\frac{\\sqrt{2}}{3}\\right) + 2$$分别计算得到的最值为:$$f\\left(1 + \\frac{\\sqrt{2}}{3}\\right) \\approx 3.169$$ $$f\\left(1 - \\frac{\\sqrt{2}}{3}\\right) \\approx 0.463$$所以,函数f(f)=f3−3f2+f+2的极值点为 $x = 1 +\\frac{\\sqrt{2}}{3}$ 和 $x = 1 - \\frac{\\sqrt{2}}{3}$,极值分别为3.169和0.463。
专升本考试:2022高等数学一真题及答案(1)共78道题1、()(单选题)A. eB. e -1C. e 2D. e -2试题答案:C2、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C3、(单选题)A. 2B. 1C. 1/2D. 0试题答案:C4、方程x 2+2y 2+3z 2=1表示的二次曲面是()(单选题)A. 圆锥面B. 旋转抛物面C. 球面D. 椭球面试题答案:D5、()(单选题)A. (3,-1,2)B. (1,-2,3)C. (1,1,-1)D. (1,-1,-1)试题答案:A6、()(单选题)A. 1n|2-x|+CB. -ln| 2-x|+CC.D.试题答案:B7、设函数ƒ(x)=xlnx,则ƒ´(e)=()(单选题)A. -1B. 0C. 1D. 2试题答案:D8、下列函数中为f(x)=e 2x的原函数的是( )(单选题)A. e xB.C. e 2xD. 2e 2x试题答案:B9、函数f(x)=x 3—12x+1的单调减区间为( )(单选题)A. (-∞,+∞)B. (-∞,-2)C. (-2,2)D. (2,+∞)试题答案:C10、设b≠0,当x→0时,sinbx是x 2的( )(单选题)A. 高阶无穷小量B. 等价无穷小量C. 同阶但不等价无穷小量D. 低阶无穷小量试题答案:D11、若y=1+cosx,则dy= ()(单选题)A. (1+sinx)dxB. (1-sinx)dxC. sinxdxD. -sinxdx试题答案:D12、(单选题)A. 3dx+2dyB. 2dx+3dyC. 2dx+dyD. dx+3dy试题答案:B13、()(单选题)A. (3,-1,2)B. (1,-2,3)C. (1,1,-1)D. (1,-1,-1)试题答案:A14、()(单选题)A. 0B. 2C. 2ƒ(-1)D. 2ƒ(1)试题答案:A15、当x→0时,下列变量是无穷小量的为()(单选题)A.B. 2xC. sinxD. ln(x+e)试题答案:C16、()(单选题)B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A17、()(单选题)A.B.C.D.试题答案:B18、()(单选题)A. 0B.C. 1D. 2试题答案:B19、()(单选题)A. eB. e -1C. e 2D. e -2试题答案:C20、()(单选题)B.C.D.试题答案:B21、函数f(x)=x 3—12x+1的单调减区间为( )(单选题)A. (-∞,+∞)B. (-∞,-2)C. (-2,2)D. (2,+∞)试题答案:C22、(单选题)A. 绝对收敛B. 条件收敛C. 发散D. 收敛性与k的取值有关试题答案:A23、(单选题)A. -2B. -1C. 0D. 1试题答案:C24、微分方程yy´=1的通解为()(单选题)A. y 2=x+CB.C. y 2=CxD. 2y 2=x+C试题答案:B25、()(单选题)A. 发散B. 条件收敛C. 绝对收敛D. 收敛性与a的取值有关试题答案:B26、()(单选题)A. eB. 2C. 1D. 0试题答案:D27、()(单选题)A. 1n|2-x|+CB. -ln| 2-x|+CC.D.试题答案:B28、()(单选题)B. 2C. 2ƒ(-1)D. 2ƒ(1)试题答案:A29、()(单选题)A. 0B. 1C. 2D. 3试题答案:A30、(单选题)A. 为f(x)的驻点B. 不为f(x)的驻点C. 为f(x)的极大值点D. 为f(x)的极小值点试题答案:A31、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C32、()(单选题)B. 1C. 2D. +∞试题答案:B33、()(单选题)A. 发散B. 条件收敛C. 绝对收敛D. 收敛性与a的取值有关试题答案:B34、(单选题)A. 3dx+2dyB. 2dx+3dyC. 2dx+dyD. dx+3dy试题答案:B35、函数ƒ(x)=x 3-3x的极小值为()(单选题)A. -2B. 0C. 2D. 4试题答案:A36、()(单选题)A. 6yB. 6xyC. 3xD. 3x 2试题答案:D37、若函数ƒ(x)=5 x,则ƒ´(x)=()(单选题)A. 5 x-1B. x5 x-1C. 5 x ln5D. 5 x试题答案:C38、函数ƒ(x)=x 3-3x的极小值为()(单选题)A. -2B. 0C. 2D. 4试题答案:A39、(单选题)A. xe x2B. 