当前位置:文档之家› 备战中考数学二次函数(大题培优 易错 难题)含答案解析

备战中考数学二次函数(大题培优 易错 难题)含答案解析

备战中考数学二次函数(大题培优 易错 难题)含答案解析
备战中考数学二次函数(大题培优 易错 难题)含答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)

1.(6分)(2015?牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:

(1)求抛物线的解析式;

(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.

注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.

【答案】(1)y=-2x-3;(2).

【解析】

试题分析:(1)把A,B两点坐标代入,求待定系数b,c,进而确定抛物线的解析式;(2)连接BE,点F是AE中点,H是AB中点,则FH为三角形ABE的中位线,求出BE的长,FH就知道了,先由抛物线解析式求出点E坐标,根据勾股定理可求BE,再根据三角形中位线定理求线段HF的长.

试题解析:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴把A,B两点坐标

代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E(2,m)在抛物线上,∴把E点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵点F是AE中点,点H是抛物线的对称轴与

x轴交点,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.∴

线段FH的长.

考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.

2.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;

(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x 轴一个动点,若∠MNC=90°,请求出m的取值范围.

【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3﹣

2,23)

5

5 4

m

-≤≤

【解析】

【分析】

(1)利用待定系数法即可求得此抛物线的解析式;

(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;

(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣3

2

)2﹣

5

4

,然后根

据n的取值得到最小值.

【详解】

解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),

10

3

b c

c

--+=

?

?

=

?

,解得b=2,c=3.

故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,

解得x1=﹣1,x2=3,

即B(3,0),

设直线BC的解析式为y=kx+b′,

3

30

b

k b

'

'

=

?

?

+=

?

解得:k=-1,b’=3

故直线BC的解析式为y=﹣x+3;∴设P(t,3﹣t),

∴D(t,﹣t2+2t+3),

∴PD =(﹣t 2+2t +3)﹣(3﹣t )=﹣t 2+3t , ∵OB =OC =3,

∴△BOC 是等腰直角三角形, ∴∠OCB =45°,

当CD =PC 时,则∠CPD =∠CDP , ∵PD ∥y 轴,

∴∠CPD =∠OCB =45°, ∴∠CDP =45°, ∴∠PCD =90°,

∴直线CD 的解析式为y =x +3, 解2

3

23y x y x x =+??

=-++?得03x y =??

=?或1

4x y =??=?

∴D (1,4), 此时P (1,2);

当CD =PD 时,则∠DCP =∠CPD =45°, ∴∠CDP =90°, ∴CD ∥x 轴, ∴D 点的纵坐标为3,

代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3, 解得x =0或x =2, 此时P (2,1);

当PC =PD 时,∵PC t , ∴

=﹣t 2+3t ,

解得t =0或t =3,

此时P (3);

综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3) (3)如图2,由(1)y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴E (1,4),

设N (1,n ),则0≤n ≤4, 取CM 的中点Q (2m ,3

2

), ∵∠MNC =90°,

∴NQ =1

2

CM , ∴4NQ 2=CM 2,

∵NQ 2=(1﹣

2m )2+(n ﹣3

2

)2,

∴4[(1﹣

2m )2+(n ﹣3

2

)2]=m 2+9, 整理得,m =(n ﹣32)2﹣5

4

, ∵0≤n ≤4, 当n =

32时,m 最小值=﹣5

4

,n =4时,m =5, 综上,m 的取值范围为:﹣

5

4

≤m ≤5.

【点睛】

此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.

3.若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三组数”.

(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由; (2)若M(t ,y 1),N(t+1,y 2),R(t+3,y 3)三点均在函数y =

k

x

(k 为常数,k≠0)的图象上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三组数”,求实数t 的值;

(3)若直线y =2bx+2c(bc≠0)与x 轴交于点A(x 1,0),与抛物线y =ax 2+3bx+3c(a≠0)交于B(x 2,y 2),C(x 3,y 3)两点.

①求证:A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三组数”;

②若a >2b >3c ,x 2=1,求点P(

c a ,b

a

)与原点O 的距离OP 的取值范围. 【答案】(1)不能,理由见解析;(2)t 的值为﹣4、﹣2或2;(3)①证明见解析;

≤OP

OP≠1. 【解析】 【分析】

(1)由和谐三组数的定义进行验证即可;

(2)把M 、N 、R 三点的坐标分别代入反比例函数解析式,可用t 和k 分别表示出y 1、y 2、y 3,再由和谐三组数的定义可得到关于t 的方程,可求得t 的值; (3)①由直线解析式可求得x 1=﹣

c

b

,联立直线和抛物线解析式消去y ,利用一元二次方程根与系数的关系可求得x 2+x 3=﹣

b a ,x 2x 3=c

a

,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c =0,可得c =﹣(a+b),由a >2b >3c 可求得

b

a

的取值范围,令m =b

a

,利用两点间距离公式可得到OP 2关于m 的二次函数,利用二次函数的性质可求得OP 2的取值范围,从而可求得OP 的取值范围. 【详解】

(1)不能,理由如下:

