-整式的加减测试题(含标准答案)

  • 格式:doc
  • 大小:204.00 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)第二章 整式的加减

(时间:90分钟,满分120分)

一、填空题(每题3分,共36分)

1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为, 化简后的结果是。

2、当2-=x 时,代数式-122-+x x =,122+-x x =。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为。

4、已知:11=+x

x ,则代数式51)1(2010-+++x x x x 的值是。 5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入元。

6、计算:=-+-7533x x , )9()35(b a b a -+-=。

7、计算:)2008642()200953(m m m m m m m m ++++-++++ =。

8、-bc a 2+的相反数是, π-3=,最大的负整数是。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为。

10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232,n =。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则;=-22b a 。

12、多项式172332+--x x x 是次项式,最高次项是,常数项是。

二、选择题(每题3分,共30分)

13、下列等式中正确的是( )

A 、)25(52x x --=-

B 、)3(737+=+a a

C 、-)(b a b a --=-

D 、)52(52--=-x x

14、下面的叙述错误的是( )

A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和

C 、3)2(b

a 的意义是a 的立方除以2

b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍

15、下列代数式书写正确的是( )

A 、48a

B 、y x ÷

C 、)(y x a +

D 、211

abc 16、-)(c b a +-变形后的结果是( )

A 、-c b a ++

B 、-c b a -+

C 、-c b a +-

D 、-c b a --

17、下列说法正确的是( )

A 、0不是单项式

B 、x 没有系数

C 、37x x

+是多项式D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )

A 、c b a a c b a a +--=+--2)2(22

B 、)123(123-+-+=-+-y x a y x a

C 、1253)]12(5[3+--=---x x x x x x

D 、-)1()2(12-+--=+--a y x a y x

19、代数式,21a a +4

3,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、6

20、若A 和B 都是4次多项式,则A+B 一定是( )

A 、8次多项式

B 、4次多项式

C 、次数不高于4次的整式

D 、次数不低于4次的整式

21、已知y x x n m n m 2652与-是同类项,则( )

A 、1,2==y x

B 、1,3==y x

C 、1,2

3==y x D 、0,3==y x 22、下列计算中正确的是( )

A 、156=-a a

B 、x x x 1165=-

C 、m m m =-2

D 、33376x x x =+

三、化简下列各题(每题3分,共18分)

23、)3

12(65++

-a a 24、b a b a +--)5(2 25、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m 27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x

四、化简求值(每题5分,共10分)

29、)]21(3)13(2[22222x x x x x x ------- 其中:2

1=x 30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a

五、解答题(31、32题各6分,33、34题各7分,共20分)

31、已知:;)()(,,0553

212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

32、已知:A=2244y xy x +- ,B=225y xy x -+,求(3A-2B )-(2A+B )的值。

33、试说明:不论x 取何值代数式)674()132()345(323223x x x x x x x x x +--+--+---++的值是不会改变的。

参考答案

一、填空题:1、]2)5(4[32222y x x y x x +-+---,y x x 2222+,2、-9, 9,

3、(答案不唯一),

4、-3,

5、(0.3b-0.2a),

6、108-x , 14a-4b ,

7、1005m ,

8、bc a 2-,3-π,-1,

9、2, 10、-2,5,11、6,-22,

12、三,四,37x -, 1,

二、选择题:13~17题:A 、C 、C 、B 、D 18~22题:B 、C 、C 、B 、D