一xe x2C. Xe -x2D. 一xe -x2试题答案:B40、设b≠0,当x→0时,sinbx是x 2的( )(单选题)A. 高阶无穷小量B. 等价无穷小量C. 同阶但不等价无穷小量D. 低阶无穷小量试题答案:D41、()(单选题)A. 0B.C. 1D. 2试题答案:B42、设函数y=2x+sin x,则y´=()(单选题)A. 1-cos xB. 1+cos xC. 2-cos xD. 2+cos x试题答案:D43、()(单选题)A.B.C.D.试题答案:A44、方程x 2+y 2-2z=0表示的二次曲面是()(单选题)A. 柱面B. 球面C. 旋转抛物面D. 椭球面试题答案:C45、当x→0时,下列变量是无穷小量的为()(单选题)A.B. 2xC. sinxD. ln(x+e)试题答案:C46、(单选题)A. -2sinx 2+CB.C. 2sinx 2+CD.试题答案:D47、若y=1+cosx,则dy= ()(单选题)A. (1+sinx)dxB. (1-sinx)dxC. sinxdxD. -sinxdx试题答案:D48、()(单选题)B. 1C. 2D. 3试题答案:C49、(单选题)A. 绝对收敛B. 条件收敛C. 发散D. 收敛性与k的取值有关试题答案:A50、()(单选题)A.B.C.D.试题答案:B51、若函数ƒ(x)=5 x,则ƒ´(x)=()(单选题)A. 5 x-1B. x5 x-1C. 5 x ln5D. 5 x试题答案:C52、(单选题)B. X y InxC. X y-1D. x y-1lnx试题答案:A53、()(单选题)A. 0B. 1C. 2D. 3试题答案:A54、微分方程yy´=1的通解为()(单选题)A. y 2=x+CB.C. y 2=CxD. 2y 2=x+C试题答案:B55、()(单选题)A.B.C.D.试题答案:C56、()(单选题)A.B.C.D.试题答案:A57、()(单选题)A. 0B. 1C. 2D. 4试题答案:A58、下列函数中为f(x)=e 2x的原函数的是( )(单选题)A. e xB.C. e 2xD. 2e 2x试题答案:B59、(单选题)A. -2B. -1C. 0D. 1试题答案:C60、(单选题)B. X y InxC. X y-1D. x y-1lnx试题答案:A61、设函数y=2x+sin x,则y´=()(单选题)A. 1-cos xB. 1+cos xC. 2-cos xD. 2+cos x试题答案:D62、()(单选题)A.B.C.D.试题答案:B63、()(单选题)A.B.C.D.试题答案:C64、()(单选题)B. 1C. 2D. 3试题答案:C65、(单选题)A. 2B. 1C. 1/2D. 0试题答案:C66、()(单选题)A. 0B. 1C. 2D. 4试题答案:A67、(单选题)A. 为f(x)的驻点B. 不为f(x)的驻点C. 为f(x)的极大值点D. 为f(x)的极小值点试题答案:A68、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A69、(单选题)A. -2sinx 2+CB.C. 2sinx 2+CD.试题答案:D70、()(单选题)A. eB. 2C. 1D. 0试题答案:D71、方程x 2+2y 2+3z 2=1表示的二次曲面是()(单选题)A. 圆锥面B. 旋转抛物面C. 球面D. 椭球面试题答案:D72、(单选题)A. xe x2B. 一xe x2C. Xe -x2D. 一xe -x2试题答案:B73、设函数ƒ(x)在[a,b]上连续且ƒ(x)>0,则()(单选题)A.B.C.D.试题答案:A74、设函数ƒ(x)=xlnx,则ƒ´(e)=()(单选题)A. -1B. 0C. 1D. 2试题答案:D75、方程x 2+y 2-2z=0表示的二次曲面是()(单选题)A. 柱面B. 球面C. 旋转抛物面D. 椭球面试题答案:C76、设函数ƒ(x)在[a,b]上连续且ƒ(x)>0,则()(单选题)A.B.C.D.试题答案:A77、()(单选题)A. 0B. 1C. 2D. +∞试题答案:B78、()(单选题)A. 6yB. 6xyC. 3xD. 3x 2试题答案:D。