∵1、2、3的倒数分别为1、12、13

, ∴

12+13≠1,1+12≠13,1+13≠12

, ∴实数1,2,3不可以构成“和谐三组数”;

(2)∵M(t ,y 1),N(t+1,y 2),R(t+3,y 3)三点均在函数k

x

(k 为常数,k≠0)的图象上, ∴y 1、y 2、y 3均不为0,且y 1=

k t ,y 2=1k t +,y 3=3

k t +, ∴11y =t k ,21y =1t k +,31y =3

t k

+, ∵y 1,y 2,y 3构成“和谐三组数”, ∴有以下三种情况: 当

11y =21y +31y 时,则t k =1t k ++3

t k

+,即t =t+1+t+3,解得t =﹣4;

当21y =11y +31y 时,则1t k +=t k +3t k

+,即t+1=t+t+3,解得t =﹣2;

31y =11y +21y 时,则3t k +=t k +1t k

+,即t+3=t+t+1,解得t =2; ∴t 的值为﹣4、﹣2或2; (3)①∵a 、b 、c 均不为0, ∴x 1,x 2,x 3都不为0,

∵直线y =2bx+2c(bc≠0)与x 轴交于点A(x 1,0), ∴0=2bx 1+2c ,解得x 1=﹣

c

b

, 联立直线与抛物线解析式,消去y 可得2bx+2c =ax 2+3bx+3c ,即ax 2+bx+c =0, ∵直线与抛物线交与B(x 2,y 2),C(x 3,y 3)两点, ∴x 2、x 3是方程ax 2+bx+c =0的两根, ∴x 2+x 3=﹣

b a ,x 2x 3=

c a

, ∴21x +31x =2323x x x x +=b a c a

-

=﹣b c =11x ,

∴x 1,x 2,x 3构成“和谐三组数”; ②∵x 2=1, ∴a+b+c =0, ∴c =﹣a ﹣b , ∵a >2b >3c ,

∴a >2b >3(﹣a ﹣b),且a >0,整理可得253a b b a

>??>-?,解得﹣35<b a <1

2,

∵P(

c a ,b

a

), ∴OP 2=(c a )2+(b a )2=(a b a --)2+(b a )2=2(b a )2+2b a +1=2(b a +12)2+12

, 令m =

b a ,则﹣35<m <12且m≠0,且OP 2=2(m+12)2+12, ∵2>0,

∴当﹣

35<m <﹣12时,OP 2随m 的增大而减小,当m =﹣35时,OP 2有最大临界值1325,当m =﹣12时,OP 2有最小临界值1

2

, 当﹣12<m <12时,OP 2随m 的增大而增大,当m =﹣12时,OP 2有最小临界值1

2

,当m =

12时,OP 2有最大临界值52

12≤OP 2<5

2且OP 2≠1, ∵P 到原点的距离为非负数, ∴

2

≤OP <10且OP≠1. 【点睛】

本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t 的方程是解题的关键,在(3)①中用a 、b 、c 分别表示出x 1,x 2,x 3是解题的关键,在(3)②中把OP 2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.

4.如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-. (1)求二次函数的解析式;

(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;

(3)当矩形MNHG 的周长最大时,能否在二次函数图象上找到一点P ,使PNC ?的面积是矩形MNHG 面积的

9

16

?若存在,求出该点的横坐标;若不存在,请说明理由.

【答案】(1)2y x 2x 3=-++ (2)最大值为10 (3)故点P 坐标为:315(,)24或33232(24+--或332362

(,24

--+. 【解析】 【分析】

(1)二次函数表达式为:()2

14y a x =-+,将点B 的坐标代入上式,即可求解; (2)矩形MNHG 的周长

()()

2222222223282C MN GM x x x x x =+=-+-++=-++,即可求解;

(3)2711sin4532822PNC S PK CD PH ?=

=??=????9

4

PH HG ==,即

可求解. 【详解】

(1)二次函数表达式为:()2

14y a x =-+,

将点B 的坐标代入上式得:044a =+,解得:1a =-, 故函数表达式为:2

23y x x =-++…①;

(2)设点M 的坐标为(

)

2

,23x x x -++,则点(

)

2

2,23N x x x --++, 则222MN x x x =-+=-,223GM x x =-++,

矩形MNHG 的周长()()

2

2

22222223282C MN GM x x x x x =+=-+-++=-++,

∵20-<,故当22b

x a

=-

=,C 有最大值,最大值为10, 此时2x =,点()0,3N 与点D 重合; (3)PNC ?的面积是矩形MNHG 面积的916

, 则99272316168

PNC S MN GM ?=

??=??=, 连接DC ,在CD 得上下方等距离处作CD 的平行线m 、n , 过点P 作y 轴的平行线交CD 、直线n 于点H 、G ,即PH GH =, 过点P 作PK CD ⊥于点K ,

将()3,0C 、()0,3D 坐标代入一次函数表达式并解得: 直线CD 的表达式为:3y x =-+,

OC OD =,∴45OCD ODC PHK ∠=∠=?=∠,32CD =

设点()

2

,23P x x x -++,则点(),3H x x -+,

2711

sin4532822

PNC S PK CD PH ?=

=??=???? 解得:9

4

PH HG =

=, 则2

92334

PH x x x =-+++-=

解得:32

x =, 故点315,24P ??