2024年安徽省普通高校专升本招生考试试题高等数学考试真题还原(以下真题来自学生考试后的回忆,或有部分不准确)一、单项选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、当x →0+时,比sin x 更低阶的无穷小是()A、1-cos xB、3xD、In(1+x )参考答案:C 2、若函数sin ,0()2,=0ln(12),0x x ax f x x x x bx ⎧⎪⎪=⎨⎪+⎪⎩<>,在x =0处连续,其中a ,b 为常数,则()A、22a b ==,B、112a b ==,C、21a b ==,D、122a b ==,参考答案:B 3、已知21sin ()x xf x x x +=+,则()A、0()x f x =是的可去间断点,1()x f x =-是的无穷间断点B、0()x f x =是的可去间断点,1()x f x =-是的跳跃间断点C、0()x f x =是的跳跃间断点,1()x f x =-是的无穷间断点D、0()x f x =是的无穷间断点,1()x f x =-是的可去间断点参考答案:B4、设函数()f x 在[,b]a 上连续,在(,b)a 上可导,且()()f a f b >,则在(,b)a 内至少存在一点ξ,使得()A、'()f ξ<0B、'()f ξ>0C、'()=f ξ0D、'()f ξ不存在参考答案:A5、已知函数()x f x xe -=,则()A、()f x 在(1),-∞内单调减少B、()f x 在(1)+,∞内单调增加C、()f x 在1x =处取得极大值D、()f x 在1x =处取得极小值参考答案:C6、若函数4cos y x =,则dy =()A、3424sin x x dxB、3424sin x x dx -C、2422sin x x dx D、2422sin x x dx -参考答案:D7、已知2x 是()f x 的一个原函数,则2(1)fxf x dx -=()A、22x C -+B、-22x C-+C、222x C -+D、222x C--+参考答案;B8、下列广义积分收敛的是()A、143dx e xin x+⎰∞B、1dxe xinx +⎰∞C、123e xin x+⎰∞D、inx dxe x +⎰∞参考答案:A9、函数2ln z x y x =+在点(1,1)处的全微分(1,1)dz =()A、3dx dy +B、3dx dy+C、2dx dy +D、2dx dy+参考答案:A10、设n 阶方阵A 满足2,A A A E =且≠,其中E 为n 阶单位矩阵,则()A、A 是零矩阵B、齐次线性方程组0AX =只有零解C、A 是可逆矩阵D、A 的秩小于n参考答案:D 11、设随机事件A 与B 互不相容,则()A、(AB)0P =B、(A B)0P =C、(AUB)1P =D、(AB)1P =参考答案:D 12、设随机变量X 的概率密度函数2(1)4()x f x +-=其中()x -∞<<+∞,且{}{}P X c P X c ≥=≤,则常数C=()A、-2B、2C、-1D、1参考答案:C 二、填空题(本大题共6小题,每小题4分,共24分)13、函数323y x x =-在拐点处的切线方程为_____________参考答案:31y x =-+14、由曲线y e x =,直线1,0,0x x y =-==,所围成的封闭图形绕x 轴旋转所形成的旋转体体积参考答案:212)e --π(15、已知(,)z f x y =由方程221x t z Inz y e dt ++=⎰确定,则z x∂∂=_____________参考答案:21xze z +16、已知113122023x-=,则x =_____________参考答案:-117、同时投两个质地均匀的骰子,则两个骰子点数和为7的概率为_____________参考答案:1618、已知13X ~B(3,),则{x }p <D(X)=_____________参考答案:827三、计算题(本大题共7小题,共78分,计算应写出必要的计算步骤)19、2x →参考答案:120、求解不定积分2ln(1)d x x x +⎰参考答案:332111ln |1|c 33111ln()963x x x x x x ++++-+-21、求解:D xd σ⎰⎰,其中积分区域D 由曲线2y x =,直线2y x =-,和0y =所围成的封闭图形参考答案:111222、已知123,,a a a 线性无关,112321233123===a a a a a a a a a βββ+--+--,,,证明:向量组123βββ,,线性无关参考答案:存在一组常数123,,k k k ,使得1122330k k k βββ++=,证明:123,,k k k 全为零即可23、某工地拟建造截面为矩形加半圆的通风口,已知截面面积为2平方米时,则底长x 为多少米时,截面的周长最短。
2023年成人高等学校招生全国统一考试专升本高等数学(一)第Ⅰ卷(选择题,共40分)一㊁选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x ң0时,5x -s i n 5x 是x 的( )A .高阶无穷小量B .等价无穷小量C .同阶无穷小量,但不是等价无穷小量D .低阶无穷小量2.设y =2x +1,则y '=( )A.322x +1B .122x +1C .22x +1D.12x +13.设y =e -x ,则d y =( )A.e -x d xB .-e -x d xC .e xd xD.-e xd x4.设函数f (x )=1, x ɤ0,b +x ,x >0在x =0处连续,则b =( )A .2B .1C .0D .-15.ʏs i n x d x =( )A.s i n x +CB .-s i n x +CC .c o s x +CD.-c o s x +C6.l i m x ң0ʏxt d tx2=( )A .2B .1C .12D .07.设z =x y +x y ,则∂z ∂y =( )A.1y+yB .-xy2+x㊃83㊃C .1y+xD.-xy2+y8.幂级数ðɕn =1xnR 2的收敛域是( )A.(-1,1)B .(-1,1]C .[-1,1) D.[-1,1]9.已知直线x -1k =y +11=z -2-4在平面3x -2y +z -7=0上,则k =( )A .0B .1C .2D .310.微分方程y ᵡ+y =e 2x的一个特解是( )A.y *=15e2xB .y *=15ex C .y *=15xe 2xD.y *=15xe x 第Ⅱ卷(非选择题,共分)二㊁填空题(11~20小题,每小题4分,共40分)11.l i m -0(1+2x )1x=.12.设x =1+t 2,y =t 3(t 为参数),则dy d xt =2=.13.设y =x +e x,则y ᵡ=.14.设y =x +s i n x ,则y '=.15.ʏx 2+e x)d x =.16.ʏ0-ɕe 3xd x =.17.设z =e xy ,则d z =.18.过点(0,1,1)且与直线x -11=y -22=z -31垂直的平面方程为.19.设区域D ={(x ,y )|0ɤx ɤ2,-1ɤy ɤ1},则∬Dx d x d y =.20.微分方程x y'+y =0满足初始条件y (1)=1的解为y =.三㊁解答题(21~28题,共70分.解答应写出推理㊁演算步骤)21.(本题满分8分)计算l i m x ң0e x-e -x s i n 2x.㊃93㊃22.8计算ʏ20(x 2-e -x )d x .23.(本题满分8分)求微分方程y '-2xy =x 3的通解.24.(本题满分8分)设z =s i n x y ,求∂2z ∂x2.25.(本题满分8分)求函数f (x )=x 2e -x的单调区间和极值.26.(本题满分10分)设D 是由曲线y =1-x 2(x ȡ0),x =0,y =0所围成的平面图形.(1)求D 的面积S ;(2)求D 绕x 轴旋转一周所得旋转体的体积V .㊃04㊃27.10计算∬Dx 2+y 2d x d y ,其中D 是由曲线y =1-x 2,y =x ,y =-x 所围成的闭区域.28.(本题满分10分)已知函数f (x )连续,且满足ʏx1+t 2f (t )d t =x s i n x ,求f (x ).参考答案及解析一、选择题1.ʌ答案ɔ Aʌ考情点拨ɔ 本题考查了高阶无穷小量的知识点.ʌ应试指导ɔ l i m x ң05x -s i n 5x x =l i m x ң05-s i n 5x x=5-l i m x ң05x x =0,故5x -s i n 5x 是x 的高阶无穷小量.2.ʌ答案ɔ Dʌ考情点拨ɔ 本题考查了复合函数求导的知识点.ʌ应试指导ɔ y'=122x +1(2x +1)'=222x +1=12x +1.3.ʌ答案ɔ B ʌ考情点拨ɔ 本题考查了微分的知识点.ʌ应试指导ɔ d y =(e -x )'d x =-e -x d x .4.ʌ答案ɔ Bʌ考情点拨ɔ 本题考查了分段函数连续性的知识点.ʌ应试指导ɔ 因f (x )在x =0处连续,则有l i m x ң0+f (x )=l i m x ң0-f (x )=f (0),故b =1.5.ʌ答案ɔ Dʌ考情点拨ɔ 本题考查了不定积分的知识点.㊃14㊃ʌ应试指导ɔ ʏs i n x d x =-c o s x +C .6.ʌ答案ɔ C ʌ考情点拨ɔ 本题考查了洛必达法则的知识点.ʌ应试指导ɔ l i m x ң0ʏxt d tx2=l i m x ң0x 2x =12.7.ʌ答案ɔ Bʌ考情点拨ɔ 本题考查了偏导数的知识点.ʌ应试指导ɔ∂z ∂y =-xy2+x .8.ʌ答案ɔ Dʌ考情点拨ɔ 本题考查了幂级数收敛域的知识点.ʌ应试指导ɔ收敛半径,所以幂级数的收敛区间为(-1,1)当x =-1时,级数ðɕn =1(-1)nn 2为收敛的交错级数;当x =1时,级数ðɕn =11n2为收敛的p 级数.故该级数的收敛域为[-1,1].9.ʌ答案ɔ Cʌ考情点拨ɔ 本题考查了直线与平面的位置关系的知识点.ʌ应试指导ɔ 由题可知直线的方向向量s =(k ,1,-4),平面的法向量n =(3,-2,1).由于s ʅr ,因此有3k -2-4=0,故k =2.10.ʌ答案ɔ Aʌ考情点拨ɔ 本题考查了二阶常系数线性非齐次微分方程特解的知识点.