??

?, 直线n 的表达式为:93

344

y x x =-+-=-+…②, 联立①②

并解得:32

x ±=

, 即点'P 、''P

的坐标分别为??

、??

; 故点P 坐标为:315,24?? ???

或3324??+-- ? ???

或3324?--+ ??

. 【点睛】

主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.

5.已知函数()()22,1,2

22x nx n x n y n n

x x x n ?-++≥?

=?-++

①点()4,P b 在此函数图象上,求b 的值; ②求此函数的最大值.

(2)已知线段AB 的两个端点坐标分别为()()2,24,2A B 、,当此函数的图象与线段

AB 只有一个交点时,直接写出n 的取值范围.

(3)当此函数图象上有4个点到x 轴的距离等于4,求n 的取值范围.

【答案】(1)①92b =

②458;(2)

1845n <≤,8

23

n ≤<时,图象与线段AB 只有一个交点;(3)函数图象上有4个点到x 轴的距离等于4时,8n >或31

42

n ≤<. 【解析】 【分析】

(1)①将()4,P b 代入2155

222

y x x =-++;②当5x ≥时,当5x =时有最大值为5;当5x <时,当52x =

时有最大值为458;故函数的最大值为45

8

(2)将点()4,2代入2

y x nx n =-++中,得到185n =

,所以

18

45

n <≤时,图象与线段AB 只有一个交点;将点()2,2)代入2

y x nx n =-++和21222

n n y x x =-++中,得到

8

2,3

n n ==

, 所以8

23

n ≤<时图象与线段AB 只有一个交点; (3)当x

n =时,42

n >,得到8n >;当2

n x =时,148

2

n +≤,得到312

n ≥,当x n

=时,2

2

y n n n n =-++=,4n <. 【详解】

解:(1)当5n =时,

()()22555155

52

22x x x y x x x ?-++≥?

=?-++

?, ①将()4,P b 代入2155

222

y x x =-++, ∴9

2

b =

; ②当5x ≥时,当5x =时有最大值为5; 当5x <时,当52x =时有最大值为458; ∴函数的最大值为

458

; (2)将点()4,2代入2

y x nx n =-++中,

∴185

n =, ∴

18

45

n <≤时,图象与线段AB 只有一个交点; 将点()2,2代入2

y x nx n =-++中, ∴2n =, 将点()2,2代入21222

n n

y x x =-++中, ∴8

3

n =

, ∴8

23

n ≤<

时图象与线段AB 只有一个交点;

综上所述:1845n <≤,8

23

n ≤<时,图象与线段AB 只有一个交点; (3)当x

n =时,22112

2

2

2

n n y n n =-++=,

42

n

>,∴8n >; 当2n x =

时,182

n y =+, 1482n +≤,∴312

n ≥, 当x

n =时,22y n n n n =-++=,

4n <;

∴函数图象上有4个点到x 轴的距离等于4时,8n >或31

42

n ≤<. 【点睛】

考核知识点:二次函数综合.数形结合分析问题是关键.

6.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .

(1)求抛物线的解析式;

(2)过点A 的直线交直线BC 于点M .

①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.

【答案】(1)抛物线解析式为y=﹣x 2+6x ﹣5;(2)①P 点的横坐标为4或

41

2

2

;②点M 的坐标为(136,﹣176)或(236,﹣76).

【解析】

分析:(1)利用一次函数解析式确定C (0,-5),B (5,0),然后利用待定系数法求抛物线解析式;

(2)①先解方程-x 2+6x-5=0得A (1,0),再判断△OCB 为等腰直角三角形得到

∠OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以

,接着根据平行四边形的性质得到

,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,利用∠PDQ=45°得到

PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;

②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(12,-5

2

),利用两直线垂直的问题可设直线EM 1的解析式为y=-

15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-12

5

,则解方程组511255y x y x -??

?--??

==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,

如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式

得到3=13+62

x

,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.

详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5), 当y=0时,x ﹣5=0,解得x=5,则B (5,0), 把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得

253005a c c ++=??

=-?,解得1

5a b =-??=-?