ʌ应试指导ɔ 可验证,四个选项中只有A 项满足微分方程,故其特解为y *=15e 2x .二、填空题11.ʌ答案ɔ e2ʌ考情点拨ɔ 本题考查了两个重要极限的知识点.ʌ应试指导ɔ l i m x ң0(1+2x )1x =l i m x ң0[(1+2x )12x ]2=e 2.12.ʌ答案ɔ 3ʌ考情点拨ɔ 本题考查了参数方程求导的知识点.ʌ应试指导ɔ d y d x =(t 3)'(1+t 2)'=3t 22t =32t ,故d y d x t =2=3.13.ʌ答案ɔ e xʌ考情点拨ɔ 本题考查了高阶导数的知识点.㊃24㊃ʌ应试指导ɔy'=1+e x,故yᵡ=e x.14.ʌ答案ɔ1+c o s xʌ考情点拨ɔ本题考查了导数的运算的知识点.ʌ应试指导ɔy'=(x+s i n x)'=1+c o s x.15.ʌ答案ɔ13x3+e x+cʌ考情点拨ɔ本题考查了不定积分的计算的知识点.ʌ应试指导ɔʏx2+e x)d x=13x3+e x+C.16.ʌ答案ɔ13ʌ考情点拨ɔ本题考查了反常积分的计算的知识点.ʌ应试指导ɔʏ0-ɕe3x d x=13ʏ0-ɕe3x d(3x)=13e3x0-ɕ=13(1-l i m-ɕe3x)=13.17.ʌ答案ɔe x y(y d x+x d y)ʌ考情点拨ɔ本题考查了全微分的知识点.ʌ应试指导ɔd z=d e x y=e x y d(x y)=e x y(y d x+x d y).18.ʌ答案ɔx+2y+z-3=0ʌ考情点拨ɔ本题考查了平面点法式方程的知识点.ʌ应试指导ɔ由题意,平面法向量为n=(1,2,1),又过点(0,1,1),故方程为x +2(y-1)+(z-t)=0,即x+2y+z-3=0.19.ʌ答案ɔ4ʌ考情点拨ɔ本题考查了二重积分的知识点.ʌ应试指导ɔ∬D x d x d y=ʏ20d xʏ1-1x d y=ʏ20(x y1-1d x=ʏ202x d x=x220=4. 20.ʌ答案ɔ1xʌ考情点拨ɔ本题考查了一阶线性齐次微分方程的知识点.ʌ应试指导ɔ由x y'+y=0得y'+1x y=0,通解为y=C e-ʏ1x d x=C x,将y(1)=1代入通解,得C=1,故所求的解为y=1x.三、解答题21.l i m xң0e x-e-xs i n2x=l i m xң0e x-e-x 2x=l i mxң0e x+e-x 2=1.㊃34㊃22.ʏ20(x 2-e -x )d x =ʏ20x 2d x +ʏ20e -x d (-x )=13x 3+e -x20=53+e -2.23.由题可知P (x )=-2x,Q (x )=x 3.通解为y =e -ʏP (x )d x ʏQ (x )e ʏP (x )d xd x +C=e ʏ2xdx(ʏx3e -ʏ2x dx d x+C )=x 2ʏx 3㊃1x2d x +C =x 2(ʏx d x +C )=x 212x 2+C =12x 4+C x 2.24.∂z ∂x =c o s x y (x y )'=y c o s x y ,∂2z ∂x2=y (c o s x y )'=-y s i n x y (x y )'=-y 2s i n x y .25.f (x )的定义域为(-ɕ,+ɕ),f '(x )=2x e -x -x 2e -x =e -x (-x 2+2x ),令f'(x )=0,1得x 1=0,x 2=2.列表如下:x (-ɕ,0)0(0,2)2(2,+ɕ)y'y '-0+0-y↘极小值↗极大值↘由表可知,函数的单调增区间为(0,2);单调减区间为(-ɕ,0),(2,+ɕ).极大值为f (2)=4e -2,极小值为f (0)=0.26.(1)S =ʏ101-x 2d x =x -13x31=23;(2)V =πʏ101-x 2 2d x =πʏ10(1-2x 2+x 4)d x =πx -23x 3+15x 510=815π.27.积分区域用极坐标可表示为D :π4ɤθɤ3π4,0ɤr ɤ1.故∬Dx 2+y 2d x d y =∬Dr 2dr d θ=ʏ3π4π4d θʏ1r 2d r=π2㊃r3310=π6.㊃44㊃28.由于ʏx01+t2f(t)d t=x s i n x,两边同时求导得(1+x2)f(x)=s i n x+x c o s x,所以f(x)=s i n x+x c o s x1+x2㊃54㊃。