, ∴抛物线解析式为y=﹣x 2+6x ﹣5;

(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0), ∵B (5,0),C (0,﹣5), ∴△OCB 为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM ⊥BC ,

∴△AMB 为等腰直角三角形, ∴

AM=

2

AB=2

∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=22,PQ⊥BC,

作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,

∴PD=2PQ=2×22=4,

设P(m,﹣m2+6m﹣5),则D(m,m﹣5),

当P点在直线BC上方时,

PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,

PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+41

2

,m2=

5-41

2

综上所述,P点的横坐标为4或5+41

5-41

②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,

∵M1A=M1C,

∴∠ACM1=∠CAM1,

∴∠AM1B=2∠ACB,

∵△ANB为等腰直角三角形,

∴AH=BH=NH=2,∴N(3,﹣2),

易得AC的解析式为y=5x﹣5,E点坐标为(1

2

,﹣

5

2

设直线EM1的解析式为y=﹣1

5

x+b,

把E(1

2

,﹣

5

2

)代入得﹣

1

10

+b=﹣

5

2

,解得b=﹣

12

5

∴直线EM1的解析式为y=﹣1

5x﹣

12

5

解方程组

5

112

55

y x

y x

=-

?

?

?

=--

??

13

6

17

6

x

y

?

=

??

?

?=-

??

,则M1(

13

6

,﹣

17

6

);

作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),

∵3=13

+ 6

2

x

∴x=23

6

∴M2(23

6,﹣

7

6

).

综上所述,点M的坐标为(13

6

,﹣

17

6

)或(

23

6

,﹣

7

6

).

点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

7.如图,已知抛物线23

4 2

y ax x

=++的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.

(1)求抛物线的解析式和A、B两点的坐标;

(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.

【答案】(1)213

442

y x x =-

++,点A 的坐标为(-2,0),点B 的坐标为(8,0);(2)存在点P ,使△PBC 的面积最大,最大面积是16,理由见解析;(3)点M 的坐标为(4-771)、(2,6)、(6,4)或7,71). 【解析】 【分析】

(1) 由抛物线的对称轴为直线x=3,利用二次函数的性质即可求出a 值, 进而可得出抛物线的解析式, 再利用二次函数图象上点的坐标特征, 即可求出点A 、B 的坐标; (2) 利用二次函数图象上点的坐标特征可求出点C 的坐标, 由点B 、C 的坐标, 利用待定系数法即可求出直线BC 的解析式, 假设存在, 设点P 的坐标为(x,213

-442

x x ++),过点P 作PD//y 轴, 交直线BC 于点D ,则点D 的坐标为(x,1-

42x +),PD=-1

4

x 2+2x ,利用三角形的面积公式即可得出三角形PBC 的面积关于x 的函数关系式, 再利用二次函数的性质即可解决最值问题;

(3) 设点M 的坐标为(m,213-442m m ++),则点N 的坐标为(m,1

-42

m +),进而可得出MN 2

124

m m =-

+,结合MN=3即可得出关于m 的含绝对值符号的一元二次方程, 解之即可得出结论 . 【详解】 (1)

抛物线2

3

42

y ax x =+

+的对称轴是直线3x =, 3

232a

∴-=,解得:14

a =-,

∴抛物线的解析式为213

442

y x x =-++.

当0y =时,213

4042

x x -++=,

解得:12x =-,28x =,

∴点A 的坐标为()2,0-,点B 的坐标为()8,0.

(2) 当0x =时,213

4442

y x x =-

++=, ∴点C 的坐标为()0,4.

设直线BC 的解析式为()0y kx b k =+≠. 将()8,0B 、()0,4C 代入y kx b =+,

804k b b +=??

=?,解得:124

k b ?

=-

???=?, ∴直线BC 的解析式为1

42

y x =-

+. 假设存在, 设点P 的坐标为213,442x x x ??

-++ ??

?

,过点P 作//PD y 轴, 交直线BC 于点D ,则点D 的坐标为1,42x x ??

-

+ ???

,如图所示 . 2213114424224PD x x x x x ??

∴=-++--+=-+ ???,

()222111·8?28416224PBC S PD OB x x x x x ???∴=

=?-+=-+=--+ ???

. 10-<,

∴当4x =时,PBC ?的面积最大, 最大面积是 16 . 08x <<,

∴存在点P ,使PBC ?的面积最大, 最大面积是 16 .

(3) 设点M 的坐标为213,442m m m ??-

++ ???,则点N 的坐标为1,42m m ??-+ ???

, 2213114424224MN m m m m m ??

∴=-++--+=-+ ???

3MN =,

21

234

m m ∴-+=.

当08m <<时, 有2

12304

m m -

+-=, 解得:12m =,26m =,

∴点M 的坐标为()2,6或()6,4;

当0m <或8m >时, 有2

12304

m m -

++=,

解得:3427m =-,4427m =+,

∴点M 的坐标为(427-,71)-或(427+,71)--.

综上所述:M 点的坐标为(427-,71)-、()2,6、()6,4或(427+,

71)--.

【点睛】

本题考查了二次函数的性质、 二次函数图象上点的坐标特征、 待定系数法求一次函数解析式以及三角形的面积, 解题的关键是: (1) 利用二次函数的性质求出a 的值; (2) 根据三角形的面积公式找出关于x 的函数关系式; (3) 根据MN 的长度, 找出关于m 的含绝对值符号的一元二次方程 .

8.如图,直线y=﹣

x+

分别与x 轴、y 轴交于B 、C 两点,点A 在x 轴上,∠ACB=90°,抛物线y=ax 2+bx+经过A ,B 两点.

(1)求A 、B 两点的坐标; (2)求抛物线的解析式;

(3)点M 是直线BC 上方抛物线上的一点,过点M 作MH ⊥BC 于点H ,作MD ∥y 轴交BC

于点D ,求△DMH 周长的最大值.

【答案】(1)(﹣1,0)(2)y=﹣x 2+x+(3)

【解析】

试题分析:(1)由直线解析式可求得B 、C 坐标,在Rt △BOC 中由三角函数定义可求得∠OCB=60°,则在Rt △AOC 中可得∠ACO=30°,利用三角函数的定义可求得OA ,则可求得A 点坐标;

(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;

(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.

试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,

∴B(3,0),C(0,),

∴OB=3,OC=,

∴tan∠BCO==,

∴∠BCO=60°,

∵∠ACB=90°,

∴∠ACO=30°,

∴=tan30°=,即=,解得AO=1,

∴A(﹣1,0);

(2)∵抛物线y=ax2+bx+经过A,B两点,

∴,解得,

∴抛物线解析式为y=﹣x2+x+;

(3)∵MD∥y轴,MH⊥BC,

∴∠MDH=∠BCO=60°,则∠DMH=30°,

∴DH=DM,MH=DM,

∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,

∴当DM有最大值时,其周长有最大值,

∵点M是直线BC上方抛物线上的一点,

∴可设M(t,﹣t2+t+),则D(t,﹣t+),

∴DM=﹣t2+t+),则D(t,﹣t+),

∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,

∴当t=时,DM有最大值,最大值为,

此时DM=×=,

即△DMH周长的最大值为.

考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想

9.已知抛物线27

y x3x

4

=--的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.

(1)求点A、B、C、D的坐标;

(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;

(3)取点E(

3

4

-,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中

点.

①点G是否在直线l上,请说明理由;

②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M 的坐标;若不存在,请说明理由.

【答案】解:(1) D(3

2

,﹣4)

(2) P(0,7

4

)或(0,

1

7

(3)详见解析

【解析】

【分析】

(1)令y=0,解关于x的一元二次方程求出A、B的坐标,令x=0求出点C的坐标,再根

据顶点坐标公式计算即可求出顶点D 的坐标.

(2)根据点A 、C 的坐标求出OA 、OC 的长,再分OA 和OA 是对应边,OA 和OC 是对应边两种情况,利用相似三角形对应边成比例列式求出OP 的长,从而得解.

(3)①设直线l 的解析式为y=kx+b (k≠0),利用待定系数法求一次函数解析式求出直线l 的解析式,再利用中点公式求出点G 的坐标,然后根据直线上点的坐标特征验证即可. ②设抛物线的对称轴与x 轴交点为H ,求出OE 、OF 、HD 、HB 的长,然后求出△OEF 和△HDB 相似,根据相似三角形对应角相等求出∠OFE=∠HBD ,然后求出EG ⊥BD ,从而得到直线l 是线段BD 的垂直平分线,根据线段垂直平分线的性质点D 关于直线l 的对称点就是B ,从而判断出点M 就是直线DE 与抛物线的交点.再设直线DE 的解析式为y=mx+n ,利用待定系数法求一次函数解析求出直线DE 的解析式,然后与抛物线解析式联立求解即可得到符合条件的点M . 【详解】

解:(1)在2

7y x 3x 4=--中,令y=0,则2

7x 3x 04

--=,整理得,4x 2﹣12x ﹣7=0, 解得x 1=12-

,x 2=72.∴A (12-,0),B (7

2

,0). 在2

7y x 3x 4=--

中,令x=0,则y=74-.∴C (0,7

4

-). ∵()227413b 334ac b 442a 2124a 41??

??--- ?--??-=-===-??,,∴顶点D (32

,﹣4). (2)在y 轴正半轴上存在符合条件的点P . 设点P 的坐标为(0,y ),

∵A (12-

,0),C (0,74-),∴OA=12,OC=7

4

,OP=y , ①若OA 和OA 是对应边,则△AOP ∽△AOC ,∴

OP OA OC OA =.∴y=OC=7

4

,此时点P (0,7

4

). ②若OA 和OC 是对应边,则△POA ∽△AOC ,∴OP OA

OA OC

=,即1y 21724

=.

解得y=17,此时点P (0,1

7

).

综上所述,符合条件的点P 有两个,P (0,74)或(0,1

7

).