第一章 函数一、选择题1. 下列函数中,【 C 】不是奇函数A. x x y +=tanB. y x =C. )1()1(-⋅+=x x yD. x xy 2sin 2⋅=2. 下列各组中,函数)(x f 与)(x g 一样的是【 】A. 33)(,)(x x g x x f == B.x x x g x f 22tan sec )(,1)(-== C. 11)(,1)(2+-=-=x x x g x x f D. 2ln )(,ln 2)(x x g x x f ==3. 下列函数中,在定义域内是单调增加、有界的函数是【 】A. +arctan y x x =B. cos y x =C. arcsin y x =D. sin y x x =⋅4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 5. 函数arctan y x =的定义域是【 】A. (0,)πB. (,)22ππ-C. [,]22ππ-D. (,+)-∞∞6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】A. (,)-∞+∞B. [1,1]-C. (,)ππ-D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】A. (,)-∞+∞B. [1,1]-C. (,)ππ-D. [2,0]-9. 下列各组函数中,【 A 】是相同的函数A. 2()ln f x x =和 ()2ln g x x =B. ()f x x =和()g x =C. ()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】A. ()cos f x x =B. ()arccos f x x =C. ()tan f x x =D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】A. (,)22ππ-B. (0,)πC. (,)-∞+∞D. [1,1]-12. 下列函数是奇函数的是【 】A. arcsin y x x =B. arccos y x x =C. arccot y x x =D. 2arctan y x x = 13. 函数53sin ln x y =的复合过程为【 A 】A.x w w v v u u y sin ,,ln ,35==== B.x u u y sin ln ,53== C.x u u y sin ,ln 53== D.x v v u u y sin ,ln ,35===二、填空题1. 函数5arctan 5arcsin x x y +=的定义域是___________.2.()arcsin3xf x =的定义域为 ___________.3. 函数1()arcsin3x f x +=的定义域为 ___________。
专升本高等数学一(无穷级数)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.若级数an收敛于S,则(an+an+1一an+2)收敛于( ) A.S+a1B.S+a2C.S+a1—a2D.S一a1+a2正确答案:B解析:(an+an+1一an+2)=an一a1一a2)=S+a2,故选B.知识模块:无穷级数2.若正项级μn收敛(C为非零常数),则( )A.B.C.D.正确答案:B解析:设μn=(μn+C)≠0,(C为非零常数),所以C、D不正确,故选B.知识模块:无穷级数3.级数的敛散性为( )A.收敛B.发散C.无法确定D.可能收敛可能发散正确答案:B解析:<1的p级数,发散,则原级数也发散.知识模块:无穷级数4.级数是( )A.绝对收敛B.条件收敛C.发散D.无法确定敛散性正确答案:A解析:因=1,故原级数等价于收敛,所以级数绝对收敛.知识模块:无穷级数5.级数是( )A.绝对收B.条件收敛C.发散D.无法确定敛散性正确答案:C解析:级数的通项为μn=,此级数为p级数,又因<1,所以级数发散.知识模块:无穷级数6.设μn=(-1)nln(1+),则级数( )A.B.C.D.正确答案:C解析:μn为一交错级数,由于=0及ln(1+x)的单调性可保证μn+1==μn,根据莱布尼茨定理知μn收敛.而知识模块:无穷级数7.10.下列级数中收敛的是( )A.B.C.D.正确答案:B解析:A:p=<1的p级数,故发散;B:是公比q=的等比级数,收敛;C:由比值判别法知,>1的等比级数,发散,是p=2>1的p级数,收敛,故整体发散.知识模块:无穷级数8.如果级数的收敛区间是(3,4)则a= ( )A.3B.4C.5D.7正确答案:D解析:级数.(2n一1)=1,故一1<2x一a<1,则,由已知条件可得=4,所以a=7.知识模块:无穷级数9.设=ρ(ρ>0),若幂级数的收敛半径分别为R1,R2,R3,则下列关系式成立的是( ) A.R3>R2>R1B.R3>R2=R1C.R3=R2<R1D.R3=R2=R1正确答案:D解析:=ρ,=ρ,所以R1=R2=R3=,故选D.知识模块:无穷级数填空题10.设级数μn是收敛的,则级数(1+μn)是________的.正确答案:发散解析:(μn+1)发散.知识模块:无穷级数11.已知数项级数收敛,则其和S==________.正确答案:e-1解析:S=.1n一1=e-1.知识模块:无穷级数12.设μn≥(n=1,2,…),则级数是________的.正确答案:发散解析:μn≥发散.知识模块:无穷级数13.设anxn的收敛半径为R,则anx2n+1的收敛半径为_______.