(3)①设直线l 的解析式为y=kx+b (k≠0),

∵直线l 经过点E (32-,0)和点F (0,3

4

-),

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

北京国子监中学数学 二次函数中考真题汇编[解析版]

北京国子监中学数学二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值; (3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标. 【答案】(1)y=x2﹣4x+3;(2)EF的最大值为 2 4 ;(3)M点坐标为可以为(2, 3),(55 2 + ,3),( 55 2 - ,3). 【解析】 【分析】 (1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式. (2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值. (3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解. 【详解】 解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c), ∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0), ∴二次函数解析式:y=a(x﹣1)(x﹣3). 又∵点D(4,3)在二次函数上, ∴(4﹣3)×(4﹣1)a=3, ∴解得:a=1. ∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

全国中考数学二次函数的综合中考真题汇总及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式; (2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由. 【答案】(1) y=﹣23 4x +94x+3;(2) 有最大值,365 ;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为( 73,256)或(173,﹣253). 【解析】 试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣ 34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣ 34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365 ,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94 n+3),则D (n ,﹣34n+3),G (0,﹣34 n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析: (1)由OC=3OA ,有C (0,3), 将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

九年级上册数学 二次函数中考真题汇编[解析版]

九年级上册数学 二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M. (1)分别求出抛物线和直线AB的函数表达式; (2)设△PMN的面积为S1,△AEN的面积为S2,当1 236 25 S S =时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α (0°<α<90°),连接E′A、E′B,求E'A+2 3 E'B的最小值. 【答案】(1)抛物线y=﹣3 4 x2+ 9 4 x+3,直线AB解析式为y=﹣ 3 4 x+3;(2)P(2, 3 2);(3 410 【解析】 【分析】 (1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式; (2)根据题意由△PNM∽△ANE,推出 6 5 PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y轴上取一点M使得OM′=4 3 ,构造相似三角形,可以证明AM′就是 E′A+2 3 E′B的最小值. 【详解】 解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),

则有 3 30 n m m n ? ? ?++ = = ,解得4 3 3 m n ? ? ? ? - ? = = , ∴抛物线2 39 3 44 y x x =-++, 令y=0,得到2 39 3 44 x x -++=0, 解得:x=4或﹣1, ∴A(4,0),B(0,3), 设直线AB解析式为y=kx+b,则 3 40 b k b + ? ? ? = = , 解得 3 3 4 k b ? - ? ? ?? = = , ∴直线AB解析式为y=3 4 -x+3. (2)如图1中,设P(m,2 39 3 44 m m -++),则E(m,0), ∵PM⊥AB,PE⊥OA, ∴∠PMN=∠AEN, ∵∠PNM=∠ANE, ∴△PNM∽△ANE, ∵△PMN的面积为S1,△AEN的面积为S2,1 2 36 25 S S =, ∴6 5 PN AN =, ∵NE∥OB, ∴AN AE AB OA =, ∴AN=5 4 5 4 5 4 5 4 (4﹣m),

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=﹣x2+bx+c的表达式; (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标; (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标; ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值. 2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D. (1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值; (3)当△BCD是直角三角形时,求对应抛物线的解析式. 3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;

(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标. (2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒. ①当t为何值时,四边形OMPN为矩形. ②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由. 5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式; (2)在第二象限取一点C,作CD垂直X轴于点D,AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值; (3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存

人教【数学】数学 二次函数的专项 培优练习题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D. (1)求抛物线的解析式; (2)求点P在运动的过程中线段PD长度的最大值; (3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由. 【答案】(1)y=x2﹣4x+3;(2)9 4 ;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣ 3). 【解析】 试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解; (2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答; (3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可; (4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可. 试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0), ∴ 930 10 b c b c ++= ? ? ++= ? ,解得 4 3 b c =- ? ? = ? ,∴抛物线解析式为y=x2﹣4x+3; (2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣ (x﹣3 2 )2+ 9 4 .∵a=﹣1<0,∴当x= 3 2 时,线段PD的长度有最大值 9 4 ;

二次函数中考真题汇编[解析版]

二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值; (3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标. 【答案】(1)y=x2﹣4x+3;(2)EF的最大值为 2 4 ;(3)M点坐标为可以为(2, 3),(55 2 + ,3),( 55 2 - ,3). 【解析】 【分析】 (1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式. (2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值. (3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解. 【详解】 解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c), ∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0), ∴二次函数解析式:y=a(x﹣1)(x﹣3). 又∵点D(4,3)在二次函数上, ∴(4﹣3)×(4﹣1)a=3, ∴解得:a=1. ∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

中考数学 二次函数知识点总结

中考数学二次函数知识 点总结 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0 ,可以为零.二次函数的定义域是 a≠,而b c 全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 =+的 y ax c 性质:

结论:上加下减。 总结: 3. ()2 =-的性 y a x h 质: 结论:左加右减。 总结: 4.