正确答案:解析:,故幂级数的收敛半径是.知识模块:无穷级数14.幂级数xn的收敛半径是________,收敛区间是________.正确答案:解析:=2.所以幂级数xn的收敛半径是,收敛区间是.知识模块:无穷级数15.若幂级数anxn的收敛半径为R,则幂级数nanxn-1的收敛半径为_________.正确答案:R解析:幂级数anxn的收敛半径为R,由幂级数的逐项微分定理知(anxn)’=nanxn-1的收敛半径也是R.知识模块:无穷级数16.将展开成x的幂级数为_________.正确答案:解析:知识模块:无穷级数17.级数的收敛区间为________.正确答案:(一1,1)解析:因为ρ=的收敛半径R==1,故收敛区间为(一1,1).知识模块:无穷级数解答题18.判断的敛散性.正确答案:涉及知识点:无穷级数19.判定级数的收敛性.正确答案:因为μn=.<1,故由比值法可得原级数收敛.涉及知识点:无穷级数20.判别的敛散性.正确答案:因为<1,故级数收敛.涉及知识点:无穷级数21.判断的敛散性.正确答案:涉及知识点:无穷级数22.求幂级数的收敛半径和收敛域.正确答案:令x2=t,先考虑,涉及知识点:无穷级数23.求x2n的和函数.正确答案:易求得该级数的收敛域为(一∞,+∞).=2x2e x2+ex2=(2x2+1)ex2.涉及知识点:无穷级数24.求幂级数的和函数,并求级数的和S.正确答案:=1的收敛半径为R=1,收敛区间为(一1,1).设幂级数的和函数为S(x),则S(x)=,其中于是g(x)=g(x)一g(0)=∫0xg’(t)dt=∫0x dt=一ln(1一x),而涉及知识点:无穷级数25.将f(x)=展成x的幂级数.正确答案:涉及知识点:无穷级数26.将函数展开成x的幂级数.正确答案:涉及知识点:无穷级数。
判断下列命题是否正确,正确的在题后的括号划
“√ ”,错误的划“×”(每小题2分,共10
分)
1. 设函数()f x 在点0x 处连续,则0lim ()0x x f x →
'⎡⎤=⎢⎥⎣⎦ ( )
2. 若()f x 为可导函数,则()f x 也为可导函数 ( )
3. 设()f x 在[],a a -上连续,且()()f x f x -=,则
(2)0a
a
xf x dx -=⎰
( )
4. 方程2520x x -+=在区间(1,2)内必有一个正实根 ( )
5. 若()1f x < ,且在区间[]0,1上连续,则
0()21()x
F x x f t dt =--⎰
是区间[]0,1上的单调增函数 ( )
二、填空题(每小题2分,共10分)
1. 21lim(
)2x
x x x
→∞
+= . 2. 设函数211ln(),21x x y e x -+=-则dy
dx = .
3. 曲线12cos y x =+在(,2)3π
出的法线方程为
4. 设()arcsin xf x dx x c =+⎰,则1
()
dx f x ⎰= . 5. 72= .
三.选择题(每小题2分,共10分)
1.曲线32y ax bx =+的拐点为(1,3),则 ( )
(A )0a b +> (B )0a b += (C )0a b +≥ (D )0a b +< 2 设x y x =,则
dy
dx
为 ( ) (A )1x x x -⋅ (B )ln x x x (C )(ln 1)x x x + (D )ln 1x +
3 [()()]a
a x f x f x dx -+-=⎰ ( )
(A )0
4()a xf x dx ⎰ (B ) 0
2[()()]a
x f x f x dx +-⎰
(C ) 0 (D )前面都不正确
4 设20()(2)x
f x t t dt =-⎰,则它在1
2
x =
处取 ( ) (A )极大值 (B )极小值 (C ) 单调下降 (D ) 间断点
5 直线111
:
314
x y z L ---==-与平面:3x y z π++=的位置关系为
( )
(A )垂直 (B )斜交 (C )平行 (D )L π在内
四 计算下列各题(每小题6分,共48分)
1 设(cos )(sin ),y x dy
x y dx
=求
2 arctan x xdx ⋅⎰ 3
4
1
⎰
4 230
3cos sin x xdx π
⎰
5 设空间三点为(1,1,1),(2,2,2),(1,1,3)A B C ----,试写出过点A ,B,C 的平面方程及过AB 中点M 的直线MC 的方程 6
1
⎰
7 若1y ≤,计算1
1
x x y e dx --⋅⎰
8 已知参数方程()()()
x u y u u u ϕϕϕ'=⎧⎨'=⋅-⎩,且()0u ϕ''≠,求22d y
dx
五 证明不等式(8分)
1ln(x x x +⋅≥-∞<<+∞
六 应用题(8分)
计算a 为何值时,曲线21y x ax a =-+-与直线0,2,0x x y =-=围城的封闭
七 综合题(6分)
设()cos 0()0g x x
x f x x