()2 y a x h k =-+的性质: 总结: 二次函数图象 的平 移 1. 平移步 骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

二次函数培优经典题

112O x y 培优训练五(二次函数1) 1、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h 2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( ) A . 3个 B . 2个 C . 1个 D . 0个 3、如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标 为(1,12 ),下列结论:①0ac <;②0a b +=; ③244ac b a -=;④0a b c ++<.其中正确结论的个数是 A . 1 B . 2 C . 3 D . 4 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是 A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 2>y 1>y 3 D .y 3>y 1>y 2 5、如图,一次函数)0(1≠+=k n kx y 与二次函数 )0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关 于x 的不等式c bx ax n kx ++≥+2 的解集为 A 、91≤≤-x B 、91<≤-x C 、91≤<-x D 、1-≤x 或9≥x 6.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、

二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题 二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类: ①定区间,定轴; ②定区间,动轴, ③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0. 第一类问题 二次函数中的动轴定区间 例一已知函数2 142+-+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3 106,310,2)1(,]1,0[,2,12/;,20,32,2)2 (,20,120;6,2)0(,]1,0[,0,02 ,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间 例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ). (1)求g (t )的解析式;(2)求g (t )的最大值 (1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2; ②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3; 例三 已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值 ()()()()()()2222[1]4122(1)3(12)241(2) 3. t f x t t g t f t t t t t t g t t t t t g t >?-++? ③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠ <><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 41()4300343112043231221124<<<0.243330,12a a x a a a f x f a a f x f a a f x ><>-<≤≤-????????-?ⅱ若-,即,因为对称轴= ,故又分两种情况讨论: ①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

数学九年级上册 二次函数中考真题汇编[解析版]

数学九年级上册 二次函数中考真题汇编[解析版] 一、初三数学 二次函数易错题压轴题(难) 1.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 2 0x +(b+1)x 0+b ﹣2 =x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点; (2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围; (3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2 121 a +是线段AB 的垂 直平分线,求实数b 的取值范围. 【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣ b <0. 【解析】 【分析】 (1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点; (2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围; (3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121 a +是线段AB 的垂 直平分线,从而可以求得b 的取值范围. 【详解】 解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1, 即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0, ∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

人教版九年级上册数学 二次函数中考真题汇编[解析版]

人教版九年级上册数学二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x ﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上. (1)求此二次函数的表达式; (2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值; (3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由. 【答案】(1)y=1 2 x2﹣ 3 2 x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值 为4;(3)Q的坐标为(5 3 ,﹣ 28 9 )或(﹣ 11 3 , 92 9 ). 【解析】 【分析】 (1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解; (2)由题意过点P作PH//y轴交BC于点H,并设点P(x,1 2 x2﹣ 3 2 x﹣2),进而根据S =S△PHB+S△PHC=1 2 PH?(x B﹣x C),进行计算即可求解; (3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解. 【详解】 解:(1)对于直线y=1 2 x﹣2, 令x=0,则y=﹣2, 令y=0,即1 2 x﹣2=0,解得:x=4, 故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4), 将点C的坐标代入上式并解得:a=1 2 ,

故抛物线的表达式为y= 1 2 x2 ﹣ 3 2 x﹣2①; (2)如图2,过点P作PH//y轴交BC于点H, 设点P(x, 1 2 x2﹣ 3 2 x﹣2),则点H(x, 1 2 x﹣2), S=S△PHB+S△PHC= 1 2 PH?(x B﹣x C)= 1 2 ×4×( 1 2 x﹣2﹣ 1 2 x2+ 3 2 x+2)=﹣x2+4x, ∵﹣1<0,故S有最大值,当x=2时,S的最大值为4; (3)①当点Q在BC下方时,如图2, 延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形, 则点C是RQ的中点, 在△BOC中,tan∠OBC= OC OB = 1 2 =tan∠ROC= RC BC , 则设RC=x=QB,则BC=2x,则RB22 (2) x x 5=BQ, 在△QRB中,S△RQB= 1 2 ×QR?BC= 1 2 BR?QK,即 1 2 2x?2x= 1 2 5, 解得:KQ 5 ∴sin∠RBQ= KQ BQ 5 5x = 4 5 ,则tanRBH= 4 3 ,

初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数21(1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到. 5.抛物线342++=x x y 在x 轴上截得的线段长度是 . 6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212 y x =的图象,它们共同特点是 ( ) 22 3x y -=