a
x -⎧≠⎪
=⎨⎪=⎩ ,其中()g x 具有二阶连续导数,且(0)1g = (1) 确定a 的值,使()f x 在0x =连续 (2分) (2) 求()f x ' (2分)
(3)
讨论()f x '在0x =处的连续性 (2分)
参考答案
一 是非判断题
1 √;
2 ×;
3 √ ;
4 √;
5 √; 二 填空题
1 12
e ; 2
2
1
1x x --; 3
2)3y x π-=-; 4 3
22
1(1)3
x c --+; 5 0;
三 选择题
1 A ;
2 C ;
3 C ;
4 B;
5 D 四 计算题
1 解 两边取对数有:
ln cos lnsin 0y x x y -= 两边取求导有
sin cos ln cos ln sin 0cos sin x y
y x y y x y x y
-''+⋅
--⋅= 得:
ln sin tan ln cos dy y y x dx x xcoty
+=- 2 解
2
221
=arctan 2
111
arctan arctan 22211
(1)arctan 22
x dx x x x x C x x x C ⋅=-++=+-+⎰原式 3 解
4
4
11
1
1
2ln 28ln 224(2ln 21)
x dx x ==-=-⋅=-⎰⎰
原式
4解 2
3
330017=3cos cos 3cos 38
xd x x π
π
-=-⋅=⎰原式
5 解 过点A 作向量AB →和AC →
,则
{}{}3,3,3,0,2,4AB AC →→
=--=- 所求平面的法向量为:
3336126024i
j
k
m i j k =--=-++-
由平面的点法式方程有:
6(1)12(1)6(1)020
x y z x y z --+-++=--=即
AB 线段中点M 的坐标为111
(,,)222
--
故MC 直线的方向向量为:315,,222MC →
⎧⎫
=-⎨⎬⎩⎭
所求直线方程为
113
315
222
x y z -+-==
- 即 113
315
x y z -+-==
- 6 解:
10
1
12
22001
12200=lim 1lim ()(1)(1)2
1lim[()2(1)]12
x d x x ε
εε
εε
ε+++-→--→-→=---=-⋅-=⎰
⎰原式
7 解
1
1
11
1=()()(1)(1)292)y x x y
y x x y
y y x e dx x y e dx
y x e
x y e
e y e ey
----+-=-++--=-+-⎰⎰原式
8 解
()()()()
dy dy du u u u u u dx dx du u ϕϕϕϕ''''+-==='' 2211
()()()d y d d du u u dx dx dx du dx u du
ϕ==⋅==''
五 证明
令()1ln(f x x x =+
则
()ln(()0
f x x f x '=''=
>
故 ()f x 在整个实数域内为凹函数
由()0f x '=知,当0x =时,()f x 取得极小值(0)0f =,当x R ∈时,
()(0)0f x f ≥=
因而
1ln(x x +≥ 六 应用题 解
22
2220
2
54232202(11)111[2(22)(1)(1)]5432846()
3315v y dx x ax dx
x a x a a x a a x a x a a ππππ==-+-=-⋅⋅++---+-=-+⎰⎰
48
()0,233
dv a a da π=-==得 即2a =时,旋转体的体积最小,这是体积为2
5
π
七 综合题
解(1)000()cos lim ()lim lim[()sin ](0)x x x g x x
f x
g x x g x →→→-''==+=
故要使 ()f x 在0x =处连续,必使(0)a g '= (2)当0x ≠时,2
(()sin )()cos ()g x x x g x x
f x x
'+-+'= 当0x =时,
02
000()cos()
(0)
()lim
()cos()(0)lim ()sin()(0)lim 2()cos()1lim ((0)1)22
x x x x g x x g x f x x
g x x g x x g x x g x
g x x g ∆→∆→∆→∆→∆-∆'-∆'=∆'∆-∆-∆=∆''∆+∆-=∆''∆+∆''==+
(3)
2
0000(()sin )()cos lim ()lim
(()cos )(()sin )()sin lim 2(()cos )11lim lim(()cos )((0)1)(0)222
x x x x x g x x x g x x f x x g x x x g x x g x x x g x x x g x x g f x →→→→→'+-+'=''''+++--=''+'''''==+=+= 故 ()f x '在0x =处连续。