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

二次函数典型例题——最大值问题

二次函数典型例题——最大面积 1、如图所示,在平面直角坐标系中,Rt△OBC 的两条直角边分别落在x 轴、y 轴上,且 OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点 F. (1)若抛物线过点 A 、B、C, 求此抛物线的解析式; (2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积; (3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积 是多少?求出此时点M 的坐标. 解:(1)∵OB=1 ,OC=3 ∴C(0,-3),B(1,0) ∵△OBC 绕原点顺时针旋转90°得到△ OAE ∴A(-3,0) 所以抛物线过点A(-3 ,0),C(0,-3),B(1,0) 设抛物线的解析式 为 y 2 ax bx c(a 0) ,可得 a+b+c 0a1 c -3解得b2 9a-3b c 0c-3 ∴过点A,B,C 的抛物线的解析式为y x2 2x-3 (2)∵△OBC 绕原点顺时针旋转90°得到△ OAE ,△OBC 沿y 轴翻折得到△COD ∴ E(0,-1),D(-1,0) 1 可求出直线AE 的解析式为y 1x 1 3直线DC 的解析式为y 3x 3 ∵点F为AE、DC 交点 ∴F(-3,-3) 44

3 S 四边形 ODFE =S △AOE -S △ADF = 4 3)连接 OM ,设 M 点的坐标为 (m ,n ) 2 2、在平面直角坐标系 xOy 中,抛物线 y mx 2 (m 2)x 2 过点 (2, 4) ,且与 x 轴交于 A 、 B 两点(点 A 在点 B 左侧),与 y 轴交于点 C.点 D 的坐标为 (2,0) ,连接 CA ,CB ,CD. (1)求证: ACO BCD ; (2) P 是第一象限内抛物线上的一个动点,连接 DP 交 BC 于点 E. ①当 △BDE 是等腰三角形时,直接写出点 E 的坐标; ②连接 CP ,当△ CDP 的面积最大时,求点 E 的坐标. ∵点 M 在抛物线上,∴ n 2 m 2m ∴ S AMC S AMO S OMC S AOC = 12OA m = 32(m 2 11 OC n OA OC 2 2 3m) 3(m 因为 0 m 3 ,所以当 m 所以当点 M 3 的坐标为 ( , 2 3 9 3 (m n) (m n 3) 2 2 2 3 2 27 2) 8 3 时, 2 15 - ) 时, 4 n 15 ,△AMA ' 的面积有最大值 4 △ AMA '的面积有最大值

2020年中考试题分类汇编——二次函数

中考试题分类汇编——二次函数 一、选择题 1、(天津市)已知二次函数的图象如图所示,有下列5个结论:① ;②;③;④;⑤,( 的实数)其中正确的结论有()B A. 2个 B. 3个 C. 4个 D. 5个 2、(2007南充)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是().B (A)②④(B)①④(C)②③(D)①③ 3、(2007广州市)二次函数与x轴的交点个数是()B A.0B.1C.2D.3 4、(2007云南双柏县)在同一坐标系中一次函数和二次函数的图象可能为()A 5、(2007四川资阳)已知二次函数(a≠0)的图象开口向上,并经过点(-1,2),(1,0)。下列结论正确的是()D A. 当x>0时,函数值y随x的增大而增大 B. 当x>0时,函数值y随x的增大而减小

C. 存在一个负数x0,使得当xx0时,函数值y随x的增大而增大 D. 存在一个正数x0,使得当xx0时,函数值y随x的增大而增大 6、(2007山东日照)已知二次函数y=x2-x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么下列结论中正确的是()B (A)m-1的函数值小于0(B)m-1的函数值大于0 (C)m-1的函数值等于0(D)m-1的函数值与0的大小关系不确定 二、填空题 1、(2007湖北孝感)二次函数y =ax2+bx+c的图象如图8所示,且P=| a-b+c |+| 2a+b |,Q=| a+b+c |+| 2a-b |,则P、Q的大小关系为.P

2020年中考数学真题汇编 二次函数

中考数学真题汇编:二次函数 一、选择题 1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是() A. ①③ B. ③④ C. ②④ D. ②③ 【答案】B 2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是 () A. B. C. D. 【答案】B 3.关于二次函数,下列说法正确的是() A. 图像与轴的交点坐标为 B. 图 像的对称轴在轴的右侧 C. 当时,的值随值的增大而减小 D. 的最小值为-3 【答案】D 4.二次函数的图像如图所示,下列结论正确是( )

A. B. C. D. 有两个不相等的实数根 【答案】C 5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线 的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B. C. D. 【答案】B 6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。已知某定弦抛物线的对 称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点() A. (-3,-6) B. (-3, 0) C. (-3, -5) D. (-3,-1) 【答案】B 7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则 下列说法中正确的是() A. 点火后9s和点火后13s的升空高度相同 B. 点火后24s火箭落 于地面 C. 点火后10s的升空高度为 139m D. 火箭升空的最大高度为145m 【答案】D 8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣ 1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中 正确的个数是()

二次函数培优专题训练

二次函数培优专题训练 一、实际应用专题 例题1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 例题2 小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如:某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元∕只的价格购买),但是最低价为16元∕只.(1)顾客一次至少买多少只,才能以最低价购买? (2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式. (3)星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的钱少.为了使每次卖得越多赚钱越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少?为什么? 例题3(2010?恩施州)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售. (1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

相关主题
文本预览
相关文档 最新文档